1
|
Anwar A, Ramis De Ayreflor Reyes S, John AA, Breiling E, O'Connor AM, Reis S, Shim JH, Shah AA, Srinivasan J, Farny NG. Nucleic acid aptamers protect against lead (Pb(II)) toxicity. N Biotechnol 2024; 83:36-45. [PMID: 38925526 DOI: 10.1016/j.nbt.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/12/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Lead (Pb(II)) is a pervasive heavy metal toxin with many well-established negative effects on human health. Lead toxicity arises from cumulative, repeated environmental exposures. Thus, prophylactic strategies to protect against the bioaccumulation of lead could reduce lead-associated human pathologies. Here we show that DNA and RNA aptamers protect C. elegans from toxic phenotypes caused by lead. Reproductive toxicity, as measured by brood size assays, is prevented by co-feeding of animals with DNA or RNA aptamers. Similarly, lead-induced neurotoxicity, measured by behavioral assays, are also normalized by aptamer feeding. Further, cultured human HEK293 and primary murine osteoblasts are protected from lead toxicity by transfection with DNA aptamers. The osteogenic development, which is decreased by lead exposure, is maintained by prior transfection of lead-binding DNA aptamers. Aptamers may be an effective strategy for the protection of human health in the face of increasing environmental toxicants.
Collapse
Affiliation(s)
- Afreen Anwar
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA; Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, J&K, India
| | | | - Aijaz Ahmad John
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Erik Breiling
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Abigail M O'Connor
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Stephanie Reis
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Jae-Hyuck Shim
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ali Asghar Shah
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, J&K, India
| | - Jagan Srinivasan
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA; Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA; Program in Neuroscience, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Natalie G Farny
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA; Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA; Program in Neuroscience, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA.
| |
Collapse
|
2
|
Gonzalez HC, Misare KR, Mendenhall TT, Wolf BJ, Mulholland PJ, Gordon KL, Hartman JH. Transgenic expression of human cytochrome P450 2E1 in C. elegans and rat PC-12 cells sensitizes to ethanol-induced locomotor and mitochondrial effects. Biochem Biophys Res Commun 2024; 734:150735. [PMID: 39357336 PMCID: PMC11540131 DOI: 10.1016/j.bbrc.2024.150735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 10/04/2024]
Abstract
Chronic alcohol (ethanol) use is increasing in the United States and has been linked to numerous health issues in multiple organ systems including neurological dysfunction and diseases. Ethanol toxicity is mainly driven by the metabolite acetaldehyde, which is generated through three pathways: alcohol dehydrogenase (ADH2), catalase (CAT), and cytochrome P450 2E1 (CYP2E1). ADH2, while the main ethanol clearance pathway in the liver, is not expressed in the mammalian brain, resulting in CAT and CYP2E1 driving local metabolism of ethanol in the central nervous system. CYP2E1 is known to generate reactive metabolites and reactive oxygen species and localizes to the mitochondria (mtCYP2E1) and endoplasmic reticulum (erCYP2E1). We sought to understand the consequences of mtCYP2E1 and erCYP2E1 in the nervous system during acute ethanol exposure. To answer this question, we generated transgenic Caenorhabditis elegans roundworms expressing human CYP2E1 in the mitochondria, endoplasmic reticulum, or both and exposed them to ethanol. We found that at lower concentrations, wild-type and mtCYP2E1-expressing worms had a small but significant inhibition of locomotion, whereas the erCYP2E1-expressing worms showed protection from this inhibition. At higher doses, all strains had reduced locomotion, but the erCYP2E1-expressing worms recovered faster than wild-type controls. CYP2E1 expression, regardless of organellar targeting, reduced mitochondrial respiration in response to ethanol. Similarly, transgenic expression of CYP2E1 in either organelle in PC-12 rat neuronal cell lines sensitized them to ethanol-induced cell death. Together, these findings suggest that subcellular localization of CYP2E1 impacts behavioral effects of ethanol and should be further studied in the mammalian central nervous system.
Collapse
Affiliation(s)
- Hyland C Gonzalez
- Dept of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave. BSB 501 | MSC 509, Charleston, SC, 29425, USA
| | - Kelly R Misare
- Dept of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave. BSB 501 | MSC 509, Charleston, SC, 29425, USA
| | - Tsultrim T Mendenhall
- Dept of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave. BSB 501 | MSC 509, Charleston, SC, 29425, USA
| | - Bethany J Wolf
- Dept of Public Health Sciences, Medical University of South Carolina, 135 Cannon St., Charleston, SC, 29425, USA
| | - Patrick J Mulholland
- Dept of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC, 29425, USA
| | - Kacy L Gordon
- Dept of Biology, The University of North Carolina at Chapel Hill, 316 Fordham Hall, Chapel Hill, NC, 27599, USA; UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, 450 West Dr, Chapel Hill, NC, 27599, USA
| | - Jessica H Hartman
- Dept of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave. BSB 501 | MSC 509, Charleston, SC, 29425, USA; Dept of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Ave. BSB 501 | MSC 509, Charleston, SC, 29425, USA.
| |
Collapse
|
3
|
Anwar A, De Ayreflor Reyes SR, John AA, Breiling E, O’Connor AM, Reis S, Shim JH, Shah AA, Srinivasan J, Farny NG. Nucleic Acid Aptamers Protect Against Lead (Pb(II)) Toxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.587288. [PMID: 38585880 PMCID: PMC10996642 DOI: 10.1101/2024.03.28.587288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Lead (Pb(II)) is a pervasive heavy metal toxin with many well-established negative effects on human health. Lead toxicity arises from cumulative, repeated environmental exposures. Thus, prophylactic strategies to protect against the bioaccumulation of lead could reduce lead-associated human pathologies. Here we show that DNA and RNA aptamers protect C. elegans from toxic phenotypes caused by lead. Reproductive toxicity, as measured by brood size assays, is prevented by co-feeding of animals with DNA or RNA aptamers. Similarly, lead-induced behavioral anomalies are also normalized by aptamer feeding. Further, cultured human HEK293 and primary murine osteoblasts are protected from lead toxicity by transfection with DNA aptamers. The osteogenic development, which is decreased by lead exposure, is maintained by prior transfection of lead-binding DNA aptamers. Aptamers may be an effective strategy for the protection of human health in the face of increasing environmental toxicants.
Collapse
Affiliation(s)
- Afreen Anwar
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri (J&K), India
| | | | - Aijaz Ahmad John
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Erik Breiling
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Abigail M. O’Connor
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Stephanie Reis
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Jae-Hyuck Shim
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ali Asghar Shah
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri (J&K), India
| | - Jagan Srinivasan
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
- Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
- Program in Neuroscience, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Natalie G. Farny
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
- Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
- Program in Neuroscience, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| |
Collapse
|
4
|
Ding SS, Fox JL, Gordus A, Joshi A, Liao JC, Scholz M. Fantastic beasts and how to study them: rethinking experimental animal behavior. J Exp Biol 2024; 227:jeb247003. [PMID: 38372042 PMCID: PMC10911175 DOI: 10.1242/jeb.247003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Humans have been trying to understand animal behavior at least since recorded history. Recent rapid development of new technologies has allowed us to make significant progress in understanding the physiological and molecular mechanisms underlying behavior, a key goal of neuroethology. However, there is a tradeoff when studying animal behavior and its underlying biological mechanisms: common behavior protocols in the laboratory are designed to be replicable and controlled, but they often fail to encompass the variability and breadth of natural behavior. This Commentary proposes a framework of 10 key questions that aim to guide researchers in incorporating a rich natural context into their experimental design or in choosing a new animal study system. The 10 questions cover overarching experimental considerations that can provide a template for interspecies comparisons, enable us to develop studies in new model organisms and unlock new experiments in our quest to understand behavior.
Collapse
Affiliation(s)
- Siyu Serena Ding
- Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
| | - Jessica L. Fox
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Andrew Gordus
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Abhilasha Joshi
- Departments of Physiology and Psychiatry, University of California, San Francisco, CA 94158, USA
| | - James C. Liao
- Department of Biology, The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| | - Monika Scholz
- Max Planck Research Group Neural Information Flow, Max Planck Institute for Neurobiology of Behavior – caesar, 53175 Bonn, Germany
| |
Collapse
|
5
|
Hiramatsu F, Lightfoot JW. Kin-recognition and predation shape collective behaviors in the cannibalistic nematode Pristionchus pacificus. PLoS Genet 2023; 19:e1011056. [PMID: 38096160 PMCID: PMC10721034 DOI: 10.1371/journal.pgen.1011056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023] Open
Abstract
Kin-recognition is observed across diverse species forming an important behavioral adaptation influencing organismal interactions. In many species, the molecular mechanisms involved are difficult to characterize, but in the nematode Pristionchus pacificus molecular components regulating its kin-recognition system have been identified. These determine its predatory behaviors towards other con-specifics which prevents the killing and cannibalization of kin. Importantly, their impact on other interactions including collective behaviors is unknown. Here, we explored a high altitude adapted clade of this species which aggregates abundantly under laboratory conditions, to investigate the influence of the kin-recognition system on their group behaviours. By utilizing pairwise aggregation assays between distinct strains of P. pacificus with differing degrees of genetic relatedness, we observe aggregation between kin but not distantly related strains. In assays between distantly related strains, the aggregation ratio is frequently reduced. Furthermore, abolishing predation behaviors through CRISPR/Cas9 induced mutations in Ppa-nhr-40 result in rival strains successfully aggregating together. Finally, as Caenorhabditis elegans are found naturally occurring with P. pacificus, we also explored aggregation events between these species. Here, aggregates were dominated by P. pacificus with the presence of only a small number of predators proving sufficient to disrupt C. elegans aggregation dynamics. Thus, aggregating strains of P. pacificus preferentially group with kin, revealing competition and nepotism as previously unknown components influencing collective behaviors in nematodes.
Collapse
Affiliation(s)
- Fumie Hiramatsu
- Max Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior–caesar, Bonn, Germany
- International Max Planck Research School for Brain and Behavior, Bonn, Germany
| | - James W. Lightfoot
- Max Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior–caesar, Bonn, Germany
| |
Collapse
|
6
|
Mikami T, Wakita D, Kobayashi R, Ishiguro A, Kano T. Elongating, entwining, and dragging: mechanism for adaptive locomotion of tubificine worm blobs in a confined environment. Front Neurorobot 2023; 17:1207374. [PMID: 37706011 PMCID: PMC10495593 DOI: 10.3389/fnbot.2023.1207374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/24/2023] [Indexed: 09/15/2023] Open
Abstract
Worms often aggregate through physical connections and exhibit remarkable functions such as efficient migration, survival under environmental changes, and defense against predators. In particular, entangled blobs demonstrate versatile behaviors for their survival; they form spherical blobs and migrate collectively by flexibly changing their shape in response to the environment. In contrast to previous studies on the collective behavior of worm blobs that focused on locomotion in a flat environment, we investigated the mechanisms underlying their adaptive motion in confined environments, focusing on tubificine worm collectives. We first performed several behavioral experiments to observe the aggregation process, collective response to aversive stimuli, the motion of a few worms, and blob motion in confined spaces with and without pegs. We found the blob deformed and passed through a narrow passage using environmental heterogeneities. Based on these behavioral findings, we constructed a simple two-dimensional agent-based model wherein the flexible body of a worm was described as a cross-shaped agent that could deform, rotate, and translate. The simulations demonstrated that the behavioral findings were well-reproduced. Our findings aid in understanding how physical interactions contribute to generating adaptive collective behaviors in real-world environments as well as in designing novel swarm robotic systems consisting of soft agents.
Collapse
Affiliation(s)
- Taishi Mikami
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Daiki Wakita
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan
| | - Ryo Kobayashi
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Akio Ishiguro
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan
| | - Takeshi Kano
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan
| |
Collapse
|
7
|
Madirolas G, Al-Asmar A, Gaouar L, Marie-Louise L, Garza-Enríquez A, Rodríguez-Rada V, Khona M, Dal Bello M, Ratzke C, Gore J, Pérez-Escudero A. Caenorhabditis elegans foraging patterns follow a simple rule of thumb. Commun Biol 2023; 6:841. [PMID: 37580527 PMCID: PMC10425387 DOI: 10.1038/s42003-023-05220-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/04/2023] [Indexed: 08/16/2023] Open
Abstract
Rules of thumb are behavioral algorithms that approximate optimal behavior while lowering cognitive and sensory costs. One way to reduce these costs is by simplifying the representation of the environment: While the theoretically optimal behavior may depend on many environmental variables, a rule of thumb may use a smaller set of variables that performs reasonably well. Experimental proof of this simplification requires an exhaustive mapping of all relevant combinations of several environmental parameters, which we performed for Caenorhabditis elegans foraging by covering systematically combinations of food density (across 4 orders of magnitude) and food type (across 12 bacterial strains). We found that worms' response is dominated by a single environmental variable: food density measured as number of bacteria per unit surface. They disregard other factors such as biomass content or bacterial strain. We also measured experimentally the impact on fitness of each type of food, determining that the rule is near-optimal and therefore constitutes a rule of thumb that leverages the most informative environmental variable. These results set the stage for further investigations into the underlying genetic and neural mechanisms governing this simplification process, and into its role in the evolution of decision-making strategies.
Collapse
Affiliation(s)
- Gabriel Madirolas
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, 31062, France
| | - Alid Al-Asmar
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, 31062, France
| | - Lydia Gaouar
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, 31062, France
| | - Leslie Marie-Louise
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, 31062, France
| | - Andrea Garza-Enríquez
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, 31062, France
| | - Valentina Rodríguez-Rada
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, 31062, France
| | - Mikail Khona
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Martina Dal Bello
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christoph Ratzke
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections" (CMFI), University of Tübingen, Calwerstrasse 7/1, 72076, Tübingen, Germany
| | - Jeff Gore
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alfonso Pérez-Escudero
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, 31062, France.
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
8
|
Thomson EE, Harfouche M, Kim K, Konda PC, Seitz CW, Cooke C, Xu S, Jacobs WS, Blazing R, Chen Y, Sharma S, Dunn TW, Park J, Horstmeyer RW, Naumann EA. Gigapixel imaging with a novel multi-camera array microscope. eLife 2022; 11:e74988. [PMID: 36515989 PMCID: PMC9917455 DOI: 10.7554/elife.74988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
The dynamics of living organisms are organized across many spatial scales. However, current cost-effective imaging systems can measure only a subset of these scales at once. We have created a scalable multi-camera array microscope (MCAM) that enables comprehensive high-resolution recording from multiple spatial scales simultaneously, ranging from structures that approach the cellular scale to large-group behavioral dynamics. By collecting data from up to 96 cameras, we computationally generate gigapixel-scale images and movies with a field of view over hundreds of square centimeters at an optical resolution of 18 µm. This allows us to observe the behavior and fine anatomical features of numerous freely moving model organisms on multiple spatial scales, including larval zebrafish, fruit flies, nematodes, carpenter ants, and slime mold. Further, the MCAM architecture allows stereoscopic tracking of the z-position of organisms using the overlapping field of view from adjacent cameras. Overall, by removing the bottlenecks imposed by single-camera image acquisition systems, the MCAM provides a powerful platform for investigating detailed biological features and behavioral processes of small model organisms across a wide range of spatial scales.
Collapse
Affiliation(s)
- Eric E Thomson
- Department of Neurobiology, Duke School of MedicineDurhamUnited States
| | | | - Kanghyun Kim
- Biomedical Engineering, Duke UniversityDurhamUnited States
| | - Pavan C Konda
- Biomedical Engineering, Duke UniversityDurhamUnited States
| | - Catherine W Seitz
- Department of Neurobiology, Duke School of MedicineDurhamUnited States
| | - Colin Cooke
- Biomedical Engineering, Duke UniversityDurhamUnited States
| | - Shiqi Xu
- Biomedical Engineering, Duke UniversityDurhamUnited States
| | - Whitney S Jacobs
- Department of Neurobiology, Duke School of MedicineDurhamUnited States
| | - Robin Blazing
- Department of Neurobiology, Duke School of MedicineDurhamUnited States
| | - Yang Chen
- Department of Neurobiology, Duke School of MedicineDurhamUnited States
| | | | - Timothy W Dunn
- Biomedical Engineering, Duke UniversityDurhamUnited States
| | | | - Roarke W Horstmeyer
- Ramona Optics IncDurhamUnited States
- Biomedical Engineering, Duke UniversityDurhamUnited States
| | - Eva A Naumann
- Department of Neurobiology, Duke School of MedicineDurhamUnited States
| |
Collapse
|
9
|
Tuazon H, Kaufman E, Goldman DI, Bhamla MS. Oxygenation-Controlled Collective Dynamics in Aquatic Worm Blobs. Integr Comp Biol 2022; 62:890-896. [PMID: 35689658 DOI: 10.1093/icb/icac089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 11/14/2022] Open
Abstract
Many organisms utilize group aggregation as a method for survival. The freshwater oligochaete, Lumbriculus variegatus (California blackworms) form tightly entangled structures, or worm "blobs", that have adapted to survive in extremely low levels of dissolved oxygen (DO). Individual blackworms adapt to hypoxic environments through respiration via their mucous body wall and posterior ciliated hindgut, which they wave above them. However, the change in collective behavior at different levels of DO is not known. Using a closed-loop respirometer with flow, we discover that the relative tail reaching activity flux in low DO is ∼75x higher than in the high DO condition. Additionally, when flow rate is increased to suspend the worm blobs upward, we find that the average exposed surface area of a blob in low DO is ∼1.4x higher than in high DO. Furthermore, we observe emergent properties that arise when a worm blob is exposed to extreme DO levels. We demonstrate that internal mechanical stress is generated when worm blobs are exposed to high DO levels, allowing them to be physically lifted off from the bottom of a conical container using a serrated endpiece. Our results demonstrate how both collective behavior and the emergent generation of internal mechanical stress in worm blobs change to accommodate differing levels of oxygen. From an engineering perspective, this could be used to model and simulate swarm robots, self-assembly structures, or soft material entanglements.
Collapse
Affiliation(s)
- Harry Tuazon
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Emily Kaufman
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Daniel I Goldman
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - M Saad Bhamla
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| |
Collapse
|
10
|
Ranawade A, Levine E. Primer on Mathematical Modeling in C. elegans. Methods Mol Biol 2022; 2468:375-386. [PMID: 35320577 DOI: 10.1007/978-1-0716-2181-3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recently, applications of mathematical and computational models to biological processes have helped investigators to systematically interpret data, test hypotheses built on experimental data, generate new hypotheses, and guide the design of new experiments, protocols, and synthetic biological systems. Availability of diverse quantitative data is a prerequisite for successful mathematical modeling. The ability to acquire high-quality quantitative data for a broad range of biological processes and perform precise perturbation makes C. elegans an ideal model system for such studies. In this primer, we examine the general procedure of modeling biological systems and demonstrate this process using the heat-shock response in C. elegans as a case study. Our goal is to facilitate the initial discussion between worm biologists and their potential collaborators from quantitative disciplines.
Collapse
Affiliation(s)
- Ayush Ranawade
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Erel Levine
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
11
|
Dal Bello M, Pérez-Escudero A, Schroeder FC, Gore J. Inversion of pheromone preference optimizes foraging in C. elegans. eLife 2021; 10:58144. [PMID: 34227470 PMCID: PMC8260229 DOI: 10.7554/elife.58144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/09/2021] [Indexed: 12/20/2022] Open
Abstract
Foraging animals have to locate food sources that are usually patchily distributed and subject to competition. Deciding when to leave a food patch is challenging and requires the animal to integrate information about food availability with cues signaling the presence of other individuals (e.g., pheromones). To study how social information transmitted via pheromones can aid foraging decisions, we investigated the behavioral responses of the model animal Caenorhabditis elegans to food depletion and pheromone accumulation in food patches. We experimentally show that animals consuming a food patch leave it at different times and that the leaving time affects the animal preference for its pheromones. In particular, worms leaving early are attracted to their pheromones, while worms leaving later are repelled by them. We further demonstrate that the inversion from attraction to repulsion depends on associative learning and, by implementing a simple model, we highlight that it is an adaptive solution to optimize food intake during foraging.
Collapse
Affiliation(s)
- Martina Dal Bello
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
| | - Alfonso Pérez-Escudero
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, United States.,Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS; UPS, Toulouse, France
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, New York, United States
| | - Jeff Gore
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
12
|
Avery L, Ingalls B, Dumur C, Artyukhin A. A Keller-Segel model for C elegans L1 aggregation. PLoS Comput Biol 2021; 17:e1009231. [PMID: 34324494 PMCID: PMC8354456 DOI: 10.1371/journal.pcbi.1009231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 08/10/2021] [Accepted: 06/30/2021] [Indexed: 11/19/2022] Open
Abstract
We describe a mathematical model for the aggregation of starved first-stage C elegans larvae (L1s). We propose that starved L1s produce and respond chemotactically to two labile diffusible chemical signals, a short-range attractant and a longer range repellent. This model takes the mathematical form of three coupled partial differential equations, one that describes the movement of the worms and one for each of the chemical signals. Numerical solution of these equations produced a pattern of aggregates that resembled that of worm aggregates observed in experiments. We also describe the identification of a sensory receptor gene, srh-2, whose expression is induced under conditions that promote L1 aggregation. Worms whose srh-2 gene has been knocked out form irregularly shaped aggregates. Our model suggests this phenotype may be explained by the mutant worms slowing their movement more quickly than the wild type.
Collapse
Affiliation(s)
- Leon Avery
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Brian Ingalls
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Catherine Dumur
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Alexander Artyukhin
- Chemistry Department, State University of New York, College of Environmental Science and Forestry, Syracuse, New York, United States of America
| |
Collapse
|
13
|
Corkidi G, Hernández-Herrera P, Montoya F, Gadêlha H, Darszon A. Long-term segmentation-free assessment of head-flagellum movement and intracellular calcium in swimming human sperm. J Cell Sci 2021; 134:jcs.250654. [PMID: 33431515 DOI: 10.1242/jcs.250654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022] Open
Abstract
Human spermatozoa are the archetype of long-term self-organizing transport in nature and are critical for reproductive success. They utilize coordinated head and flagellar movements to swim long distances within the female reproductive tract in order to find and fertilize the egg. However, to date, long-term analysis of the sperm head-flagellar movements, or indeed those of other flagellated microorganisms, remains elusive due to limitations in microscopy and flagellar-tracking techniques. Here, we present a novel methodology based on local orientation and isotropy of bio-images to obtain long-term kinematic and physiological parameters of individual free-swimming spermatozoa without requiring image segmentation (thresholding). This computer-assisted segmentation-free method evaluates, for the first time, characteristics of the head movement and flagellar beating for up to 9.2 min. We demonstrate its powerful use by showing how releasing Ca2+ from internal stores significantly alters long-term sperm behavior. The method allows for straightforward generalization to other bio-imaging applications, such as studies of bull sperm and Trypanosoma, or indeed of other flagellated microorganisms - appealing to communities other than those investigating sperm biology.
Collapse
Affiliation(s)
- Gabriel Corkidi
- Laboratorio de Imágenes y Visión por Computadora, Departamento de Ingenería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, 62210 Cuernavaca, México
| | - Paul Hernández-Herrera
- Laboratorio de Imágenes y Visión por Computadora, Departamento de Ingenería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, 62210 Cuernavaca, México
| | - Fernando Montoya
- Laboratorio de Imágenes y Visión por Computadora, Departamento de Ingenería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, 62210 Cuernavaca, México
| | - Hermes Gadêlha
- Department of Engineering Mathematics & Bristol Robotics Laboratory, University of Bristol, Bristol BS8 1QU, UK
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, UNAM, 62210 Cuernavaca, México
| |
Collapse
|
14
|
Abstract
Living systems at all scales aggregate in large numbers for a variety of functions including mating, predation, and survival. The majority of such systems consist of unconnected individuals that collectively flock, school, or swarm. However, some aggregations involve physically entangled individuals, which can confer emergent mechanofunctional material properties to the collective. Here, we study in laboratory experiments and rationalize in theoretical and robophysical models the dynamics of physically entangled and motile self-assemblies of 1-cm-long California blackworms (Lumbriculus variegatus, Annelida: Clitellata: Lumbriculidae). Thousands of individual worms form braids with their long, slender, and flexible bodies to make a three-dimensional, soft, and shape-shifting "blob." The blob behaves as a living material capable of mitigating damage and assault from environmental stresses through dynamic shape transformations, including minimizing surface area for survival against desiccation and enabling transport (negative thermotaxis) from hazardous environments (like heat). We specifically focus on the locomotion of the blob to understand how an amorphous entangled ball of worms can break symmetry to move across a substrate. We hypothesize that the collective blob displays rudimentary differentiation of function across itself, which when combined with entanglement dynamics facilitates directed persistent blob locomotion. To test this, we develop a robophysical model of the worm blobs, which displays emergent locomotion in the collective without sophisticated control or programming of any individual robot. The emergent dynamics of the living functional blob and robophysical model can inform the design of additional classes of adaptive mechanofunctional living materials and emergent robotics.
Collapse
|
15
|
Ding SS, Muhle LS, Brown AEX, Schumacher LJ, Endres RG. Comparison of solitary and collective foraging strategies of Caenorhabditis elegans in patchy food distributions. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190382. [PMID: 32713303 DOI: 10.1098/rstb.2019.0382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Collective foraging has been shown to benefit organisms in environments where food is patchily distributed, but whether this is true in the case where organisms do not rely on long-range communications to coordinate their collective behaviour has been understudied. To address this question, we use the tractable laboratory model organism Caenorhabditis elegans, where a social strain (npr-1 mutant) and a solitary strain (N2) are available for direct comparison of foraging strategies. We first developed an on-lattice minimal model for comparing collective and solitary foraging strategies, finding that social agents benefit from feeding faster and more efficiently simply owing to group formation. Our laboratory foraging experiments with npr-1 and N2 worm populations, however, show an advantage for solitary N2 in all food distribution environments that we tested. We incorporated additional strain-specific behavioural parameters of npr-1 and N2 worms into our model and computationally identified N2's higher feeding rate to be the key factor underlying its advantage, without which it is possible to recapitulate the advantage of collective foraging in patchy environments. Our work highlights the theoretical advantage of collective foraging owing to group formation alone without long-range interactions and the valuable role of modelling to guide experiments. This article is part of the theme issue 'Multi-scale analysis and modelling of collective migration in biological systems'.
Collapse
Affiliation(s)
- Siyu Serena Ding
- Institute of Clinical Sciences, Imperial College London, London, UK.,MRC London Institute of Medical Sciences, London, UK
| | - Leah S Muhle
- Department of Life Sciences, Imperial College London, London, UK.,Department of Physics, Faculty of Science, Eberhard-Karls-Universität, Tübingen, Germany
| | - André E X Brown
- Institute of Clinical Sciences, Imperial College London, London, UK.,MRC London Institute of Medical Sciences, London, UK
| | | | - Robert G Endres
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
16
|
Demir E, Yaman YI, Basaran M, Kocabas A. Dynamics of pattern formation and emergence of swarming in Caenorhabditis elegans. eLife 2020; 9:52781. [PMID: 32250243 PMCID: PMC7202895 DOI: 10.7554/elife.52781] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/05/2020] [Indexed: 01/10/2023] Open
Abstract
Many animals collectively form complex patterns to tackle environmental difficulties. Several biological and physical factors, such as animal motility, population densities, and chemical cues, play significant roles in this process. However, very little is known about how sensory information interplays with these factors and controls the dynamics of pattern formation. Here, we study the direct relation between oxygen sensing, pattern formation, and emergence of swarming in active Caenorhabditis elegans aggregates. We find that when thousands of animals gather on food, bacteria-mediated decrease in oxygen level slows down the animals and triggers motility-induced phase separation. Three coupled factors—bacterial accumulation, aerotaxis, and population density—act together and control the entire dynamics. Furthermore, we find that biofilm-forming bacterial lawns including Bacillus subtilis and Pseudomonas aeruginosa strongly alter the collective dynamics due to the limited diffusibility of bacteria. Additionally, our theoretical model captures behavioral differences resulting from genetic variations and oxygen sensitivity.
Collapse
Affiliation(s)
- Esin Demir
- Bio-Medical Sciences and Engineering Program, Koç University, Sarıyer, Istanbul, Turkey
| | - Y Ilker Yaman
- Department of Physics, Koç University, Sarıyer, Istanbul, Turkey
| | - Mustafa Basaran
- Bio-Medical Sciences and Engineering Program, Koç University, Sarıyer, Istanbul, Turkey
| | - Askin Kocabas
- Bio-Medical Sciences and Engineering Program, Koç University, Sarıyer, Istanbul, Turkey.,Department of Physics, Koç University, Sarıyer, Istanbul, Turkey.,Koç University Surface Science and Technology Center, Koç University, Sarıyer, Istanbul, Turkey.,Koç University Research Center for Translational Medicine, Koç University, Sarıyer, Istanbul, Turkey
| |
Collapse
|
17
|
Ding SS, Romenskyy M, Sarkisyan KS, Brown AEX. Measuring Caenorhabditis elegans Spatial Foraging and Food Intake Using Bioluminescent Bacteria. Genetics 2020; 214:577-587. [PMID: 31911453 PMCID: PMC7054024 DOI: 10.1534/genetics.119.302804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/06/2020] [Indexed: 01/08/2023] Open
Abstract
For most animals, feeding includes two behaviors: foraging to find a food patch and food intake once a patch is found. The nematode Caenorhabditis elegans is a useful model for studying the genetics of both behaviors. However, most methods of measuring feeding in worms quantify either foraging behavior or food intake, but not both. Imaging the depletion of fluorescently labeled bacteria provides information on both the distribution and amount of consumption, but even after patch exhaustion a prominent background signal remains, which complicates quantification. Here, we used a bioluminescent Escherichia coli strain to quantify C. elegans feeding. With light emission tightly coupled to active metabolism, only living bacteria are capable of bioluminescence, so the signal is lost upon ingestion. We quantified the loss of bioluminescence using N2 reference worms and eat-2 mutants, and found a nearly 100-fold increase in signal-to-background ratio and lower background compared to loss of fluorescence. We also quantified feeding using aggregating npr-1 mutant worms. We found that groups of npr-1 mutants first clear bacteria from within the cluster before foraging collectively for more food; similarly, during large population swarming, only worms at the migrating front are in contact with bacteria. These results demonstrate the usefulness of bioluminescent bacteria for quantifying feeding and generating insights into the spatial pattern of food consumption.
Collapse
Affiliation(s)
- Siyu Serena Ding
- Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
- Medical Research Council London Institute of Medical Sciences, London W12 0NN, United Kingdom
| | - Maksym Romenskyy
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Karen S Sarkisyan
- Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
- Medical Research Council London Institute of Medical Sciences, London W12 0NN, United Kingdom
| | - Andre E X Brown
- Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
- Medical Research Council London Institute of Medical Sciences, London W12 0NN, United Kingdom
| |
Collapse
|