1
|
Yan Y, Tian Y, Wu Z, Zhang K, Yang R. Interchromosomal Colocalization with Parental Genes Is Linked to the Function and Evolution of Mammalian Retrocopies. Mol Biol Evol 2023; 40:msad265. [PMID: 38060983 PMCID: PMC10733166 DOI: 10.1093/molbev/msad265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/25/2023] [Accepted: 11/29/2023] [Indexed: 12/22/2023] Open
Abstract
Retrocopies are gene duplicates arising from reverse transcription of mature mRNA transcripts and their insertion back into the genome. While long being regarded as processed pseudogenes, more and more functional retrocopies have been discovered. How the stripped-down retrocopies recover expression capability and become functional paralogs continually intrigues evolutionary biologists. Here, we investigated the function and evolution of retrocopies in the context of 3D genome organization. By mapping retrocopy-parent pairs onto sequencing-based and imaging-based chromatin contact maps in human and mouse cell lines and onto Hi-C interaction maps in 5 other mammals, we found that retrocopies and their parental genes show a higher-than-expected interchromosomal colocalization frequency. The spatial interactions between retrocopies and parental genes occur frequently at loci in active subcompartments and near nuclear speckles. Accordingly, colocalized retrocopies are more actively transcribed and translated and are more evolutionarily conserved than noncolocalized ones. The active transcription of colocalized retrocopies may result from their permissive epigenetic environment and shared regulatory elements with parental genes. Population genetic analysis of retroposed gene copy number variants in human populations revealed that retrocopy insertions are not entirely random in regard to interchromosomal interactions and that colocalized retroposed gene copy number variants are more likely to reach high frequencies, suggesting that both insertion bias and natural selection contribute to the colocalization of retrocopy-parent pairs. Further dissection implies that reduced selection efficacy, rather than positive selection, contributes to the elevated allele frequency of colocalized retroposed gene copy number variants. Overall, our results hint a role of interchromosomal colocalization in the "resurrection" of initially neutral retrocopies.
Collapse
Affiliation(s)
- Yubin Yan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuhan Tian
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Zefeng Wu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Kunling Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruolin Yang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Zhang L, Wu J, Liang J, Lin R, Sun C, Dai Q, Zhang L, Guo H, Zhao R, Wang X. Conserved noncoding sequences correlate with distant gene contacts in Arabidopsis and Brassica. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36762577 DOI: 10.1111/jipb.13465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Physical contact between genes distant on chromosomes is a potentially important way for genes to coordinate their expressions. To investigate the potential importance of distant contacts, we performed high-throughput chromatin conformation capture (Hi-C) experiments on leaf nuclei isolated from Brassica rapa and Brassica oleracea. We then combined our results with published Hi-C data from Arabidopsis thaliana. We found that distant genes come into physical contact and do so preferentially between the proximal promoter of one gene and the downstream region of another gene. Genes with higher numbers of conserved noncoding sequences (CNSs) nearby were more likely to have contact with distant genes. With more CNSs came higher numbers of transcription factor binding sites and more histone modifications associated with the activity. In addition, for the genes we studied, distant contacting genes with CNSs were more likely to be transcriptionally coordinated. These observations suggest that CNSs may enrich active histone modifications and recruit transcription factors, correlating with distant contacts to ensure coordinated expression. This study advances our knowledge of gene contacts and provides insights into the relationship between CNSs and distant gene contacts in plants.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jian Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianli Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Runmao Lin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chao Sun
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Qirui Dai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lupeng Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huiling Guo
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ranze Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaowu Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
3
|
Gamliel A, Meluzzi D, Oh S, Jiang N, Destici E, Rosenfeld MG, Nair SJ. Long-distance association of topological boundaries through nuclear condensates. Proc Natl Acad Sci U S A 2022; 119:e2206216119. [PMID: 35914133 PMCID: PMC9371644 DOI: 10.1073/pnas.2206216119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/24/2022] [Indexed: 01/09/2023] Open
Abstract
The eukaryotic genome is partitioned into distinct topological domains separated by boundary elements. Emerging data support the concept that several well-established nuclear compartments are ribonucleoprotein condensates assembled through the physical process of phase separation. Here, based on our demonstration that chemical disruption of nuclear condensate assembly weakens the insulation properties of a specific subset (∼20%) of topologically associated domain (TAD) boundaries, we report that the disrupted boundaries are characterized by a high level of transcription and striking spatial clustering. These topological boundary regions tend to be spatially associated, even interchromosomally, segregate with nuclear speckles, and harbor a specific subset of "housekeeping" genes widely expressed in diverse cell types. These observations reveal a previously unappreciated mode of genome organization mediated by conserved boundary elements harboring highly and widely expressed transcription units and associated transcriptional condensates.
Collapse
Affiliation(s)
- Amir Gamliel
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
- HHMI, University of California San Diego, La Jolla, CA 92093
| | - Dario Meluzzi
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
- HHMI, University of California San Diego, La Jolla, CA 92093
| | - Soohwan Oh
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
- HHMI, University of California San Diego, La Jolla, CA 92093
| | - Nan Jiang
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093
| | - Eugin Destici
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093
| | - Michael G Rosenfeld
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
- HHMI, University of California San Diego, La Jolla, CA 92093
| | - Sreejith J Nair
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
- HHMI, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
4
|
Pérez-Martínez L, Wagner T, Luke B. Telomere Interacting Proteins and TERRA Regulation. Front Genet 2022; 13:872636. [PMID: 35464834 PMCID: PMC9024143 DOI: 10.3389/fgene.2022.872636] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/17/2022] [Indexed: 01/10/2023] Open
Abstract
Telomere shortening rates inversely correlate with life expectancy and hence it is critical to understand how telomere shortening is regulated. Recently, the telomeric non-coding RNA, TERRA has been implicated in the regulation of replicative senescence. To better understand how TERRA is regulated we employed a proteomics approach to look for potential RNA regulators that associate with telomeric sequences. Based on the results, we have identified proteins that may regulate TERRA in both a positive and negative manner, depending on the state of the telomere. In this mini-review, we discuss and speculate about these data to expand our understanding of TERRA and telomere interactors with respect to telomere shortening dynamics.
Collapse
Affiliation(s)
- Lara Pérez-Martínez
- Institute of Molecular Biology (IMB), Mainz, Germany
- IMDEA Food Institute, Madrid, Spain
| | - Tina Wagner
- Institute of Molecular Biology (IMB), Mainz, Germany
- Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg Universität, Mainz, Germany
| | - Brian Luke
- Institute of Molecular Biology (IMB), Mainz, Germany
- Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg Universität, Mainz, Germany
- *Correspondence: Brian Luke,
| |
Collapse
|
5
|
Shen Z, Li RZ, Prohaska TA, Hoeksema MA, Spann NJ, Tao J, Fonseca GJ, Le T, Stolze LK, Sakai M, Romanoski CE, Glass CK. Systematic analysis of naturally occurring insertions and deletions that alter transcription factor spacing identifies tolerant and sensitive transcription factor pairs. eLife 2022; 11:e70878. [PMID: 35049498 PMCID: PMC8809895 DOI: 10.7554/elife.70878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Regulation of gene expression requires the combinatorial binding of sequence-specific transcription factors (TFs) at promoters and enhancers. Prior studies showed that alterations in the spacing between TF binding sites can influence promoter and enhancer activity. However, the relative importance of TF spacing alterations resulting from naturally occurring insertions and deletions (InDels) has not been systematically analyzed. To address this question, we first characterized the genome-wide spacing relationships of 73 TFs in human K562 cells as determined by ChIP-seq (chromatin immunoprecipitation sequencing). We found a dominant pattern of a relaxed range of spacing between collaborative factors, including 45 TFs exclusively exhibiting relaxed spacing with their binding partners. Next, we exploited millions of InDels provided by genetically diverse mouse strains and human individuals to investigate the effects of altered spacing on TF binding and local histone acetylation. These analyses suggested that spacing alterations resulting from naturally occurring InDels are generally tolerated in comparison to genetic variants directly affecting TF binding sites. To experimentally validate this prediction, we introduced synthetic spacing alterations between PU.1 and C/EBPβ binding sites at six endogenous genomic loci in a macrophage cell line. Remarkably, collaborative binding of PU.1 and C/EBPβ at these locations tolerated changes in spacing ranging from 5 bp increase to >30 bp decrease. Collectively, these findings have implications for understanding mechanisms underlying enhancer selection and for the interpretation of non-coding genetic variation.
Collapse
Affiliation(s)
- Zeyang Shen
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, United States
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, United States
| | - Rick Z Li
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, United States
| | - Thomas A Prohaska
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, United States
| | - Marten A Hoeksema
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, United States
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Infection and Immunity, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Nathan J Spann
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, United States
| | - Jenhan Tao
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, United States
| | - Gregory J Fonseca
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, United States
- Department of Medicine, McGill University, Montreal, Canada
| | - Thomas Le
- Division of Biological Sciences, University of California San Diego, La Jolla, United States
| | - Lindsey K Stolze
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, United States
| | - Mashito Sakai
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, United States
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Casey E Romanoski
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, United States
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, United States
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, United States
| |
Collapse
|
6
|
Zhang X, Wang T. Plant 3D Chromatin Organization: Important Insights from Chromosome Conformation Capture Analyses of the Last 10 Years. PLANT & CELL PHYSIOLOGY 2021; 62:1648-1661. [PMID: 34486654 PMCID: PMC8664644 DOI: 10.1093/pcp/pcab134] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/25/2021] [Accepted: 09/01/2021] [Indexed: 05/05/2023]
Abstract
Over the past few decades, eukaryotic linear genomes and epigenomes have been widely and extensively studied for understanding gene expression regulation. More recently, the three-dimensional (3D) chromatin organization was found to be important for determining genome functionality, finely tuning physiological processes for appropriate cellular responses. With the development of visualization techniques and chromatin conformation capture (3C)-based techniques, increasing evidence indicates that chromosomal architecture characteristics and chromatin domains with different epigenetic modifications in the nucleus are correlated with transcriptional activities. Subsequent studies have further explored the intricate interplay between 3D genome organization and the function of interacting regions. In this review, we summarize spatial distribution patterns of chromatin, including chromatin positioning, configurations and domains, with a particular focus on the effect of a unique form of interaction between varieties of factors that shape the 3D genome conformation in plants. We further discuss the methods, advantages and limitations of various 3C-based techniques, highlighting the applications of these technologies in plants to identify chromatin domains, and address their dynamic changes and functional implications in evolution, and adaptation to development and changing environmental conditions. Moreover, the future implications and emerging research directions of 3D genome organization are discussed.
Collapse
Affiliation(s)
- Xinxin Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, P. R. China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, P. R. China
| | - Tianzuo Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100093, P. R. China
| |
Collapse
|
7
|
Arita Y, Kim G, Li Z, Friesen H, Turco G, Wang RY, Climie D, Usaj M, Hotz M, Stoops EH, Baryshnikova A, Boone C, Botstein D, Andrews BJ, McIsaac RS. A genome-scale yeast library with inducible expression of individual genes. Mol Syst Biol 2021; 17:e10207. [PMID: 34096681 PMCID: PMC8182650 DOI: 10.15252/msb.202110207] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 11/09/2022] Open
Abstract
The ability to switch a gene from off to on and monitor dynamic changes provides a powerful approach for probing gene function and elucidating causal regulatory relationships. Here, we developed and characterized YETI (Yeast Estradiol strains with Titratable Induction), a collection in which > 5,600 yeast genes are engineered for transcriptional inducibility with single-gene precision at their native loci and without plasmids. Each strain contains SGA screening markers and a unique barcode, enabling high-throughput genetics. We characterized YETI using growth phenotyping and BAR-seq screens, and we used a YETI allele to identify the regulon of Rof1, showing that it acts to repress transcription. We observed that strains with inducible essential genes that have low native expression can often grow without inducer. Analysis of data from eukaryotic and prokaryotic systems shows that native expression is a variable that can bias promoter-perturbing screens, including CRISPRi. We engineered a second expression system, Z3 EB42, that gives lower expression than Z3 EV, a feature enabling conditional activation and repression of lowly expressed essential genes that grow without inducer in the YETI library.
Collapse
Affiliation(s)
- Yuko Arita
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoONCanada
- RIKEN Centre for Sustainable Resource ScienceWakoSaitamaJapan
| | - Griffin Kim
- Calico Life Sciences LLCSouth San FranciscoCAUSA
| | - Zhijian Li
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoONCanada
| | - Helena Friesen
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoONCanada
| | - Gina Turco
- Calico Life Sciences LLCSouth San FranciscoCAUSA
| | | | - Dale Climie
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoONCanada
| | - Matej Usaj
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoONCanada
| | - Manuel Hotz
- Calico Life Sciences LLCSouth San FranciscoCAUSA
| | | | | | - Charles Boone
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoONCanada
- RIKEN Centre for Sustainable Resource ScienceWakoSaitamaJapan
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | | | - Brenda J Andrews
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | | |
Collapse
|
8
|
Sumner MC, Torrisi SB, Brickner DG, Brickner JH. Random sub-diffusion and capture of genes by the nuclear pore reduces dynamics and coordinates inter-chromosomal movement. eLife 2021; 10:66238. [PMID: 34002694 PMCID: PMC8195609 DOI: 10.7554/elife.66238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Hundreds of genes interact with the yeast nuclear pore complex (NPC), localizing at the nuclear periphery and clustering with co-regulated genes. Dynamic tracking of peripheral genes shows that they cycle on and off the NPC and that interaction with the NPC slows their sub-diffusive movement. Furthermore, NPC-dependent inter-chromosomal clustering leads to coordinated movement of pairs of loci separated by hundreds of nanometers. We developed fractional Brownian motion simulations for chromosomal loci in the nucleoplasm and interacting with NPCs. These simulations predict the rate and nature of random sub-diffusion during repositioning from nucleoplasm to periphery and match measurements from two different experimental models, arguing that recruitment to the nuclear periphery is due to random sub-diffusion and transient capture by NPCs. Finally, the simulations do not lead to inter-chromosomal clustering or coordinated movement, suggesting that interaction with the NPC is necessary, but not sufficient, to cause clustering.
Collapse
Affiliation(s)
- Michael Chas Sumner
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Steven B Torrisi
- Department of Physics, Harvard University, Cambridge, United States
| | - Donna G Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| |
Collapse
|
9
|
Aboelnour E, Bonev B. Decoding the organization, dynamics, and function of the 4D genome. Dev Cell 2021; 56:1562-1573. [PMID: 33984271 DOI: 10.1016/j.devcel.2021.04.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/15/2021] [Accepted: 04/21/2021] [Indexed: 11/15/2022]
Abstract
Understanding how complex cell-fate decisions emerge at the molecular level is a key challenge in developmental biology. Despite remarkable progress in decoding the contribution of the linear epigenome, how spatial genome architecture functionally informs changes in gene expression remains unclear. In this review, we discuss recent insights in elucidating the molecular landscape of genome folding, emphasizing the multilayered nature of the 3D genome, its importance for gene regulation, and its spatiotemporal dynamics. Finally, we discuss how these new concepts and emergent technologies will enable us to address some of the outstanding questions in development and disease.
Collapse
Affiliation(s)
- Erin Aboelnour
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Boyan Bonev
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Germany.
| |
Collapse
|
10
|
Mazur AK, Nguyen TS, Gladyshev E. Direct Homologous dsDNA-dsDNA Pairing: How, Where, and Why? J Mol Biol 2019; 432:737-744. [PMID: 31726060 DOI: 10.1016/j.jmb.2019.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/22/2019] [Accepted: 11/05/2019] [Indexed: 10/25/2022]
Abstract
The ability of homologous chromosomes (or selected chromosomal loci) to pair specifically in the apparent absence of DNA breakage and recombination represents a prominent feature of eukaryotic biology. The mechanism of homology recognition at the basis of such recombination-independent pairing has remained elusive. A number of studies have supported the idea that sequence homology can be sensed between intact DNA double helices in vivo. In particular, recent analyses of the two silencing phenomena in fungi, known as "repeat-induced point mutation" (RIP) and "meiotic silencing by unpaired DNA" (MSUD), have provided genetic evidence for the existence of the direct homologous dsDNA-dsDNA pairing. Both RIP and MSUD likely rely on the same search strategy, by which dsDNA segments are matched as arrays of interspersed base-pair triplets. This process is general and very efficient, yet it proceeds normally without the RecA/Rad51/Dmc1 proteins. Further studies of RIP and MSUD may yield surprising insights into the function of DNA in the cell.
Collapse
Affiliation(s)
- Alexey K Mazur
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 Rue Pierre et Marie Curie, F-75005 Paris, France; Group Fungal Epigenomics, Department of Mycology, Institut Pasteur, Paris 75015, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Tinh-Suong Nguyen
- Group Fungal Epigenomics, Department of Mycology, Institut Pasteur, Paris 75015, France
| | - Eugene Gladyshev
- Group Fungal Epigenomics, Department of Mycology, Institut Pasteur, Paris 75015, France.
| |
Collapse
|
11
|
Mechanisms of Interplay between Transcription Factors and the 3D Genome. Mol Cell 2019; 76:306-319. [PMID: 31521504 DOI: 10.1016/j.molcel.2019.08.010] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/20/2019] [Accepted: 08/09/2019] [Indexed: 12/31/2022]
Abstract
Transcription factors (TFs) bind DNA in a sequence-specific manner and thereby serve as the protein anchors and determinants of 3D genome organization. Conversely, chromatin conformation shapes TF activity, for example, by looping TF-bound enhancers to distally located target genes. Despite considerable effort, our understanding of the mechanistic relation between TFs and 3D genome organization remains limited, in large part due to this interdependency. In this review, we summarize the evidence for the diverse mechanisms by which TFs and their activity shape the 3D genome and vice versa. We further highlight outstanding questions and potential approaches for untangling the complex relation between TF activity and the 3D genome.
Collapse
|
12
|
Kim S, Dunham MJ, Shendure J. A combination of transcription factors mediates inducible interchromosomal contacts. eLife 2019; 8:e42499. [PMID: 31081754 PMCID: PMC6548505 DOI: 10.7554/elife.42499] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 05/11/2019] [Indexed: 12/30/2022] Open
Abstract
The genome forms specific three-dimensional contacts in response to cellular or environmental conditions. However, it remains largely unknown which proteins specify and mediate such contacts. Here we describe an assay, MAP-C (Mutation Analysis in Pools by Chromosome conformation capture), that simultaneously characterizes the effects of hundreds of cis or trans-acting mutations on a chromosomal contact. Using MAP-C, we show that inducible interchromosomal pairing between HAS1pr-TDA1pr alleles in saturated cultures of Saccharomyces yeast is mediated by three transcription factors, Leu3, Sdd4 (Ypr022c), and Rgt1. The coincident, combined binding of all three factors is strongest at the HAS1pr-TDA1pr locus and is also specific to saturated conditions. We applied MAP-C to further explore the biochemical mechanism of these contacts, and find they require the structured regulatory domain of Rgt1, but no known interaction partners of Rgt1. Altogether, our results demonstrate MAP-C as a powerful method for dissecting the mechanistic basis of chromosome conformation.
Collapse
Affiliation(s)
- Seungsoo Kim
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
| | - Maitreya J Dunham
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
| | - Jay Shendure
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
- Howard Hughes Medical InstituteSeattleUnited States
- Brotman Baty Institute for Precision MedicineSeattleUnited States
| |
Collapse
|