1
|
DeHaro-Arbona FJ, Roussos C, Baloul S, Townson J, Gómez Lamarca MJ, Bray S. Dynamic modes of Notch transcription hubs conferring memory and stochastic activation revealed by live imaging the co-activator Mastermind. eLife 2024; 12:RP92083. [PMID: 38727722 PMCID: PMC11087053 DOI: 10.7554/elife.92083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
Developmental programming involves the accurate conversion of signalling levels and dynamics to transcriptional outputs. The transcriptional relay in the Notch pathway relies on nuclear complexes containing the co-activator Mastermind (Mam). By tracking these complexes in real time, we reveal that they promote the formation of a dynamic transcription hub in Notch ON nuclei which concentrates key factors including the Mediator CDK module. The composition of the hub is labile and persists after Notch withdrawal conferring a memory that enables rapid reformation. Surprisingly, only a third of Notch ON hubs progress to a state with nascent transcription, which correlates with polymerase II and core Mediator recruitment. This probability is increased by a second signal. The discovery that target-gene transcription is probabilistic has far-reaching implications because it implies that stochastic differences in Notch pathway output can arise downstream of receptor activation.
Collapse
Affiliation(s)
- F Javier DeHaro-Arbona
- Department of Physiology Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Charalambos Roussos
- Department of Physiology Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Sarah Baloul
- Department of Physiology Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Jonathan Townson
- Department of Physiology Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - María J Gómez Lamarca
- Department of Physiology Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocıo/CSIC/Universidad de Sevilla, Departamento de Biologıa CelularSevilleSpain
| | - Sarah Bray
- Department of Physiology Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
2
|
Ju L, Glastad KM, Sheng L, Gospocic J, Kingwell CJ, Davidson SM, Kocher SD, Bonasio R, Berger SL. Hormonal gatekeeping via the blood-brain barrier governs caste-specific behavior in ants. Cell 2023; 186:4289-4309.e23. [PMID: 37683635 PMCID: PMC10807403 DOI: 10.1016/j.cell.2023.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/10/2023] [Accepted: 08/01/2023] [Indexed: 09/10/2023]
Abstract
Here, we reveal an unanticipated role of the blood-brain barrier (BBB) in regulating complex social behavior in ants. Using scRNA-seq, we find localization in the BBB of a key hormone-degrading enzyme called juvenile hormone esterase (Jhe), and we show that this localization governs the level of juvenile hormone (JH3) entering the brain. Manipulation of the Jhe level reprograms the brain transcriptome between ant castes. Although ant Jhe is retained and functions intracellularly within the BBB, we show that Drosophila Jhe is naturally extracellular. Heterologous expression of ant Jhe into the Drosophila BBB alters behavior in fly to mimic what is seen in ants. Most strikingly, manipulation of Jhe levels in ants reprograms complex behavior between worker castes. Our study thus uncovers a remarkable, potentially conserved role of the BBB serving as a molecular gatekeeper for a neurohormonal pathway that regulates social behavior.
Collapse
Affiliation(s)
- Linyang Ju
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Karl M Glastad
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Lihong Sheng
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Janko Gospocic
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Urology and Institute of Neuropathology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Callum J Kingwell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Shawn M Davidson
- Lewis-Sigler Institute for Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Sarah D Kocher
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Roberto Bonasio
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shelley L Berger
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Voutyraki C, Choromidis A, Meligkounaki A, Vlachopoulos NA, Theodorou V, Grammenoudi S, Athanasiadis E, Monticelli S, Giangrande A, Delidakis C, Zacharioudaki E. Growth deregulation and interaction with host hemocytes contribute to tumor progression in a Drosophila brain tumor model. Proc Natl Acad Sci U S A 2023; 120:e2221601120. [PMID: 37549261 PMCID: PMC10438840 DOI: 10.1073/pnas.2221601120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/27/2023] [Indexed: 08/09/2023] Open
Abstract
Tumors constantly interact with their microenvironment. Here, we present data on a Notch-induced neural stem cell (NSC) tumor in Drosophila, which can be immortalized by serial transplantation in adult hosts. This tumor arises in the larva by virtue of the ability of Notch to suppress early differentiation-promoting factors in NSC progeny. Guided by transcriptome data, we have addressed both tumor-intrinsic and microenvironment-specific factors and how they contribute to tumor growth and host demise. The growth promoting factors Myc, Imp, and Insulin receptor in the tumor cells are important for tumor expansion and killing of the host. From the host's side, hemocytes, professional phagocytic blood cells, are found associated with tumor cells. Phagocytic receptors, like NimC1, are needed in hemocytes to enable them to capture and engulf tumor cells, restricting their growth. In addition to their protective role, hemocytes may also increase the host's morbidity by their propensity to produce damaging extracellular reactive oxygen species.
Collapse
Affiliation(s)
- Chrysanthi Voutyraki
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013Heraklion, Crete, Greece
- Department of Biology, University of Crete, 70013Heraklion, Crete, Greece
| | - Alexandros Choromidis
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013Heraklion, Crete, Greece
- Department of Biology, University of Crete, 70013Heraklion, Crete, Greece
| | - Anastasia Meligkounaki
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013Heraklion, Crete, Greece
- Department of Biology, University of Crete, 70013Heraklion, Crete, Greece
| | - Nikolaos Andreas Vlachopoulos
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013Heraklion, Crete, Greece
- Department of Biology, University of Crete, 70013Heraklion, Crete, Greece
| | - Vasiliki Theodorou
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013Heraklion, Crete, Greece
| | - Sofia Grammenoudi
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672Athens, Greece
| | - Emmanouil Athanasiadis
- Greek Genome Centre, Biomedical Research Foundation of the Academy of Athens, 11527Athens, Greece
- Medical Image and Signal Processing Laboratory, Department of Biomedical Engineering, University of West Attica, 12243Athens, Greece
| | - Sara Monticelli
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400Strasbourg, France
- Centre National de la Recherche Scientifique, UMR7104Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale, U1258Strasbourg, France
- Université de Strasbourg, 67404Strasbourg, France
| | - Angela Giangrande
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400Strasbourg, France
- Centre National de la Recherche Scientifique, UMR7104Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale, U1258Strasbourg, France
- Université de Strasbourg, 67404Strasbourg, France
| | - Christos Delidakis
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013Heraklion, Crete, Greece
- Department of Biology, University of Crete, 70013Heraklion, Crete, Greece
| | - Evanthia Zacharioudaki
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013Heraklion, Crete, Greece
| |
Collapse
|
4
|
Sakaguchi C, Ichihara K, Nita A, Katayama Y, Nakayama KI. Identification and characterization of novel proteins associated with CHD4. Genes Cells 2021; 27:61-71. [PMID: 34897913 DOI: 10.1111/gtc.12909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022]
Abstract
The CHD (chromodomain helicase DNA binding protein) family consists of nine chromatin remodeling factors that alter chromatin structure in an ATP-dependent manner. CHD4 contributes to the regulation of various cellular activities and processes including development through interaction with multiple proteins including formation of the NuRD (nucleosome remodeling and deacetylase activity) complex. Functions of CHD4 that appear not to be mediated by the NuRD complex or other known interactors have also been identified, however, suggesting the existence of unrecognized proteins that also associate with CHD4. We here generated HeLa-S3 and HEK293T cells with a knock-in allele for FLAG epitope-tagged CHD4 and used these cells to identify proteins that bind to CHD4 with the use of immunoprecipitation followed by liquid chromatography and tandem mass spectrometry. LCORL (ligand-dependent nuclear receptor corepressor like) and NOL4L (nucleolar protein 4 like) were reproducibly identified as novel CHD4 interactors. Furthermore, RNA-sequencing analysis of HEK293T cells depleted of CHD4, LCORL, or NOL4L revealed consistent up-regulation of genes related to the Notch signaling pathway. Our results thus suggest that both LCORL and NOL4L may cooperate with CHD4 to suppress the Notch pathway in mammalian cells.
Collapse
Affiliation(s)
- Chihiro Sakaguchi
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kazuya Ichihara
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Akihiro Nita
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yuta Katayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Magadi SS, Voutyraki C, Anagnostopoulos G, Zacharioudaki E, Poutakidou IK, Efraimoglou C, Stapountzi M, Theodorou V, Nikolaou C, Koumbanakis KA, Fullard JF, Delidakis C. Dissecting Hes-centred transcriptional networks in neural stem cell maintenance and tumorigenesis in Drosophila. Development 2020; 147:147/22/dev191544. [PMID: 33229432 DOI: 10.1242/dev.191544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/05/2020] [Indexed: 01/26/2023]
Abstract
Neural stem cells divide during embryogenesis and juvenile life to generate the entire complement of neurons and glia in the nervous system of vertebrates and invertebrates. Studies of the mechanisms controlling the fine balance between neural stem cells and more differentiated progenitors have shown that, in every asymmetric cell division, progenitors send a Delta-Notch signal to their sibling stem cells. Here, we show that excessive activation of Notch or overexpression of its direct targets of the Hes family causes stem-cell hyperplasias in the Drosophila larval central nervous system, which can progress to malignant tumours after allografting to adult hosts. We combined transcriptomic data from these hyperplasias with chromatin occupancy data for Dpn, a Hes transcription factor, to identify genes regulated by Hes factors in this process. We show that the Notch/Hes axis represses a cohort of transcription factor genes. These are excluded from the stem cells and promote early differentiation steps, most likely by preventing the reversion of immature progenitors to a stem-cell fate. We describe the impact of two of these 'anti-stemness' factors, Zfh1 and Gcm, on Notch/Hes-triggered tumorigenesis.
Collapse
Affiliation(s)
- Srivathsa S Magadi
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece.,Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| | - Chrysanthi Voutyraki
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece.,Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| | - Gerasimos Anagnostopoulos
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece.,Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| | - Evanthia Zacharioudaki
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece
| | - Ioanna K Poutakidou
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece.,Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| | - Christina Efraimoglou
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece.,Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| | - Margarita Stapountzi
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece
| | - Vasiliki Theodorou
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece
| | - Christoforos Nikolaou
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece.,Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| | - Konstantinos A Koumbanakis
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece.,Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| | - John F Fullard
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece
| | - Christos Delidakis
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece .,Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| |
Collapse
|
6
|
Identification and functional characterization of methyl-CpG binding domain protein from Tribolium castaneum. Genomics 2020; 112:2223-2232. [DOI: 10.1016/j.ygeno.2019.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 12/03/2019] [Accepted: 12/25/2019] [Indexed: 01/01/2023]
|
7
|
Hassan A, Araguas Rodriguez P, Heidmann SK, Walmsley EL, Aughey GN, Southall TD. Condensin I subunit Cap-G is essential for proper gene expression during the maturation of post-mitotic neurons. eLife 2020; 9:e55159. [PMID: 32255428 PMCID: PMC7170655 DOI: 10.7554/elife.55159] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
Condensin complexes are essential for mitotic chromosome assembly and segregation during cell divisions, however, little is known about their functions in post-mitotic cells. Here we report a role for the condensin I subunit Cap-G in Drosophila neurons. We show that, despite not requiring condensin for mitotic chromosome compaction, post-mitotic neurons express Cap-G. Knockdown of Cap-G specifically in neurons (from their birth onwards) results in developmental arrest, behavioural defects, and dramatic gene expression changes, including reduced expression of a subset of neuronal genes and aberrant expression of genes that are not normally expressed in the developing brain. Knockdown of Cap-G in mature neurons results in similar phenotypes but to a lesser degree. Furthermore, we see dynamic binding of Cap-G at distinct loci in progenitor cells and differentiated neurons. Therefore, Cap-G is essential for proper gene expression in neurons and plays an important role during the early stages of neuronal development.
Collapse
Affiliation(s)
- Amira Hassan
- Department of Life Sciences, Imperial College LondonLondonUnited Kingdom
| | | | | | - Emma L Walmsley
- Department of Life Sciences, Imperial College LondonLondonUnited Kingdom
| | - Gabriel N Aughey
- Department of Life Sciences, Imperial College LondonLondonUnited Kingdom
| | - Tony D Southall
- Department of Life Sciences, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
8
|
Falo-Sanjuan J, Bray SJ. Decoding the Notch signal. Dev Growth Differ 2019; 62:4-14. [PMID: 31886523 DOI: 10.1111/dgd.12644] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 01/04/2023]
Abstract
Notch signalling controls many key cellular processes which differ according to the context where the pathway is deployed due to the transcriptional activation of specific sets of genes. The pathway is unusual in its lack of amplification, also raising the question of how it can efficiently activate transcription with limited amounts of nuclear activity. Here, we focus on mechanisms that enable Notch to produce appropriate transcriptional responses and speculate on models that could explain the current gaps in knowledge.
Collapse
Affiliation(s)
- Julia Falo-Sanjuan
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Sarah J Bray
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Miller SW, Movsesyan A, Zhang S, Fernández R, Posakony JW. Evolutionary emergence of Hairless as a novel component of the Notch signaling pathway. eLife 2019; 8:48115. [PMID: 31545167 PMCID: PMC6777938 DOI: 10.7554/elife.48115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/23/2019] [Indexed: 11/30/2022] Open
Abstract
Suppressor of Hairless [Su(H)], the transcription factor at the end of the Notch pathway in Drosophila, utilizes the Hairless protein to recruit two co-repressors, Groucho (Gro) and C-terminal Binding Protein (CtBP), indirectly. Hairless is present only in the Pancrustacea, raising the question of how Su(H) in other protostomes gains repressive function. We show that Su(H) from a wide array of arthropods, molluscs, and annelids includes motifs that directly bind Gro and CtBP; thus, direct co-repressor recruitment is ancestral in the protostomes. How did Hairless come to replace this ancestral paradigm? Our discovery of a protein (S-CAP) in Myriapods and Chelicerates that contains a motif similar to the Su(H)-binding domain in Hairless has revealed a likely evolutionary connection between Hairless and Metastasis-associated (MTA) protein, a component of the NuRD complex. Sequence comparison and widely conserved microsynteny suggest that S-CAP and Hairless arose from a tandem duplication of an ancestral MTA gene.
Collapse
Affiliation(s)
- Steven W Miller
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Artem Movsesyan
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Sui Zhang
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Rosa Fernández
- Bioinformatics and Genomics Unit, Center for Genomic Regulation, Barcelona, Spain
| | - James W Posakony
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| |
Collapse
|