1
|
Guyard V, Giordano F. Three's company: Membrane waltz among organelles. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149555. [PMID: 40180296 DOI: 10.1016/j.bbabio.2025.149555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/05/2025]
Abstract
The study of membrane contact sites (MCS) has profoundly transformed our understanding of inter-organelle communication. These sites, where the membranes of two organelles are closely apposed, facilitate the transfer of small molecules such as lipids and ions. They are especially crucial for the maintenance of the structure and function of organelles like mitochondria and lipid droplets, which are largely excluded from vesicular trafficking. The significant advancements in imaging techniques, and molecular and cell biology research have shown that MCS are more complex than what originally thought and can involve more than two organelles. This has revealed the intricate nature and critical importance of these subcellular connections. Here, we provide an overview of newly described three-way inter-organelles associations, and the proteins involved in these MCS. We highlight the roles these contacts play in key cellular processes such as lipid droplet biogenesis and mitochondrial division. Additionally, we discuss the latest advances in super-resolution imaging that enable the study of these complex three-way interactions. Ongoing research, driven by technological innovations, promises to uncover further insights into their roles in fundamental cellular processes and their implications for health and disease.
Collapse
Affiliation(s)
- Valentin Guyard
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France; Inserm U1280, Gif-sur-Yvette cedex 91198, France
| | - Francesca Giordano
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France; Inserm U1280, Gif-sur-Yvette cedex 91198, France.
| |
Collapse
|
2
|
Kodama TS, Furuita K, Kojima C. Beyond Static Tethering at Membrane Contact Sites: Structural Dynamics and Functional Implications of VAP Proteins. Molecules 2025; 30:1220. [PMID: 40141996 PMCID: PMC11944328 DOI: 10.3390/molecules30061220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/22/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
The membranes surrounding the eukaryotic cell and its organelles are continuously invaginating, budding, and undergoing membrane fusion-fission events, which enable them to perform functions not found in prokaryotic cells. In addition, organelles come into close contact with each other at membrane contact sites (MCSs), which involve many types of proteins, and which regulate the signaling and transport of various molecules. Vesicle-associated membrane protein (VAMP)-associated protein (VAP) is an important factor involved in the tethering and contact of various organelles at MCSs in almost all eukaryotes and has attracted attention for its association with various diseases, mainly neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). However, the detailed mechanism of its functional expression remains unclear. In this review, we quantitatively discuss the structural dynamics of the entire molecule, including intrinsically disordered regions and intramolecular and intermolecular interactions, focusing on the vertebrate VAP paralogs VAPA and VAPB. Molecular phylogenetic and biophysical considerations are the basis of the work.
Collapse
Grants
- JP22H05536, JP22K19184, JP23H02416, and JP23K18030 Ministry of Education, Culture, Sports, Science and Technology
- NMR Platform Ministry of Education, Culture, Sports, Science and Technology
- CR-24-05 Institute for Protein Research, Osaka University
- JP24ama121001 Japan Agency for Medical Research and Development
Collapse
Affiliation(s)
- Takashi S. Kodama
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Kyoko Furuita
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Chojiro Kojima
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan;
- Graduate School of Engineering Science, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240-8501, Japan
| |
Collapse
|
3
|
Bezawork-Geleta A, Devereux CJ, Keenan SN, Lou J, Cho E, Nie S, De Souza DP, Narayana VK, Siddall NA, Rodrigues CHM, Portelli S, Zheng T, Nim HT, Ramialison M, Hime GR, Dodd GT, Hinde E, Ascher DB, Stroud DA, Watt MJ. Proximity proteomics reveals a mechanism of fatty acid transfer at lipid droplet-mitochondria- endoplasmic reticulum contact sites. Nat Commun 2025; 16:2135. [PMID: 40032835 DOI: 10.1038/s41467-025-57405-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 02/21/2025] [Indexed: 03/05/2025] Open
Abstract
Membrane contact sites between organelles are critical for the transfer of biomolecules. Lipid droplets store fatty acids and form contacts with mitochondria, which regulate fatty acid oxidation and adenosine triphosphate production. Protein compartmentalization at lipid droplet-mitochondria contact sites and their effects on biological processes are poorly described. Using proximity-dependent biotinylation methods, we identify 71 proteins at lipid droplet-mitochondria contact sites, including a multimeric complex containing extended synaptotagmin (ESYT) 1, ESYT2, and VAMP Associated Protein B and C (VAPB). High resolution imaging confirms localization of this complex at the interface of lipid droplet-mitochondria-endoplasmic reticulum where it likely transfers fatty acids to enable β-oxidation. Deletion of ESYT1, ESYT2 or VAPB limits lipid droplet-derived fatty acid oxidation, resulting in depletion of tricarboxylic acid cycle metabolites, remodeling of the cellular lipidome, and induction of lipotoxic stress. These findings were recapitulated in Esyt1 and Esyt2 deficient mice. Our study uncovers a fundamental mechanism that is required for lipid droplet-derived fatty acid oxidation and cellular lipid homeostasis, with implications for metabolic diseases and survival.
Collapse
Affiliation(s)
| | - Camille J Devereux
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Stacey N Keenan
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Jieqiong Lou
- School of Physics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Ellie Cho
- Biological Optical Microscopy Platform (BOMP), The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Shuai Nie
- Melbourne Mass Spectrometry and Proteomics Facility (MMSPF), Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3052, Australia
| | - David P De Souza
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Vinod K Narayana
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Nicole A Siddall
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Carlos H M Rodrigues
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Stephanie Portelli
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Tenghao Zheng
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Hieu T Nim
- Murdoch Children's Research Institute, reNEW Novo Nordisk Foundation for Stem Cell Medicine, Melbourne, VIC, 3052, Australia
| | - Mirana Ramialison
- Murdoch Children's Research Institute, reNEW Novo Nordisk Foundation for Stem Cell Medicine, Melbourne, VIC, 3052, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Gary R Hime
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Garron T Dodd
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Elizabeth Hinde
- School of Physics, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - David B Ascher
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - David A Stroud
- Murdoch Children's Research Institute, reNEW Novo Nordisk Foundation for Stem Cell Medicine, Melbourne, VIC, 3052, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3052, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
4
|
Chambers TL, Dimet‐Wiley A, Keeble AR, Haghani A, Lo W, Kang G, Brooke R, Horvath S, Fry CS, Watowich SJ, Wen Y, Murach KA. Methylome-proteome integration after late-life voluntary exercise training reveals regulation and target information for improved skeletal muscle health. J Physiol 2025; 603:211-237. [PMID: 39058663 PMCID: PMC11702923 DOI: 10.1113/jp286681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Exercise is a potent stimulus for combatting skeletal muscle ageing. To study the effects of exercise on muscle in a preclinical setting, we developed a combined endurance-resistance training stimulus for mice called progressive weighted wheel running (PoWeR). PoWeR improves molecular, biochemical, cellular and functional characteristics of skeletal muscle and promotes aspects of partial epigenetic reprogramming when performed late in life (22-24 months of age). In this investigation, we leveraged pan-mammalian DNA methylome arrays and tandem mass-spectrometry proteomics in skeletal muscle to provide detailed information on late-life PoWeR adaptations in female mice relative to age-matched sedentary controls (n = 7-10 per group). Differential CpG methylation at conserved promoter sites was related to transcriptional regulation genes as well as Nr4a3, Hes1 and Hox genes after PoWeR. Using a holistic method of -omics integration called binding and expression target analysis (BETA), methylome changes were associated with upregulated proteins related to global and mitochondrial translation after PoWeR (P = 0.03). Specifically, BETA implicated methylation control of ribosomal, mitoribosomal, and mitochondrial complex I protein abundance after training. DNA methylation may also influence LACTB, MIB1 and UBR4 protein induction with exercise - all are mechanistically linked to muscle health. Computational cistrome analysis predicted several transcription factors including MYC as regulators of the exercise trained methylome-proteome landscape, corroborating prior late-life PoWeR transcriptome data. Correlating the proteome to muscle mass and fatigue resistance revealed positive relationships with VPS13A and NPL levels, respectively. Our findings expose differential epigenetic and proteomic adaptations associated with translational regulation after PoWeR that could influence skeletal muscle mass and function in aged mice. KEY POINTS: Late-life combined endurance-resistance exercise training from 22-24 months of age in mice is shown to improve molecular, biochemical, cellular and in vivo functional characteristics of skeletal muscle and promote aspects of partial epigenetic reprogramming and epigenetic age mitigation. Integration of DNA CpG 36k methylation arrays using conserved sites (which also contain methylation ageing clock sites) with exploratory proteomics in skeletal muscle extends our prior work and reveals coordinated and widespread regulation of ribosomal, translation initiation, mitochondrial ribosomal (mitoribosomal) and complex I proteins after combined voluntary exercise training in a sizeable cohort of female mice (n = 7-10 per group and analysis). Multi-omics integration predicted epigenetic regulation of serine β-lactamase-like protein (LACTB - linked to tumour resistance in muscle), mind bomb 1 (MIB1 - linked to satellite cell and type 2 fibre maintenance) and ubiquitin protein ligase E3 component N-recognin 4 (UBR4 - linked to muscle protein quality control) after training. Computational cistrome analysis identified MYC as a regulator of the late-life training proteome, in agreement with prior transcriptional analyses. Vacuolar protein sorting 13 homolog A (VPS13A) was positively correlated to muscle mass, and the glycoprotein/glycolipid associated sialylation enzyme N-acetylneuraminate pyruvate lyase (NPL) was associated to in vivo muscle fatigue resistance.
Collapse
Affiliation(s)
- Toby L. Chambers
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and RecreationUniversity of ArkansasFayettevilleARUSA
| | | | - Alexander R. Keeble
- University of Kentucky Center for Muscle BiologyLexingtonKYUSA
- Department of Athletic Training and Clinical NutritionUniversity of KentuckyLexingtonKYUSA
| | - Amin Haghani
- Department of Human GeneticsUniversity of California Los AngelesLos AngelesCAUSA
- Altos LabsSan DiegoCAUSA
| | - Wen‐Juo Lo
- Department of Educational Statistics and Research MethodsUniversity of ArkansasFayettevilleARUSA
| | - Gyumin Kang
- University of Kentucky Center for Muscle BiologyLexingtonKYUSA
- Department of PhysiologyUniversity of KentuckyLexingtonKYUSA
- Division of Biomedical Informatics, Department of Internal MedicineUniversity of KentuckyLexingtonKYUSA
| | - Robert Brooke
- Epigenetic Clock Development FoundationLos AngelesCAUSA
| | - Steve Horvath
- Department of Human GeneticsUniversity of California Los AngelesLos AngelesCAUSA
- Altos LabsSan DiegoCAUSA
- Epigenetic Clock Development FoundationLos AngelesCAUSA
| | - Christopher S. Fry
- University of Kentucky Center for Muscle BiologyLexingtonKYUSA
- Department of Athletic Training and Clinical NutritionUniversity of KentuckyLexingtonKYUSA
| | - Stanley J. Watowich
- Ridgeline TherapeuticsHoustonTXUSA
- Department of Biochemistry and Molecular BiologyUniversity of Texas Medical BranchGalvestonTXUSA
| | - Yuan Wen
- University of Kentucky Center for Muscle BiologyLexingtonKYUSA
- Department of PhysiologyUniversity of KentuckyLexingtonKYUSA
- Division of Biomedical Informatics, Department of Internal MedicineUniversity of KentuckyLexingtonKYUSA
| | - Kevin A. Murach
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and RecreationUniversity of ArkansasFayettevilleARUSA
| |
Collapse
|
5
|
Van Acker ZP, Leroy T, Annaert W. Mitochondrial dysfunction, cause or consequence in neurodegenerative diseases? Bioessays 2025; 47:e2400023. [PMID: 39367555 DOI: 10.1002/bies.202400023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/29/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024]
Abstract
Neurodegenerative diseases encompass a spectrum of conditions characterized by the gradual deterioration of neurons in the central and peripheral nervous system. While their origins are multifaceted, emerging data underscore the pivotal role of impaired mitochondrial functions and endolysosomal homeostasis to the onset and progression of pathology. This article explores whether mitochondrial dysfunctions act as causal factors or are intricately linked to the decline in endolysosomal function. As research delves deeper into the genetics of neurodegenerative diseases, an increasing number of risk loci and genes associated with the regulation of endolysosomal and autophagy functions are being identified, arguing for a downstream impact on mitochondrial health. Our hypothesis centers on the notion that disturbances in endolysosomal processes may propagate to other organelles, including mitochondria, through disrupted inter-organellar communication. We discuss these views in the context of major neurodegenerative diseases including Alzheimer's and Parkinson's diseases, and their relevance to potential therapeutic avenues.
Collapse
Affiliation(s)
- Zoë P Van Acker
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Thomas Leroy
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Nishizawa Y, Sakimoto H, Nagata O, Sasaki N, Urata Y, Arai K, Hiwatashi H, Yokoyama I, Kishida S, Sano A, Nakamura M. Chorein deficiency promotes ferroptosis. FEBS Open Bio 2025; 15:58-68. [PMID: 39514409 PMCID: PMC11705448 DOI: 10.1002/2211-5463.13870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/04/2024] [Accepted: 07/18/2024] [Indexed: 11/16/2024] Open
Abstract
Ferroptosis is a type of programmed cell death owed to an intracellular accumulation of iron resulting in the generation reactive oxygen species, which in turn can cause peroxidation of plasma membrane lipids and ultimately result in cell death. We investigated the potential involvement of VPS13A deficiency in ferroptosis. The VPS13A gene encodes for chorein, and its deficiency is a molecular cause of chorea-acanthocytosis (ChAc), a Huntington-like disease with neurodegeneration in the striatum. In our previous study, we found male infertility characterized by increased malondialdehyde staining of the spermatozoa in the testes of the ChAc model mice. Thus, in this study we performed metabolome analysis of sperm extracted from the epididymis of the ChAc model mice, which revealed decreased cystine levels, suggesting an association between chorein deficiency and ferroptosis. We then investigated the role of chorein in ferroptosis using VPS13A knockdown (VPS13A-KD) HEK293 cells. We found that VPS13A-KD cells displayed a significantly diminished resistance to tert-Butyl hydroperoxide (tBHP)-induced lipid peroxidation and cell death compared to control cells, which could be rescued by treatment with ferrostatin-1. Moreover, VPS13A-KD cells showed Fe(II) accumulation, suggesting an impaired capacity for divalent iron removal. In the cytosolic fraction of VPS13A-KD cells, the protein level of glutathione peroxidase 4 (GPX4) was significantly reduced, suggesting that dysfunction of chorein impairs GPX4 transport, thereby facilitating ferroptosis. These results suggest that ferroptosis may contribute to neurodegeneration in ChAc caused by loss of chorein function.
Collapse
Grants
- JPMH23FC201 Ministry of Health, Labour and Welfare
- 20K16671 Ministry of Education, Culture, Sports, Science and Technology
- 21K15746 Ministry of Education, Culture, Sports, Science and Technology
- 22K07584 Ministry of Education, Culture, Sports, Science and Technology
- 23K14822 Ministry of Education, Culture, Sports, Science and Technology
- 24K18742 Ministry of Education, Culture, Sports, Science and Technology
- Ministry of Health, Labour and Welfare
- Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Yoshiaki Nishizawa
- Department of PsychiatryKagoshima University Graduate School of Medical and Dental SciencesJapan
- Department of Biochemistry and GeneticsKagoshima University Graduate School of Medical and Dental SciencesJapan
| | - Hitoshi Sakimoto
- Department of PsychiatryKagoshima University Graduate School of Medical and Dental SciencesJapan
| | - Omi Nagata
- Department of PsychiatryKagoshima University Graduate School of Medical and Dental SciencesJapan
| | - Natsuki Sasaki
- Department of PsychiatryKagoshima University Graduate School of Medical and Dental SciencesJapan
| | - Yuka Urata
- Department of PsychiatryKagoshima University Graduate School of Medical and Dental SciencesJapan
| | - Kaoru Arai
- Department of PsychiatryKagoshima University Graduate School of Medical and Dental SciencesJapan
| | - Hanae Hiwatashi
- Department of PsychiatryKagoshima University Graduate School of Medical and Dental SciencesJapan
| | - Izumi Yokoyama
- Department of PsychiatryKagoshima University Graduate School of Medical and Dental SciencesJapan
| | - Shosei Kishida
- Department of Biochemistry and GeneticsKagoshima University Graduate School of Medical and Dental SciencesJapan
| | | | - Masayuki Nakamura
- Department of PsychiatryKagoshima University Graduate School of Medical and Dental SciencesJapan
| |
Collapse
|
7
|
Hood WR. Mechanisms that Alter Capacity for Adenosine Triphosphate Production and Oxidative Phosphorylation: Insights from Avian Migration. Integr Comp Biol 2024; 64:1811-1825. [PMID: 38844402 DOI: 10.1093/icb/icae065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/06/2024] [Accepted: 05/30/2024] [Indexed: 12/21/2024] Open
Abstract
Avian migration is among the most energetically demanding feats observed in animals. Studies evaluating the physiological underpinnings of migration have repeatedly shown that migratory birds display numerous adaptations that ultimately supply the flight muscle mitochondria with abundant fuel and oxygen during long-distance flights. To make use of this high input, the organs and mitochondria of migrants are predicted to display several traits that maximize their capacity to produce adenosine triphosphate (ATP). This review aims to introduce readers to several mechanisms by which organs and mitochondria can alter their capacity for oxidative phosphorylation and ATP production. The role of organ size, mitochondrial volume, substrate, and oxygen delivery to the electron transport system are discussed. A central theme of this review is the role of changes in electron chain complex activity, mitochondrial morphology and dynamics, and supercomplexes in allowing avian migrants and other taxa to alter the performance of the electron transport system with predictable shifts in demand. It is my hope that this review will serve as a springboard for future studies exploring the mechanisms that alter bioenergetic capacity across animal species.
Collapse
Affiliation(s)
- Wendy R Hood
- Department of Biological Sciences, Auburn University, 101 Life Sciences Building, Auburn, AL 36849, USA
| |
Collapse
|
8
|
Ugur B, Schueder F, Shin J, Hanna MG, Wu Y, Leonzino M, Su M, McAdow AR, Wilson C, Postlethwait J, Solnica-Krezel L, Bewersdorf J, De Camilli P. VPS13B is localized at the interface between Golgi cisternae and is a functional partner of FAM177A1. J Cell Biol 2024; 223:e202311189. [PMID: 39331042 PMCID: PMC11451052 DOI: 10.1083/jcb.202311189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/31/2024] [Accepted: 08/05/2024] [Indexed: 09/28/2024] Open
Abstract
Mutations in VPS13B, a member of a protein family implicated in bulk lipid transport between adjacent membranes, cause Cohen syndrome. VPS13B is known to be concentrated in the Golgi complex, but its precise location within this organelle and thus the site(s) where it achieves lipid transport remains unclear. Here, we show that VPS13B is localized at the interface between proximal and distal Golgi subcompartments and that Golgi complex reformation after Brefeldin A (BFA)-induced disruption is delayed in VPS13B KO cells. This delay is phenocopied by the loss of FAM177A1, a Golgi complex protein of unknown function reported to be a VPS13B interactor and whose mutations also result in a developmental disorder. In zebrafish, the vps13b ortholog, not previously annotated in this organism, genetically interacts with fam177a1. Collectively, these findings raise the possibility that bulk lipid transport by VPS13B may play a role in the dynamics of Golgi membranes and that VPS13B may be assisted in this function by FAM177A1.
Collapse
Affiliation(s)
- Berrak Ugur
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT, USA
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Florian Schueder
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Jimann Shin
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael G. Hanna
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT, USA
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Yumei Wu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT, USA
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Marianna Leonzino
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Maohan Su
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Anthony R. McAdow
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Catherine Wilson
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | | | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Physics, Yale University, New Haven, CT, USA
| | - Pietro De Camilli
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT, USA
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
9
|
Lin J, Meng H, Shafeng N, Li J, Sun H, Yang X, Chen Z, Hou S. Exploring the pathophysiological mechanisms and wet biomarkers of VPS13A disease. Front Neurol 2024; 15:1482936. [PMID: 39659962 PMCID: PMC11628379 DOI: 10.3389/fneur.2024.1482936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
VPS13A disease (also known as Chorea-Acanthocytosis, ChAc) is a representative subtype of the neuroacanthocytosis (NA) syndromes, characterized by neurodegeneration in the central nervous system and acanthocytosis in peripheral blood. It is a rare autosomal recessive genetic disorder caused by loss-of-function variants in the VPS13A gene, which is currently the only known pathogenic gene for ChAc. VPS13A protein is a member of novel bridge-like lipid transfer proteins family located at membrane contact sites, forming direct channels for lipid transport. The specific mechanism underlying how the loss of VPS13A function leads to the hematological and neurological phenotypes of the disease remains unclear. Here we present a review of recent studies on VPS13A protein and ChAc, focusing on the potential role of the VPS13A protein in pathophysiology of ChAc and also review the known and potential wet biomarkers of ChAc to enhance our comprehension of this rare disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shuai Hou
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Gamuyao R, Chang CL. Imaging and proteomics toolkits for studying organelle contact sites. Front Cell Dev Biol 2024; 12:1466915. [PMID: 39381373 PMCID: PMC11458464 DOI: 10.3389/fcell.2024.1466915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
Organelle contact sites are regions where two heterologous membranes are juxtaposed by molecular tethering complexes. These contact sites are important in inter-organelle communication and cellular functional integration. However, visualizing these minute foci and identifying contact site proteomes have been challenging. In recent years, fluorescence-based methods have been developed to visualize the dynamic physical interaction of organelles while proximity labeling approaches facilitate the profiling of proteomes at contact sites. In this review, we explain the design principle for these contact site reporters: a dual-organelle interaction mechanism based on how endogenous tethers and/or tethering complexes localize to contact sites. We classify the contact site reporters into three categories: (i) single-protein systems, (ii) two-component systems with activated reporter signal upon organelle proximity, and (iii) reporters for contact site proteomes. We also highlight advanced imaging analysis with high temporal-spatial resolution and the use of machine-learning algorithms for detecting contact sites.
Collapse
Affiliation(s)
| | - Chi-Lun Chang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
11
|
Zimmermann JA, Lucht K, Stecher M, Badhan C, Glaser KM, Epple MW, Koch LR, Deboutte W, Manke T, Ebnet K, Brinkmann F, Fehler O, Vogl T, Schuster EM, Bremser A, Buescher JM, Rambold AS. Functional multi-organelle units control inflammatory lipid metabolism of macrophages. Nat Cell Biol 2024; 26:1261-1273. [PMID: 38969763 PMCID: PMC11321999 DOI: 10.1038/s41556-024-01457-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 06/05/2024] [Indexed: 07/07/2024]
Abstract
Eukaryotic cells contain several membrane-separated organelles to compartmentalize distinct metabolic reactions. However, it has remained unclear how these organelle systems are coordinated when cells adapt metabolic pathways to support their development, survival or effector functions. Here we present OrgaPlexing, a multi-spectral organelle imaging approach for the comprehensive mapping of six key metabolic organelles and their interactions. We use this analysis on macrophages, immune cells that undergo rapid metabolic switches upon sensing bacterial and inflammatory stimuli. Our results identify lipid droplets (LDs) as primary inflammatory responder organelle, which forms three- and four-way interactions with other organelles. While clusters with endoplasmic reticulum (ER) and mitochondria (mitochondria-ER-LD unit) help supply fatty acids for LD growth, the additional recruitment of peroxisomes (mitochondria-ER-peroxisome-LD unit) supports fatty acid efflux from LDs. Interference with individual components of these units has direct functional consequences for inflammatory lipid mediator synthesis. Together, we show that macrophages form functional multi-organellar units to support metabolic adaptation and provide an experimental strategy to identify organelle-metabolic signalling hubs.
Collapse
Affiliation(s)
- Julia A Zimmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Center of Chronic Immunodeficiency, Medical Center University of Freiburg, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Kerstin Lucht
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Manuel Stecher
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Chahat Badhan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Katharina M Glaser
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Maximilian W Epple
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lena R Koch
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Ward Deboutte
- Bioinformatics Core Facility, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Thomas Manke
- Bioinformatics Core Facility, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Klaus Ebnet
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Munster, Munster, Germany
| | - Frauke Brinkmann
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Munster, Munster, Germany
| | - Olesja Fehler
- Institute of Immunology, University of Munster, Munster, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Munster, Munster, Germany
| | - Ev-Marie Schuster
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Anna Bremser
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Joerg M Buescher
- Metabolomics Core Facility, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Angelika S Rambold
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Center of Chronic Immunodeficiency, Medical Center University of Freiburg, Freiburg, Germany.
| |
Collapse
|
12
|
Pinyomahakul J, Ise M, Kawamura M, Yamada T, Okuyama K, Shibata S, Takizawa J, Abe M, Sakimura K, Takebayashi H. Analysis of Brain, Blood, and Testis Phenotypes Lacking the Vps13a Gene in C57BL/6N Mice. Int J Mol Sci 2024; 25:7776. [PMID: 39063018 PMCID: PMC11277237 DOI: 10.3390/ijms25147776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The Vps13a gene encodes a lipid transfer protein called VPS13A, or chorein, associated with mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs), mitochondria-endosomes, and lipid droplets. This protein plays a crucial role in inter-organelle communication and lipid transport. Mutations in the VPS13A gene are implicated in the pathogenesis of chorea-acanthocytosis (ChAc), a rare autosomal recessive neurodegenerative disorder characterized by chorea, orofacial dyskinesias, hyperkinetic movements, seizures, cognitive impairment, and acanthocytosis. Previous mouse models of ChAc have shown variable disease phenotypes depending on the genetic background. In this study, we report the generation of a Vps13a flox allele in a pure C57BL/6N mouse background and the subsequent creation of Vps13a knockout (KO) mice via Cre-recombination. Our Vps13a KO mice exhibited increased reticulocytes but not acanthocytes in peripheral blood smears. Additionally, there were no significant differences in the GFAP- and Iba1-positive cells in the striatum, the basal ganglia of the central nervous system. Interestingly, we observed abnormal spermatogenesis leading to male infertility. These findings indicate that Vps13a KO mice are valuable models for studying male infertility and some hematological aspects of ChAc.
Collapse
Affiliation(s)
- Jitrapa Pinyomahakul
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (J.P.)
| | - Masataka Ise
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (J.P.)
| | - Meiko Kawamura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; (M.K.); (M.A.); (K.S.)
| | - Takashi Yamada
- Department of Hematology, Endocrinology and Metabolism, Faculty of Medicine, Niigata University, Niigata 951-8510, Japan; (T.Y.); (J.T.)
| | - Kentaro Okuyama
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (K.O.); (S.S.)
| | - Shinsuke Shibata
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (K.O.); (S.S.)
| | - Jun Takizawa
- Department of Hematology, Endocrinology and Metabolism, Faculty of Medicine, Niigata University, Niigata 951-8510, Japan; (T.Y.); (J.T.)
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; (M.K.); (M.A.); (K.S.)
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; (M.K.); (M.A.); (K.S.)
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (J.P.)
- Center for Coordination of Research Facilities, Niigata University, Niigata 951-8510, Japan
| |
Collapse
|
13
|
García-García E, Carreras-Caballé M, Coll-Manzano A, Ramón-Lainez A, Besa-Selva G, Pérez-Navarro E, Malagelada C, Alberch J, Masana M, Rodríguez MJ. Preserved VPS13A distribution and expression in Huntington's disease: divergent mechanisms of action for similar movement disorders? Front Neurosci 2024; 18:1394478. [PMID: 38903599 PMCID: PMC11188336 DOI: 10.3389/fnins.2024.1394478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
VPS13A disease and Huntington's disease (HD) are two basal ganglia disorders that may be difficult to distinguish clinically because they have similar symptoms, neuropathological features, and cellular dysfunctions with selective degeneration of the medium spiny neurons of the striatum. However, their etiology is different. VPS13A disease is caused by a mutation in the VPS13A gene leading to a lack of protein in the cells, while HD is due to an expansion of CAG repeat in the huntingtin (Htt) gene, leading to aberrant accumulation of mutant Htt. Considering the similarities of both diseases regarding the selective degeneration of striatal medium spiny neurons, the involvement of VPS13A in the molecular mechanisms of HD pathophysiology cannot be discarded. We analyzed the VPS13A distribution in the striatum, cortex, hippocampus, and cerebellum of a transgenic mouse model of HD. We also quantified the VPS13A levels in the human cortex and putamen nucleus; and compared data on mutant Htt-induced changes in VPS13A expression from differential expression datasets. We found that VPS13A brain distribution or expression was unaltered in most situations with a decrease in the putamen of HD patients and small mRNA changes in the striatum and cerebellum of HD mice. We concluded that the selective susceptibility of the striatum in VPS13A disease and HD may be a consequence of disturbances in different cellular processes with convergent molecular mechanisms already to be elucidated.
Collapse
Affiliation(s)
- Esther García-García
- Department of Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Barcelona, Spain
| | - Maria Carreras-Caballé
- Department of Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Albert Coll-Manzano
- Department of Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Alba Ramón-Lainez
- Department of Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Barcelona, Spain
| | - Gisela Besa-Selva
- Department of Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Barcelona, Spain
| | - Esther Pérez-Navarro
- Department of Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Barcelona, Spain
| | - Cristina Malagelada
- Department of Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Barcelona, Spain
| | - Jordi Alberch
- Department of Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
| | - Mercè Masana
- Department of Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Barcelona, Spain
| | - Manuel J. Rodríguez
- Department of Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
14
|
Monteiro-Cardoso VF, Giordano F. Emerging functions of the mitochondria-ER-lipid droplet three-way junction in coordinating lipid transfer, metabolism, and storage in cells. FEBS Lett 2024; 598:1252-1273. [PMID: 38774950 DOI: 10.1002/1873-3468.14893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/18/2024] [Accepted: 04/05/2024] [Indexed: 05/25/2024]
Abstract
Over the past two decades, we have witnessed a growing appreciation for the importance of membrane contact sites (CS) in facilitating direct communication between organelles. CS are tiny regions where the membranes of two organelles meet but do not fuse and allow the transfer of metabolites between organelles, playing crucial roles in the coordination of cellular metabolic activities. The significant advancements in imaging techniques and molecular and cell biology research have revealed that CS are more complex than what originally thought, and as they are extremely dynamic, they can remodel their shape, composition, and functions in accordance with metabolic and environmental changes and can occur between more than two organelles. Here, we describe how recent studies led to the identification of a three-way mitochondria-ER-lipid droplet CS and discuss the emerging functions of these contacts in maintaining lipid storage, homeostasis, and balance. We also summarize the properties and functions of key protein components localized at the mitochondria-ER-lipid droplet interface, with a special focus on lipid transfer proteins. Understanding tripartite CS is essential for unraveling the complexities of inter-organelle communication and cooperation within cells.
Collapse
Affiliation(s)
- Vera Filipa Monteiro-Cardoso
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette cedex, France
- Inserm U1280, Gif-sur-Yvette cedex, France
| | - Francesca Giordano
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette cedex, France
- Inserm U1280, Gif-sur-Yvette cedex, France
| |
Collapse
|
15
|
Alkahtani S, Alkahtane AA, Alarifi S. Physiological and Pathogenesis Significance of Chorein in Health and Disease. Physiol Res 2024; 73:189-203. [PMID: 38710051 PMCID: PMC11081191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/30/2023] [Indexed: 05/08/2024] Open
Abstract
This comprehensive review explores the physiological and pathophysiological significance of VPS13A, a protein encoded by the VPS13A gene. The VPS13A gene is associated with Chorea-acanthocytosis (ChAc), a rare hereditary neurodegenerative disorder. The review covers essential aspects, beginning with the genetics of VPS13A, highlighting its role in the pathogenesis of ChAc, and addressing the spectrum of genetic variants involved. It delves into the structure and function of the VPS13A protein, emphasizing its presence in various tissues and its potential involvement in protein trafficking and lipid homeostasis. Molecular functions of VPS13A in the brain tissue and other cell types or tissues with respect to their role in cytoskeletal regulation and autophagy are explored. Finally, it explores the intriguing link between VPS13A mutations, lipid imbalances, and neurodegeneration, shedding light on future research directions. Overall, this review serves as a comprehensive resource for understanding the pivotal role of VPS13A in health and disease, particularly in the context of ChAc. Key words: Chorein , Tumor, Actin, Microfilament, Gene expression, Chorea-acanthocytosis.
Collapse
Affiliation(s)
- S Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | | | | |
Collapse
|
16
|
Suzuki SW, West M, Zhang Y, Fan JS, Roberts RT, Odorizzi G, Emr SD. A role for Vps13-mediated lipid transfer at the ER-endosome contact site in ESCRT-mediated sorting. J Cell Biol 2024; 223:e202307094. [PMID: 38319250 PMCID: PMC10847051 DOI: 10.1083/jcb.202307094] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/27/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Endosomes are specialized organelles that function in the secretory and endocytic protein sorting pathways. Endocytosed cell surface receptors and transporters destined for lysosomal degradation are sorted into intraluminal vesicles (ILVs) at endosomes by endosomal sorting complexes required for transport (ESCRT) proteins. The endosomes (multivesicular bodies, MVBs) then fuse with the lysosome. During endosomal maturation, the number of ILVs increases, but the size of endosomes does not decrease despite the consumption of the limiting membrane during ILV formation. Vesicle-mediated trafficking is thought to provide lipids to support MVB biogenesis. However, we have uncovered an unexpected contribution of a large bridge-like lipid transfer protein, Vps13, in this process. Here, we reveal that Vps13-mediated lipid transfer at ER-endosome contact sites is required for the ESCRT pathway. We propose that Vps13 may play a critical role in supplying lipids to the endosome, ensuring continuous ESCRT-mediated sorting during MVB biogenesis.
Collapse
Affiliation(s)
- Sho W. Suzuki
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Matthew West
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Yichen Zhang
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Jenny S. Fan
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Rachel T. Roberts
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Greg Odorizzi
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Scott D. Emr
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
17
|
Mathiowetz AJ, Olzmann JA. Lipid droplets and cellular lipid flux. Nat Cell Biol 2024; 26:331-345. [PMID: 38454048 PMCID: PMC11228001 DOI: 10.1038/s41556-024-01364-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024]
Abstract
Lipid droplets are dynamic organelles that store neutral lipids, serve the metabolic needs of cells, and sequester lipids to prevent lipotoxicity and membrane damage. Here we review the current understanding of the mechanisms of lipid droplet biogenesis and turnover, the transfer of lipids and metabolites at membrane contact sites, and the role of lipid droplets in regulating fatty acid flux in lipotoxicity and cell death.
Collapse
Affiliation(s)
- Alyssa J Mathiowetz
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - James A Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
18
|
Kundu S, Jaiswal M, Babu Mullapudi V, Guo J, Kamat M, Basso KB, Guo Z. Investigation of Glycosylphosphatidylinositol (GPI)-Plasma Membrane Interaction in Live Cells and the Influence of GPI Glycan Structure on the Interaction. Chemistry 2024; 30:e202303047. [PMID: 37966101 PMCID: PMC10922586 DOI: 10.1002/chem.202303047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
Abstract
Glycosylphosphatidylinositols (GPIs) need to interact with other components in the cell membrane to transduce transmembrane signals. A bifunctional GPI probe was employed for photoaffinity-based proximity labelling and identification of GPI-interacting proteins in the cell membrane. This probe contained the entire core structure of GPIs and was functionalized with photoreactive diazirine and clickable alkyne to facilitate its crosslinking with proteins and attachment of an affinity tag. It was disclosed that this probe was more selective than our previously reported probe containing only a part structure of the GPI core for cell membrane incorporation and an improved probe for studying GPI-cell membrane interaction. Eighty-eight unique membrane proteins, many of which are related to GPIs/GPI-anchored proteins, were identified utilizing this probe. The proteomics dataset is a valuable resource for further analyses and data mining to find new GPI-related proteins and signalling pathways. A comparison of these results with those of our previous probe provided direct evidence for the profound impact of GPI glycan structure on its interaction with the cell membrane.
Collapse
Affiliation(s)
- Sayan Kundu
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Mohit Jaiswal
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | | | - Jiatong Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Manasi Kamat
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Kari B Basso
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
- UF Health Cancer Centre, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
19
|
Sun S, Zhao G, Jia M, Jiang Q, Li S, Wang H, Li W, Wang Y, Bian X, Zhao YG, Huang X, Yang G, Cai H, Pastor-Pareja JC, Ge L, Zhang C, Hu J. Stay in touch with the endoplasmic reticulum. SCIENCE CHINA. LIFE SCIENCES 2024; 67:230-257. [PMID: 38212460 DOI: 10.1007/s11427-023-2443-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/28/2023] [Indexed: 01/13/2024]
Abstract
The endoplasmic reticulum (ER), which is composed of a continuous network of tubules and sheets, forms the most widely distributed membrane system in eukaryotic cells. As a result, it engages a variety of organelles by establishing membrane contact sites (MCSs). These contacts regulate organelle positioning and remodeling, including fusion and fission, facilitate precise lipid exchange, and couple vital signaling events. Here, we systematically review recent advances and converging themes on ER-involved organellar contact. The molecular basis, cellular influence, and potential physiological functions for ER/nuclear envelope contacts with mitochondria, Golgi, endosomes, lysosomes, lipid droplets, autophagosomes, and plasma membrane are summarized.
Collapse
Affiliation(s)
- Sha Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gan Zhao
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Mingkang Jia
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qing Jiang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Shulin Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Haibin Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenjing Li
- Laboratory of Computational Biology & Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunyun Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xin Bian
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Yan G Zhao
- Brain Research Center, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ge Yang
- Laboratory of Computational Biology & Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jose C Pastor-Pareja
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Institute of Neurosciences, Consejo Superior de Investigaciones Cientfflcas-Universidad Miguel Hernandez, San Juan de Alicante, 03550, Spain.
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Chuanmao Zhang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Junjie Hu
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
20
|
Arai K, Nishizawa Y, Nagata O, Sakimoto H, Sasaki N, Sano A, Nakamura M. The Role of Chorein Deficiency in Late Spermatogenesis. Biomedicines 2024; 12:240. [PMID: 38275411 PMCID: PMC10813020 DOI: 10.3390/biomedicines12010240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
VPS13A, also known as chorein, whose loss of function causes chorea-acanthocytosis (ChAc), is characterized by Huntington's-disease-like neurodegeneration and neuropsychiatric symptoms in addition to acanthocytosis in red blood cells. We previously reported that ChAc-model mice with a loss of chorein function exhibited male infertility, with asthenozoospermia and mitochondrial dysmorphology in the spermatozoa. Here, we report a novel aspect of chorein dysfunction in male fertility, particularly its role in spermatogenesis and mitochondrial integrity. An increase in anti-malondialdehyde antibody immunoreaction within the testes, predominantly observed at the advanced stages of sperm formation in chorein-deficient mice, suggests oxidative stress as a contributing factor to mitochondrial dysfunction and impaired sperm maturation. The chorein immunoreactivity in spermatids of wild-type mice accentuates its significance in sperm development. ChAc-model mice exhibit mitochondrial ultrastructural abnormalities, specifically during the late stages of sperm maturation, suggesting a critical timeframe for chorein's action in spermiogenesis. We observed an increase in TOM20 protein levels, indicative of disrupted mitochondrial import mechanisms. The concurrent decrease in metabolic enzymes such as IDH3A, LDHC, PGK2, and ACAT1 suggests a complex chorein-mediated metabolic network that is essential for sperm vitality. Additionally, heightened separation of cytoplasmic droplets from sperm highlights the potential membrane instability in chorein-deficient spermatozoa. Metabolomic profiling further suggests a compensatory metabolic shift, with elevated glycolytic and TCA-cycle substrates. Our findings suggest that chorein is involved in anti-ferroptosis and the maturation of mitochondrial morphology in the late stages of spermatogenesis, and its deficiency leads to asthenozoospermia characterized by membrane instability, abnormal cytosolic glycolysis, abnormal mitochondrial function, and a disrupted TCA cycle. Further analyses are required to unravel the molecular mechanisms that directly link these findings and to elucidate the role of chorein in spermatogenesis as well as its broader implications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Masayuki Nakamura
- Department of Psychiatry, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan; (K.A.)
| |
Collapse
|
21
|
Makio T, Simmen T. Not So Rare: Diseases Based on Mutant Proteins Controlling Endoplasmic Reticulum-Mitochondria Contact (MERC) Tethering. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241261228. [PMID: 39070058 PMCID: PMC11273598 DOI: 10.1177/25152564241261228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/12/2024] [Accepted: 05/27/2024] [Indexed: 07/30/2024]
Abstract
Mitochondria-endoplasmic reticulum contacts (MERCs), also called endoplasmic reticulum (ER)-mitochondria contact sites (ERMCS), are the membrane domains, where these two organelles exchange lipids, Ca2+ ions, and reactive oxygen species. This crosstalk is a major determinant of cell metabolism, since it allows the ER to control mitochondrial oxidative phosphorylation and the Krebs cycle, while conversely, it allows the mitochondria to provide sufficient ATP to control ER proteostasis. MERC metabolic signaling is under the control of tethers and a multitude of regulatory proteins. Many of these proteins have recently been discovered to give rise to rare diseases if their genes are mutated. Surprisingly, these diseases share important hallmarks and cause neurological defects, sometimes paired with, or replaced by skeletal muscle deficiency. Typical symptoms include developmental delay, intellectual disability, facial dysmorphism and ophthalmologic defects. Seizures, epilepsy, deafness, ataxia, or peripheral neuropathy can also occur upon mutation of a MERC protein. Given that most MERC tethers and regulatory proteins have secondary functions, some MERC protein-based diseases do not fit into this categorization. Typically, however, the proteins affected in those diseases have dominant functions unrelated to their roles in MERCs tethering or their regulation. We are discussing avenues to pharmacologically target genetic diseases leading to MERC defects, based on our novel insight that MERC defects lead to common characteristics in rare diseases. These shared characteristics of MERCs disorders raise the hope that they may allow for similar treatment options.
Collapse
Affiliation(s)
- Tadashi Makio
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Thomas Simmen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
22
|
Ugur B, Schueder F, Shin J, Hanna MG, Wu Y, Leonzino M, Su M, McAdow AR, Wilson C, Postlethwait J, Solnica-Krezel L, Bewersdorf J, De Camilli P. VPS13B is localized at the cis-trans Golgi complex interface and is a functional partner of FAM177A1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572081. [PMID: 38187698 PMCID: PMC10769246 DOI: 10.1101/2023.12.18.572081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Mutations in VPS13B, a member of a protein family implicated in bulk lipid transport between adjacent membranes, cause Cohen syndrome. VPS13B is known to be concentrated in the Golgi complex, but its precise location within this organelle and thus the site(s) where it achieves lipid transport remains unclear. Here we show that VPS13B is localized at the interface between cis and trans Golgi sub-compartments and that Golgi complex re-formation after Brefeldin A (BFA) induced disruption is delayed in VPS13B KO cells. This delay is phenocopied by loss of FAM177A1, a Golgi complex protein of unknown function reported to be a VPS13B interactor and whose mutations also result in a developmental disorder. In zebrafish, the vps13b orthologue, not previously annotated in this organism, genetically interacts with fam177a1. Collectively, these findings raise the possibility that bulk lipid transport by VPS13B may play a role in expanding Golgi membranes and that VPS13B may be assisted in this function by FAM177A1.
Collapse
Affiliation(s)
- Berrak Ugur
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- HHMI, Yale University School of Medicine, New Haven, CT, USA
| | - Florian Schueder
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Jimann Shin
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Michael G. Hanna
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- HHMI, Yale University School of Medicine, New Haven, CT, USA
| | - Yumei Wu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- HHMI, Yale University School of Medicine, New Haven, CT, USA
| | - Marianna Leonzino
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT, USA
- HHMI, Yale University School of Medicine, New Haven, CT, USA
| | - Maohan Su
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Anthony R. McAdow
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Catherine Wilson
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | | | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Physics, Yale University, New Haven, CT, USA
| | - Pietro De Camilli
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- HHMI, Yale University School of Medicine, New Haven, CT, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
23
|
Ditzel RM, Walker RH, Nirenberg MJ, Tetlow AM, Farrell K, Lind-Watson KJ, Thorn EL, Dangoor DK, Gordon R, De Sanctis C, Barton B, Karp BI, Kirby A, Lett DJ, Mente K, Simon DK, Velayos-Baeza A, Miltenberger-Miltenyi G, Humphrey J, Crary JF. An Autopsy Series of Seven Cases of VPS13A Disease (Chorea-Acanthocytosis). Mov Disord 2023; 38:2163-2172. [PMID: 37670483 PMCID: PMC10841393 DOI: 10.1002/mds.29589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/29/2023] [Accepted: 08/04/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Vacuolar protein sorting 13 homolog A (VPS13A) disease, historically known as chorea-acanthocytosis, is a rare neurodegenerative disorder caused by biallelic mutations in VPS13A, usually resulting in reduced or absent levels of its protein product, VPS13A. VPS13A localizes to contact sites between subcellular organelles, consistent with its recently identified role in lipid transfer between membranes. Mutations are associated with neuronal loss in the striatum, most prominently in the caudate nucleus, and associated marked astrogliosis. There are no other known disease-specific cellular changes (eg, protein aggregation), but autopsy reports to date have been limited, often lacking genetic or biochemical diagnostic confirmation. OBJECTIVE The goal of this study was to characterize neuropathological findings in the brains of seven patients with VPS13A disease (chorea-acanthocytosis). METHODS In this study, we collected brain tissues and clinical data from seven cases of VPS13A for neuropathological analysis. The clinical diagnosis was confirmed by the presence of VPS13A mutations and/or immunoblot showing the loss or reduction of VPS13A protein. Tissues underwent routine, special, and immunohistochemical staining focused on neurodegeneration. Electron microscopy was performed in one case. RESULTS Gross examination showed severe striatal atrophy. Microscopically, there was neuronal loss and astrogliosis in affected regions. Luxol fast blue staining showed variable lipid accumulation with diverse morphology, which was further characterized by electron microscopy. In some cases, rare degenerating p62- and ubiquitin-positive cells were present in affected regions. Calcifications were present in four cases, being extensive in one. CONCLUSIONS We present the largest autopsy series of biochemically and genetically confirmed VPS13A disease and identify novel histopathological findings implicating abnormal lipid accumulation. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ricky M. Ditzel
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ruth H. Walker
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Melissa J. Nirenberg
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Amber M. Tetlow
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kurt Farrell
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kourtni J. Lind-Watson
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emma L. Thorn
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Diana K. Dangoor
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ronald Gordon
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Claudia De Sanctis
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Brandon Barton
- Rush University Medical Center, Chicago, Illinois, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Barbara I. Karp
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Alana Kirby
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Debra J. Lett
- Newcastle Brain Tissue Resource, Newcastle University, Newcastle, UK
| | - Karin Mente
- Departments of Neurology and Pathology, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland VA Medical Center, Cleveland OH, USA
| | - David K. Simon
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Antonio Velayos-Baeza
- Department of Physiology, Anatomy, and Genetics, University of Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Gabriel Miltenberger-Miltenyi
- Laboratório de Genética, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
- Reference Center on Lysosomal Storage Diseases, Hospital Senhora da Oliveira, Guimarães, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Jack Humphrey
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John F. Crary
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
24
|
Peggion C, Barazzuol L, Poggio E, Calì T, Brini M. Ca 2+ signalling: A common language for organelles crosstalk in Parkinson's disease. Cell Calcium 2023; 115:102783. [PMID: 37597300 DOI: 10.1016/j.ceca.2023.102783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/21/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease caused by multifactorial pathogenic mechanisms. Familial PD is linked with genetic mutations in genes whose products are either associated with mitochondrial function or endo-lysosomal pathways. Of note, mitochondria are essential to sustain high energy demanding synaptic activity of neurons and alterations in mitochondrial Ca2+ signaling have been proposed as causal events for neurodegenerative process, although the mechanisms responsible for the selective loss of specific neuronal populations in the different neurodegenerative diseases is still not clear. Here, we specifically discuss the importance of a correct mitochondrial communication with the other organelles occurring at regions where their membranes become in close contact. We discuss the nature and the role of contact sites that mitochondria establish with ER, lysosomes, and peroxisomes, and how PD related proteins participate in the regulation/dysregulation of the tethering complexes. Unravelling molecular details of mitochondria tethering could contribute to identify specific therapeutic targets and develop new strategies to counteract the progression of the disease.
Collapse
Affiliation(s)
| | | | - Elena Poggio
- Department of Biology (DIBIO), University of Padova, Italy
| | - Tito Calì
- Department of Biomedical Sciences (DSB), University of Padova, Italy; Study Center for Neurodegeneration (CESNE), University of Padova, Italy; Padova Neuroscience Center (PNC), University of Padova, Padova, Italy.
| | - Marisa Brini
- Department of Biology (DIBIO), University of Padova, Italy; Study Center for Neurodegeneration (CESNE), University of Padova, Italy.
| |
Collapse
|
25
|
Hanna M, Guillén-Samander A, De Camilli P. RBG Motif Bridge-Like Lipid Transport Proteins: Structure, Functions, and Open Questions. Annu Rev Cell Dev Biol 2023; 39:409-434. [PMID: 37406299 DOI: 10.1146/annurev-cellbio-120420-014634] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The life of eukaryotic cells requires the transport of lipids between membranes, which are separated by the aqueous environment of the cytosol. Vesicle-mediated traffic along the secretory and endocytic pathways and lipid transfer proteins (LTPs) cooperate in this transport. Until recently, known LTPs were shown to carry one or a few lipids at a time and were thought to mediate transport by shuttle-like mechanisms. Over the last few years, a new family of LTPs has been discovered that is defined by a repeating β-groove (RBG) rod-like structure with a hydrophobic channel running along their entire length. This structure and the localization of these proteins at membrane contact sites suggest a bridge-like mechanism of lipid transport. Mutations in some of these proteins result in neurodegenerative and developmental disorders. Here we review the known properties and well-established or putative physiological roles of these proteins, and we highlight the many questions that remain open about their functions.
Collapse
Affiliation(s)
- Michael Hanna
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Andrés Guillén-Samander
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Pietro De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut, USA
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, Maryland, USA
| |
Collapse
|
26
|
Muñoz JP, Basei FL, Rojas ML, Galvis D, Zorzano A. Mechanisms of Modulation of Mitochondrial Architecture. Biomolecules 2023; 13:1225. [PMID: 37627290 PMCID: PMC10452872 DOI: 10.3390/biom13081225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial network architecture plays a critical role in cellular physiology. Indeed, alterations in the shape of mitochondria upon exposure to cellular stress can cause the dysfunction of these organelles. In this scenario, mitochondrial dynamics proteins and the phospholipid composition of the mitochondrial membrane are key for fine-tuning the modulation of mitochondrial architecture. In addition, several factors including post-translational modifications such as the phosphorylation, acetylation, SUMOylation, and o-GlcNAcylation of mitochondrial dynamics proteins contribute to shaping the plasticity of this architecture. In this regard, several studies have evidenced that, upon metabolic stress, mitochondrial dynamics proteins are post-translationally modified, leading to the alteration of mitochondrial architecture. Interestingly, several proteins that sustain the mitochondrial lipid composition also modulate mitochondrial morphology and organelle communication. In this context, pharmacological studies have revealed that the modulation of mitochondrial shape and function emerges as a potential therapeutic strategy for metabolic diseases. Here, we review the factors that modulate mitochondrial architecture.
Collapse
Affiliation(s)
- Juan Pablo Muñoz
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
| | - Fernanda Luisa Basei
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, 13083-871 Campinas, SP, Brazil
| | - María Laura Rojas
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - David Galvis
- Programa de Química Farmacéutica, Universidad CES, Medellín 050031, Colombia
| | - Antonio Zorzano
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
27
|
Miltenberger-Miltenyi G, Jones A, Tetlow AM, Conceição VA, Crary JF, Ditzel RM, Farrell K, Nandakumar R, Barton B, Karp BI, Kirby A, Lett DJ, Mente K, Morgello S, Simon DK, Walker RH. Sphingolipid and Phospholipid Levels Are Altered in Human Brain in Chorea-Acanthocytosis. Mov Disord 2023; 38:1535-1541. [PMID: 37307400 DOI: 10.1002/mds.29445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Chorea-acanthocytosis (ChAc) is associated with mutations of VPS13A, which encodes for chorein, a protein implicated in lipid transport at intracellular membrane contact sites. OBJECTIVES The goal of this study was to establish the lipidomic profile of patients with ChAc. METHODS We analyzed 593 lipid species in the caudate nucleus (CN), putamen, and dorsolateral prefrontal cortex (DLPFC) from postmortem tissues of four patients with ChAc and six patients without ChAc. RESULTS We found increased levels of bis(monoacylglycerol)phosphate, sulfatide, lysophosphatidylserine, and phosphatidylcholine ether in the CN and putamen, but not in the DLPFC, of patients with ChAc. Phosphatidylserine and monoacylglycerol were increased in the CN and N-acyl phosphatidylserine in the putamen. N-acyl serine was decreased in the CN and DLPFC, whereas lysophosphatidylinositol was decreased in the DLPFC. CONCLUSIONS We present the first evidence of altered sphingolipid and phospholipid levels in the brains of patients with ChAc. Our observations are congruent with recent findings in cellular and animal models, and implicate defects of lipid processing in VPS13A disease pathophysiology. © 2023 International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Gabriel Miltenberger-Miltenyi
- Laboratório de Genética, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
- Reference Center on Lysosomal Storage Diseases, Hospital Senhora da Oliveira, Guimarães, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Attila Jones
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Amber M Tetlow
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Neuroscience and Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Vasco A Conceição
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - John F Crary
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Neuroscience and Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Ricky Michael Ditzel
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Neuroscience and Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Kurt Farrell
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Neuroscience and Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Renu Nandakumar
- Biomarkers Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York City, New York, USA
| | - Brandon Barton
- Rush University Medical Center, Chicago, Illinois, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Barbara I Karp
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Alana Kirby
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Debra J Lett
- Newcastle Brain Tissue Resource, Newcastle University, Newcastle, United Kingdom
| | - Karin Mente
- Departments of Neurology and Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
| | - Susan Morgello
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - David K Simon
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Ruth H Walker
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA
| |
Collapse
|
28
|
Dabrowski R, Tulli S, Graef M. Parallel phospholipid transfer by Vps13 and Atg2 determines autophagosome biogenesis dynamics. J Cell Biol 2023; 222:e202211039. [PMID: 37115156 PMCID: PMC10148235 DOI: 10.1083/jcb.202211039] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/30/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
During autophagy, rapid membrane assembly expands small phagophores into large double-membrane autophagosomes. Theoretical modeling predicts that the majority of autophagosomal phospholipids are derived from highly efficient non-vesicular phospholipid transfer (PLT) across phagophore-ER contacts (PERCS). Currently, the phagophore-ER tether Atg2 is the only PLT protein known to drive phagophore expansion in vivo. Here, our quantitative live-cell imaging analysis reveals a poor correlation between the duration and size of forming autophagosomes and the number of Atg2 molecules at PERCS of starving yeast cells. Strikingly, we find that Atg2-mediated PLT is non-rate limiting for autophagosome biogenesis because membrane tether and the PLT protein Vps13 localizes to the rim and promotes the expansion of phagophores in parallel with Atg2. In the absence of Vps13, the number of Atg2 molecules at PERCS determines the duration and size of forming autophagosomes with an apparent in vivo transfer rate of ∼200 phospholipids per Atg2 molecule and second. We propose that conserved PLT proteins cooperate in channeling phospholipids across organelle contact sites for non-rate-limiting membrane assembly during autophagosome biogenesis.
Collapse
Affiliation(s)
- Rahel Dabrowski
- Max Planck Research Group of Autophagy and Cellular Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Susanna Tulli
- Max Planck Research Group of Autophagy and Cellular Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Martin Graef
- Max Planck Research Group of Autophagy and Cellular Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
29
|
Tornero-Écija A, Zapata-Del-Baño A, Antón-Esteban L, Vincent O, Escalante R. The association of lipid transfer protein VPS13A with endosomes is mediated by sorting nexin SNX5. Life Sci Alliance 2023; 6:e202201852. [PMID: 36977596 PMCID: PMC10053439 DOI: 10.26508/lsa.202201852] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Human VPS13 proteins are implicated in severe neurological diseases. These proteins play an important role in lipid transport at membrane contact sites between different organelles. Identification of adaptors that regulate the subcellular localization of these proteins at specific membrane contact sites is essential to understand their function and role in disease. We have identified the sorting nexin SNX5 as an interactor of VPS13A that mediates its association with endosomal subdomains. As for the yeast sorting nexin and Vps13 endosomal adaptor Ypt35, this association involves the VPS13 adaptor-binding (VAB) domain in VPS13A and a PxP motif in SNX5. Notably, this interaction is impaired by mutation of a conserved asparagine residue in the VAB domain, which is also required for Vps13-adaptor binding in yeast and is pathogenic in VPS13D. VPS13A fragments containing the VAB domain co-localize with SNX5, whereas the more C-terminal part of VPS13A directs its localization to the mitochondria. Overall, our results suggest that a fraction of VPS13A localizes to junctions between the endoplasmic reticulum, mitochondria, and SNX5-containing endosomes.
Collapse
Affiliation(s)
- Alba Tornero-Écija
- Instituto de Investigaciones Biomédicas Alberto Sols, C.S.I.C./U.A.M., Madrid, Spain
| | | | - Laura Antón-Esteban
- Instituto de Investigaciones Biomédicas Alberto Sols, C.S.I.C./U.A.M., Madrid, Spain
| | - Olivier Vincent
- Instituto de Investigaciones Biomédicas Alberto Sols, C.S.I.C./U.A.M., Madrid, Spain
| | - Ricardo Escalante
- Instituto de Investigaciones Biomédicas Alberto Sols, C.S.I.C./U.A.M., Madrid, Spain
| |
Collapse
|
30
|
Chaudhari S, Ware AP, Jasti DB, Gorthi SP, Acharya LP, Bhat M, Mallya S, Satyamoorthy K. Exome sequencing of choreoacanthocytosis reveals novel mutations in VPS13A and co-mutation in modifier gene(s). Mol Genet Genomics 2023; 298:965-976. [PMID: 37209156 DOI: 10.1007/s00438-023-02032-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/04/2023] [Indexed: 05/22/2023]
Abstract
Choreoacanthocytosis, one of the forms of neuroacanthocytosis, is caused by mutations in vacuolar protein sorting-associated protein A (VPS13A), and is often misdiagnosed with other form of neuroacanthocytosis with discrete genetic defects. The phenotypic variations among the patients with VPS13A mutations significantly obfuscates the understanding of the disease and treatment strategies. In this study, two unrelated cases were identified, exhibiting the core phenotype of neuroacanthocytosis but with considerable clinical heterogeneity. Case 1 presented with an additional Parkinsonism phenotype, whereas seizures were evident in case 2. To decipher the genetic basis, whole exome sequencing followed by validation with Sanger sequencing was performed. A known homozygous pathogenic nonsense mutation (c.799C > T; p.R267X) in exon 11 of the VPS13A gene was identified in case 1 that resulted in a truncated protein. A novel missense mutation (c.9263T > G; p.M3088R) in exon 69 of VPS13A identified in case 2 was predicted as pathogenic. In silico analysis of the p.M3088R mutation at the C-terminus of VPS13A suggests a loss of interaction with TOMM40 and may disrupt mitochondrial localization. We also observed an increase in mitochondrial DNA copy numbers in case 2. Mutation analysis revealed benign heterozygous variants in interacting partners of VPS13A such as VAPA in case 1. Our study confirmed the cases as ChAc and identified the novel homozygous variant of VPS13A (c.9263T > G; p.M3088R) within the mutation spectrum of VPS13A-associated ChAc. Furthermore, mutations in VPS13A and co-mutations in its potential interacting partner(s) might contribute to the diverse clinical manifestations of ChAc, which requires further study.
Collapse
Affiliation(s)
- Sima Chaudhari
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Akshay Pramod Ware
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Dushyanth Babu Jasti
- Department of Neurology, Kasturba Medical College, Manipal, Karnataka, 576104, India
| | - Sankar Prasad Gorthi
- Department of Neurology, Kasturba Medical College, Manipal, Karnataka, 576104, India
- Department of Neurology, Bharati Hospital and Research Center, Bharati Vidyapeeth (Deemed to be University) Medical College and Hospital, Dhankawadi, Pune, Maharashtra, 411043, India
| | - Lavanya Prakash Acharya
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Manoj Bhat
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sandeep Mallya
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
31
|
Guillén-Samander A, De Camilli P. Endoplasmic Reticulum Membrane Contact Sites, Lipid Transport, and Neurodegeneration. Cold Spring Harb Perspect Biol 2023; 15:a041257. [PMID: 36123033 PMCID: PMC10071438 DOI: 10.1101/cshperspect.a041257] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Endoplasmic Reticulum (ER) is an endomembrane system that plays a multiplicity of roles in cell physiology and populates even the most distal cell compartments, including dendritic tips and axon terminals of neurons. Some of its functions are achieved by a cross talk with other intracellular membranous organelles and with the plasma membrane at membrane contacts sites (MCSs). As the ER synthesizes most membrane lipids, lipid exchanges mediated by lipid transfer proteins at MCSs are a particularly important aspect of this cross talk, which synergizes with the cross talk mediated by vesicular transport. Several mutations of genes that encode proteins localized at ER MCSs result in familial neurodegenerative diseases, emphasizing the importance of the normal lipid traffic within cells for a healthy brain. Here, we provide an overview of such diseases, with a specific focus on proteins that directly or indirectly impact lipid transport.
Collapse
Affiliation(s)
- Andrés Guillén-Samander
- Departments of Neuroscience and of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06520, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland 20815, USA
| | - Pietro De Camilli
- Departments of Neuroscience and of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06520, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
32
|
Dall'Armellina F, Stagi M, Swan LE. In silico modeling human VPS13 proteins associated with donor and target membranes suggests lipid transfer mechanisms. Proteins 2023; 91:439-455. [PMID: 36404287 PMCID: PMC10953354 DOI: 10.1002/prot.26446] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/14/2022] [Accepted: 11/03/2022] [Indexed: 11/22/2022]
Abstract
The VPS13 protein family constitutes a novel class of bridge-like lipid transferases. Autosomal recessive inheritance of mutations in VPS13 genes is associated with the development of neurodegenerative diseases in humans. Bioinformatic approaches previously recognized the domain architecture of these proteins. In this study, we model the first ever full-length structures of the four human homologs VPS13A, VPS13B, VPS13C, and VPS13D in association with model membranes, to investigate their lipid transfer ability and potential structural association with membrane leaflets. We analyze the evolutionary conservation and physicochemical properties of these proteins, focusing on conserved C-terminal amphipathic helices that disturb organelle surfaces and that, adjoined, resemble a traditional Venetian gondola. The gondola domains share significant structural homology with lipid droplet surface-binding proteins. We introduce in silico protein-membrane models displaying the mode of association of VPS13A, VPS13B, VPS13C, and VPS13D to donor and target membranes, and present potential models of action for protein-mediated lipid transfer.
Collapse
Affiliation(s)
- Filippo Dall'Armellina
- Department of Biochemistry and Systems BiologyInstitute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUK
| | - Massimiliano Stagi
- Department of Biochemistry and Systems BiologyInstitute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUK
| | - Laura E. Swan
- Department of Biochemistry and Systems BiologyInstitute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUK
| |
Collapse
|
33
|
Walker RH, Peikert K, Jung HH, Hermann A, Danek A. Neuroacanthocytosis Syndromes: The Clinical Perspective. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231210339. [PMID: 38090146 PMCID: PMC10714877 DOI: 10.1177/25152564231210339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/01/2023] [Accepted: 10/11/2023] [Indexed: 09/05/2024]
Abstract
The two very rare neurodegenerative diseases historically known as the "neuroacanthocytosis syndromes" are due to mutations of either VPS13A or XK. These are phenotypically similar disorders that affect primarily the basal ganglia and hence result in involuntary abnormal movements as well as neuropsychiatric and cognitive alterations. There are other shared features such as abnormalities of red cell membranes which result in acanthocytes, whose relationship to neurodegeneration is not yet known. Recent insights into the functions of these two proteins suggest dysfunction of lipid processing and trafficking at the subcellular level and may provide a mechanism for neuronal dysfunction and death, and potentially a target for therapeutic interventions.
Collapse
Affiliation(s)
- Ruth H. Walker
- Department of Neurology, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
- Department of Neurology, Mount Sinai School of Medicine, New York City, NY, USA
| | - Kevin Peikert
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, Rostock, Germany
- United Neuroscience Campus Lund-Rostock (UNC), Rostock, Germany
| | - Hans H. Jung
- Department of Neurology, University and University Hospital Zürich, Zürich, Switzerland
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, Rostock, Germany
| | - Adrian Danek
- Neurologische Klinik, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
34
|
Peikert K, Danek A. VPS13 Forum Proceedings: XK, XK-Related and VPS13 Proteins in Membrane Lipid Dynamics. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231156994. [PMID: 37366410 PMCID: PMC10243564 DOI: 10.1177/25152564231156994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/23/2023] [Indexed: 06/28/2023]
Abstract
In 2020, the pandemic interrupted the series of biannual International Neuroacanthocytosis Meetings that brought together clinicians, scientists, and patient groups to share research into a small group of devastating genetic diseases that combine both acanthocytosis (deformed red blood cells) and neurodegeneration with movement disorders. This Meeting Report describes talks at the 5th VPS13 Forum in January 2022, one of a series of online meetings held to fill the gap. The meeting addressed the basic biology of two key proteins implicated in chorea-acanthocytosis (mutations in VPS13A) and McLeod syndrome (mutations in XK). In a remarkable confluence of ideas, the speakers described different aspects of a single functional unit that comprises of VPS13A and XK proteins working together. Conditions caused by VPS13 (A-D) gene family mutations and related genes, such as XK, previously footnote knowledge, seem to turn central for a novel disease paradigm: bulk lipid transfer disorders.
Collapse
Affiliation(s)
- Kevin Peikert
- Translational Neurodegeneration Section
“Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, University of
Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences
Rostock (CTNR), University Medical Center Rostock, Rostock, Germany
- United Neuroscience Campus Lund-Rostock
(UNC), Rostock site, Rostock, Germany
| | - Adrian Danek
- Department of Neurology, University Hospital,
LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases
(Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Research Site Munich, Munich,
Germany
| |
Collapse
|
35
|
Castro IG, Shortill SP, Dziurdzik SK, Cadou A, Ganesan S, Valenti R, David Y, Davey M, Mattes C, Thomas FB, Avraham RE, Meyer H, Fadel A, Fenech EJ, Ernst R, Zaremberg V, Levine TP, Stefan C, Conibear E, Schuldiner M. Systematic analysis of membrane contact sites in Saccharomyces cerevisiae uncovers modulators of cellular lipid distribution. eLife 2022; 11:74602. [DOI: 10.7554/elife.74602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Actively maintained close appositions between organelle membranes, also known as contact sites, enable the efficient transfer of biomolecules between cellular compartments. Several such sites have been described as well as their tethering machineries. Despite these advances we are still far from a comprehensive understanding of the function and regulation of most contact sites. To systematically characterize contact site proteomes, we established a high-throughput screening approach in Saccharomyces cerevisiae based on co-localization imaging. We imaged split fluorescence reporters for six different contact sites, several of which are poorly characterized, on the background of 1165 strains expressing a mCherry-tagged yeast protein that has a cellular punctate distribution (a hallmark of contact sites), under regulation of the strong TEF2 promoter. By scoring both co-localization events and effects on reporter size and abundance, we discovered over 100 new potential contact site residents and effectors in yeast. Focusing on several of the newly identified residents, we identified three homologs of Vps13 and Atg2 that are residents of multiple contact sites. These proteins share their lipid transport domain, thus expanding this family of lipid transporters. Analysis of another candidate, Ypr097w, which we now call Lec1 (Lipid-droplet Ergosterol Cortex 1), revealed that this previously uncharacterized protein dynamically shifts between lipid droplets and the cell cortex, and plays a role in regulation of ergosterol distribution in the cell. Overall, our analysis expands the universe of contact site residents and effectors and creates a rich database to mine for new functions, tethers, and regulators.
Collapse
Affiliation(s)
| | - Shawn P Shortill
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia
- Department of Medical Genetics, University of British Columbia
| | - Samantha Katarzyna Dziurdzik
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia
- Department of Medical Genetics, University of British Columbia
| | - Angela Cadou
- Laboratory for Molecular Cell Biology, University College London
| | | | - Rosario Valenti
- Department of Molecular Genetics, Weizmann Institute of Science
| | - Yotam David
- Department of Molecular Genetics, Weizmann Institute of Science
| | - Michael Davey
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia
| | - Carsten Mattes
- Medical Biochemistry and Molecular Biology, PZMS, Medical Faculty, Saarland University
| | - Ffion B Thomas
- Laboratory for Molecular Cell Biology, University College London
| | | | - Hadar Meyer
- Department of Molecular Genetics, Weizmann Institute of Science
| | - Amir Fadel
- Department of Molecular Genetics, Weizmann Institute of Science
| | - Emma J Fenech
- Department of Molecular Genetics, Weizmann Institute of Science
| | - Robert Ernst
- Medical Biochemistry and Molecular Biology, PZMS, Medical Faculty, Saarland University
| | | | - Tim P Levine
- UCL Institute of Ophthalmology, University College London
| | | | - Elizabeth Conibear
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia
- Department of Medical Genetics, University of British Columbia
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science
| |
Collapse
|
36
|
McEwan DG, Ryan KM. ATG2 and VPS13 proteins: molecular highways transporting lipids to drive membrane expansion and organelle communication. FEBS J 2022; 289:7113-7127. [PMID: 34783437 DOI: 10.1111/febs.16280] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/03/2021] [Accepted: 11/15/2021] [Indexed: 01/13/2023]
Abstract
Communication between organelles is an essential process that helps maintain cellular homeostasis and organelle contact sites have recently emerged as crucial mediators of this communication. The emergence of a class of molecular bridges that span the inter-organelle gaps has now been shown to direct the flow of lipid traffic from one lipid bilayer to another. One of the key components of these molecular bridges is the presence of an N-terminal Chorein/VPS13 domain. This is an evolutionarily conserved domain present in multiple proteins within the endocytic and autophagy trafficking pathways. Herein, we discuss the current state-of-the-art of this class of proteins, focusing on the role of these lipid transporters in the autophagy and endocytic pathways. We discuss the recent biochemical and structural advances that have highlighted the essential role Chorein-N domain containing ATG2 proteins play in driving the formation of the autophagosome and how lipids are transported from the endoplasmic reticulum to the growing phagophore. We also consider the VPS13 proteins, their role in organelle contacts and the endocytic pathway and highlight how disease-causing mutations disrupt these contact sites. Finally, we open the door to discuss other Chorein_N domain containing proteins, for instance, UHRF1BP1/1L, their role in disease and look towards prokaryote examples of Chorein_N-like domains. Taken together, recent advances have highlighted an exciting opportunity to delve deeper into inter-organelle communication and understand how lipids are transported between membrane bilayers and how this process is disrupted in multiple diseases.
Collapse
Affiliation(s)
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
37
|
Neuman SD, Levine TP, Bashirullah A. A novel superfamily of bridge-like lipid transfer proteins. Trends Cell Biol 2022; 32:962-974. [PMID: 35491307 PMCID: PMC9588498 DOI: 10.1016/j.tcb.2022.03.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 01/21/2023]
Abstract
Lipid transfer proteins mediate nonvesicular transport of lipids at membrane contact sites to regulate the lipid composition of organelle membranes. Recently, a new type of bridge-like lipid transfer protein has emerged; these proteins contain a long hydrophobic groove and can mediate bulk transport of lipids between organelles. Here, we review recent insights into the structure of these proteins and identify a repeating modular unit that we propose to name the repeating β-groove (RBG) domain. This new structural understanding conceptually unifies all the RBG domain-containing lipid transfer proteins as members of an RBG protein superfamily. We also examine the biological functions of these lipid transporters in normal physiology and disease and speculate on the evolutionary origins of RBG proteins in bacteria.
Collapse
Affiliation(s)
- Sarah D Neuman
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
| | - Tim P Levine
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | - Arash Bashirullah
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA.
| |
Collapse
|
38
|
Chhetri G, Ke Y, Wang P, Usman M, Li Y, Sapp E, Wang J, Ghosh A, Islam MA, Wang X, Boudi A, DiFiglia M, Li X. Impaired XK recycling for importing manganese underlies striatal vulnerability in Huntington's disease. J Cell Biol 2022; 221:213461. [PMID: 36099524 PMCID: PMC9475296 DOI: 10.1083/jcb.202112073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/15/2022] [Accepted: 07/29/2022] [Indexed: 02/08/2023] Open
Abstract
Mutant huntingtin, which causes Huntington's disease (HD), is ubiquitously expressed but induces preferential loss of striatal neurons by unclear mechanisms. Rab11 dysfunction mediates homeostatic disturbance of HD neurons. Here, we report that Rab11 dysfunction also underscores the striatal vulnerability in HD. We profiled the proteome of Rab11-positive endosomes of HD-vulnerable striatal cells to look for protein(s) linking Rab11 dysfunction to striatal vulnerability in HD and found XK, which triggers the selective death of striatal neurons in McLeod syndrome. XK was trafficked together with Rab11 and was diminished on the surface of immortalized HD striatal cells and striatal neurons in HD mouse brains. We found that XK participated in transporting manganese, an essential trace metal depleted in HD brains. Introducing dominantly active Rab11 into HD striatal cells improved XK dynamics and increased manganese accumulation in an XK-dependent manner. Our study suggests that impaired Rab11-based recycling of XK onto cell surfaces for importing manganese is a driver of striatal dysfunction in Huntington's disease.
Collapse
Affiliation(s)
- Gaurav Chhetri
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yuting Ke
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Ping Wang
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA.,Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, China
| | - Muhammad Usman
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ellen Sapp
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Jing Wang
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Arabinda Ghosh
- Department of Botany, Microbiology Division, Gauhati University, Guwahati, Assam, India
| | - Md Ariful Islam
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaolong Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Adel Boudi
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Marian DiFiglia
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Xueyi Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| |
Collapse
|
39
|
Park JS, Hu Y, Hollingsworth NM, Miltenberger-Miltenyi G, Neiman AM. Interaction between VPS13A and the XK scramblase is important for VPS13A function in humans. J Cell Sci 2022; 135:jcs260227. [PMID: 35950506 PMCID: PMC9482346 DOI: 10.1242/jcs.260227] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022] Open
Abstract
VPS13 family proteins form conduits between the membranes of different organelles through which lipids are transferred. In humans, there are four VPS13 paralogs, and mutations in the genes encoding each of them are associated with different inherited disorders. VPS13 proteins contain multiple conserved domains. The Vps13 adaptor-binding (VAB) domain binds to adaptor proteins that recruit VPS13 to specific membrane contact sites. This work demonstrates the importance of a different domain in VPS13A function. The pleckstrin homology (PH) domain at the C-terminal region of VPS13A is required to form a complex with the XK scramblase and for the co-localization of VPS13A with XK within the cell. Alphafold modeling was used to predict an interaction surface between VPS13A and XK. Mutations in this region disrupt both complex formation and co-localization of the two proteins. Mutant VPS13A alleles found in patients with VPS13A disease truncate the PH domain. The phenotypic similarities between VPS13A disease and McLeod syndrome caused by mutations in VPS13A and XK, respectively, argue that loss of the VPS13A-XK complex is the basis of both diseases.
Collapse
Affiliation(s)
- Jae-Sook Park
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Yiying Hu
- Fish Core Unit, German Center for Neurodegenerative Diseases München (DZNE), 81377 Munich, Germany
- Munich Medical Research School (MMRS), 80336 Munich, Germany
| | - Nancy M. Hollingsworth
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | | - Aaron M. Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| |
Collapse
|
40
|
A partnership between the lipid scramblase XK and the lipid transfer protein VPS13A at the plasma membrane. Proc Natl Acad Sci U S A 2022; 119:e2205425119. [PMID: 35994651 PMCID: PMC9436381 DOI: 10.1073/pnas.2205425119] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chorea-acanthocytosis (ChAc) and McLeod syndrome are diseases with shared clinical manifestations caused by mutations in VPS13A and XK, respectively. Key features of these conditions are the degeneration of caudate neurons and the presence of abnormally shaped erythrocytes. XK belongs to a family of plasma membrane (PM) lipid scramblases whose action results in exposure of PtdSer at the cell surface. VPS13A is an endoplasmic reticulum (ER)-anchored lipid transfer protein with a putative role in the transport of lipids at contacts of the ER with other membranes. Recently VPS13A and XK were reported to interact by still unknown mechanisms. So far, however, there is no evidence for a colocalization of the two proteins at contacts of the ER with the PM, where XK resides, as VPS13A was shown to be localized at contacts between the ER and either mitochondria or lipid droplets. Here we show that VPS13A can also localize at ER-PM contacts via the binding of its PH domain to a cytosolic loop of XK, that such interaction is regulated by an intramolecular interaction within XK, and that both VPS13A and XK are highly expressed in the caudate neurons. Binding of the PH domain of VPS13A to XK is competitive with its binding to intracellular membranes that mediate other tethering functions of VPS13A. Our findings support a model according to which VPS13A-dependent lipid transfer between the ER and the PM is coupled to lipid scrambling within the PM. They raise the possibility that defective cell surface exposure of PtdSer may be responsible for neurodegeneration.
Collapse
|
41
|
Hancock-Cerutti W, Wu Z, Xu P, Yadavalli N, Leonzino M, Tharkeshwar AK, Ferguson SM, Shadel GS, De Camilli P. ER-lysosome lipid transfer protein VPS13C/PARK23 prevents aberrant mtDNA-dependent STING signaling. J Cell Biol 2022; 221:e202106046. [PMID: 35657605 PMCID: PMC9170524 DOI: 10.1083/jcb.202106046] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 05/03/2022] [Indexed: 02/03/2023] Open
Abstract
Mutations in VPS13C cause early-onset, autosomal recessive Parkinson's disease (PD). We have established that VPS13C encodes a lipid transfer protein localized to contact sites between the ER and late endosomes/lysosomes. In the current study, we demonstrate that depleting VPS13C in HeLa cells causes an accumulation of lysosomes with an altered lipid profile, including an accumulation of di-22:6-BMP, a biomarker of the PD-associated leucine-rich repeat kinase 2 (LRRK2) G2019S mutation. In addition, the DNA-sensing cGAS-STING pathway, which was recently implicated in PD pathogenesis, is activated in these cells. This activation results from a combination of elevated mitochondrial DNA in the cytosol and a defect in the degradation of activated STING, a lysosome-dependent process. These results suggest a link between ER-lysosome lipid transfer and innate immune activation in a model human cell line and place VPS13C in pathways relevant to PD pathogenesis.
Collapse
Affiliation(s)
- William Hancock-Cerutti
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT
- MD/PhD Program, Yale School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Chevy Chase, MD
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Zheng Wu
- Department of Genetics, Yale School of Medicine, New Haven, CT
- Salk Institute for Biological Studies, La Jolla, CA
| | - Peng Xu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Chevy Chase, MD
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Narayana Yadavalli
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Marianna Leonzino
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Chevy Chase, MD
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | | | - Shawn M. Ferguson
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | | | - Pietro De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Chevy Chase, MD
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| |
Collapse
|
42
|
Zouiouich M, Di Mattia T, Martinet A, Eichler J, Wendling C, Tomishige N, Grandgirard E, Fuggetta N, Fromental-Ramain C, Mizzon G, Dumesnil C, Carpentier M, Reina-San-Martin B, Mathelin C, Schwab Y, Thiam AR, Kobayashi T, Drin G, Tomasetto C, Alpy F. MOSPD2 is an endoplasmic reticulum-lipid droplet tether functioning in LD homeostasis. J Cell Biol 2022; 221:e202110044. [PMID: 35389430 PMCID: PMC8996327 DOI: 10.1083/jcb.202110044] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/11/2022] [Accepted: 03/16/2022] [Indexed: 12/28/2022] Open
Abstract
Membrane contact sites between organelles are organized by protein bridges. Among the components of these contacts, the VAP family comprises ER-anchored proteins, such as MOSPD2, that function as major ER-organelle tethers. MOSPD2 distinguishes itself from the other members of the VAP family by the presence of a CRAL-TRIO domain. In this study, we show that MOSPD2 forms ER-lipid droplet (LD) contacts, thanks to its CRAL-TRIO domain. MOSPD2 ensures the attachment of the ER to LDs through a direct protein-membrane interaction. The attachment mechanism involves an amphipathic helix that has an affinity for lipid packing defects present at the surface of LDs. Remarkably, the absence of MOSPD2 markedly disturbs the assembly of lipid droplets. These data show that MOSPD2, in addition to being a general ER receptor for inter-organelle contacts, possesses an additional tethering activity and is specifically implicated in the biology of LDs via its CRAL-TRIO domain.
Collapse
Affiliation(s)
- Mehdi Zouiouich
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
| | - Thomas Di Mattia
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
| | - Arthur Martinet
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
| | - Julie Eichler
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
| | - Corinne Wendling
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
| | - Nario Tomishige
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Erwan Grandgirard
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
| | - Nicolas Fuggetta
- Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Catherine Fromental-Ramain
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
| | - Giulia Mizzon
- European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg, Germany
| | - Calvin Dumesnil
- Laboratoire de Physique de l’École Normale Supérieure, Université Paris Sciences and Lettres, Centre National de la Recherche Scientifique, Sorbonne Université, Université de Paris, Paris, France
| | - Maxime Carpentier
- Laboratoire de Physique de l’École Normale Supérieure, Université Paris Sciences and Lettres, Centre National de la Recherche Scientifique, Sorbonne Université, Université de Paris, Paris, France
| | - Bernardo Reina-San-Martin
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
| | - Carole Mathelin
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
- Institut de Cancérologie Strasbourg Europe, Strasbourg, France
| | - Yannick Schwab
- European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg, Germany
| | - Abdou Rachid Thiam
- Laboratoire de Physique de l’École Normale Supérieure, Université Paris Sciences and Lettres, Centre National de la Recherche Scientifique, Sorbonne Université, Université de Paris, Paris, France
| | - Toshihide Kobayashi
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Guillaume Drin
- Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Catherine Tomasetto
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
| | - Fabien Alpy
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
| |
Collapse
|
43
|
Giamogante F, Barazzuol L, Poggio E, Tromboni M, Brini M, Calì T. Stable Integration of Inducible SPLICS Reporters Enables Spatio-Temporal Analysis of Multiple Organelle Contact Sites upon Modulation of Cholesterol Traffic. Cells 2022; 11:cells11101643. [PMID: 35626680 PMCID: PMC9139547 DOI: 10.3390/cells11101643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022] Open
Abstract
The study of organelle contact sites has received a great impulse due to increased interest in the understanding of their involvement in many disease conditions. Split-GFP-based contact sites (SPLICS) reporters emerged as essential tools to easily detect changes in a wide range of organelle contact sites in cultured cells and in vivo, e.g., in zebrafish larvae. We report here on the generation of a new vector library of SPLICS cloned into a piggyBac system for stable and inducible expression of the reporters in a cell line of interest to overcome any potential weakness due to variable protein expression in transient transfection studies. Stable HeLa cell lines expressing SPLICS between the endoplasmic reticulum (ER) and mitochondria (MT), the ER and plasma membrane (PM), peroxisomes (PO) and ER, and PO and MT, were generated and tested for their ability to express the reporters upon treatment with doxycycline. Moreover, to take advantage of these cellular models, we decided to follow the behavior of different membrane contact sites upon modulating cholesterol traffic. Interestingly, we found that the acute pharmacological inhibition of the intracellular cholesterol transporter 1 (NPC1) differently affects membrane contact sites, highlighting the importance of different interfaces for cholesterol sensing and distribution within the cell.
Collapse
Affiliation(s)
- Flavia Giamogante
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (F.G.); (L.B.); (M.T.)
| | - Lucia Barazzuol
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (F.G.); (L.B.); (M.T.)
| | - Elena Poggio
- Department of Biology, University of Padova, 35131 Padova, Italy;
| | - Marta Tromboni
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (F.G.); (L.B.); (M.T.)
| | - Marisa Brini
- Department of Biology, University of Padova, 35131 Padova, Italy;
- Correspondence: (M.B.); (T.C.)
| | - Tito Calì
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (F.G.); (L.B.); (M.T.)
- Padova Neuroscience Center (PNC), University of Padova, 35131 Padova, Italy
- Correspondence: (M.B.); (T.C.)
| |
Collapse
|
44
|
Kaminska J, Soczewka P, Rzepnikowska W, Zoladek T. Yeast as a Model to Find New Drugs and Drug Targets for VPS13-Dependent Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23095106. [PMID: 35563497 PMCID: PMC9104724 DOI: 10.3390/ijms23095106] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/10/2022] Open
Abstract
Mutations in human VPS13A-D genes result in rare neurological diseases, including chorea-acanthocytosis. The pathogenesis of these diseases is poorly understood, and no effective treatment is available. As VPS13 genes are evolutionarily conserved, the effects of the pathogenic mutations could be studied in model organisms, including yeast, where one VPS13 gene is present. In this review, we summarize advancements obtained using yeast. In recent studies, vps13Δ and vps13-I2749 yeast mutants, which are models of chorea-acanthocytosis, were used to screen for multicopy and chemical suppressors. Two of the suppressors, a fragment of the MYO3 and RCN2 genes, act by downregulating calcineurin activity. In addition, vps13Δ suppression was achieved by using calcineurin inhibitors. The other group of multicopy suppressors were genes: FET4, encoding iron transporter, and CTR1, CTR3 and CCC2, encoding copper transporters. Mechanisms of their suppression rely on causing an increase in the intracellular iron content. Moreover, among the identified chemical suppressors were copper ionophores, which require a functional iron uptake system for activity, and flavonoids, which bind iron. These findings point at areas for further investigation in a higher eukaryotic model of VPS13-related diseases and to new therapeutic targets: calcium signalling and copper and iron homeostasis. Furthermore, the identified drugs are interesting candidates for drug repurposing for these diseases.
Collapse
Affiliation(s)
- Joanna Kaminska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland; (J.K.); (P.S.)
| | - Piotr Soczewka
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland; (J.K.); (P.S.)
| | - Weronika Rzepnikowska
- Neuromuscular Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Teresa Zoladek
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland; (J.K.); (P.S.)
- Correspondence:
| |
Collapse
|
45
|
Raeisossadati R, Ferrari MFR. Mitochondria-ER Tethering in Neurodegenerative Diseases. Cell Mol Neurobiol 2022; 42:917-930. [PMID: 33196974 PMCID: PMC11441217 DOI: 10.1007/s10571-020-01008-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Organelles juxtaposition has been detected for decades, although only recently gained importance due to a pivotal role in the regulation of cellular processes dependent on membrane contact sites. Endoplasmic reticulum (ER) and mitochondria interaction is a prime example of organelles contact sites. Mitochondria-associated membranes (MAM) are proposed to harbor ER-mitochondria tether complexes, mainly when these organelles are less than 30 nm apart. Dysfunctions of proteins located at the MAM are associated with neurodegenerative diseases such as Parkinson's, Alzheimer's and amyotrophic lateral sclerosis, as well as neurodevelopmental disorders; hence any malfunction in MAM can potentially trigger cell death. This review will focus on the role of ER-mitochondria contact sites, regarding calcium homeostasis, lipid metabolism, autophagy, morphology and dynamics of mitochondria, mainly in the context of neurodegenerative diseases. Approaches that have been employed so far to study organelles contact sites, as well as methods that were not used in neurosciences yet, but are promising and accurate ways to unveil the functions of MAM during neurodegeneration, is also discussed in the present review.
Collapse
Affiliation(s)
- Reza Raeisossadati
- Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - Merari F R Ferrari
- Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
46
|
Islimye E, Girard V, Gould AP. Functions of Stress-Induced Lipid Droplets in the Nervous System. Front Cell Dev Biol 2022; 10:863907. [PMID: 35493070 PMCID: PMC9047859 DOI: 10.3389/fcell.2022.863907] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Lipid droplets are highly dynamic intracellular organelles that store neutral lipids such as cholesteryl esters and triacylglycerols. They have recently emerged as key stress response components in many different cell types. Lipid droplets in the nervous system are mostly observed in vivo in glia, ependymal cells and microglia. They tend to become more numerous in these cell types and can also form in neurons as a consequence of ageing or stresses involving redox imbalance and lipotoxicity. Abundant lipid droplets are also a characteristic feature of several neurodegenerative diseases. In this minireview, we take a cell-type perspective on recent advances in our understanding of lipid droplet metabolism in glia, neurons and neural stem cells during health and disease. We highlight that a given lipid droplet subfunction, such as triacylglycerol lipolysis, can be physiologically beneficial or harmful to the functions of the nervous system depending upon cellular context. The mechanistic understanding of context-dependent lipid droplet functions in the nervous system is progressing apace, aided by new technologies for probing the lipid droplet proteome and lipidome with single-cell type precision.
Collapse
|
47
|
Reichel F, Kräter M, Peikert K, Glaß H, Rosendahl P, Herbig M, Rivera Prieto A, Kihm A, Bosman G, Kaestner L, Hermann A, Guck J. Changes in Blood Cell Deformability in Chorea-Acanthocytosis and Effects of Treatment With Dasatinib or Lithium. Front Physiol 2022; 13:852946. [PMID: 35444561 PMCID: PMC9013823 DOI: 10.3389/fphys.2022.852946] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/08/2022] [Indexed: 12/29/2022] Open
Abstract
Misshaped red blood cells (RBCs), characterized by thorn-like protrusions known as acanthocytes, are a key diagnostic feature in Chorea-Acanthocytosis (ChAc), a rare neurodegenerative disorder. The altered RBC morphology likely influences their biomechanical properties which are crucial for the cells to pass the microvasculature. Here, we investigated blood cell deformability of five ChAc patients compared to healthy controls during up to 1-year individual off-label treatment with the tyrosine kinase inhibitor dasatinib or several weeks with lithium. Measurements with two microfluidic techniques allowed us to assess RBC deformability under different shear stresses. Furthermore, we characterized leukocyte stiffness at high shear stresses. The results showed that blood cell deformability–including both RBCs and leukocytes - in general was altered in ChAc patients compared to healthy donors. Therefore, this study shows for the first time an impairment of leukocyte properties in ChAc. During treatment with dasatinib or lithium, we observed alterations in RBC deformability and a stiffness increase for leukocytes. The hematological phenotype of ChAc patients hinted at a reorganization of the cytoskeleton in blood cells which partly explains the altered mechanical properties observed here. These findings highlight the need for a systematic assessment of the contribution of impaired blood cell mechanics to the clinical manifestation of ChAc.
Collapse
Affiliation(s)
- Felix Reichel
- Max-Planck-Institut für die Physik des Lichts and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Martin Kräter
- Max-Planck-Institut für die Physik des Lichts and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Kevin Peikert
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
- Division for Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Hannes Glaß
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Philipp Rosendahl
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Maik Herbig
- Max-Planck-Institut für die Physik des Lichts and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Alejandro Rivera Prieto
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Alexander Kihm
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Giel Bosman
- Department of Biochemistry, Radboud UMC, Nijmegen, Netherlands
| | - Lars Kaestner
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
- Division for Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Rostock/Greifswald, Rostock, Germany
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Jochen Guck
- Max-Planck-Institut für die Physik des Lichts and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
- *Correspondence: Jochen Guck,
| |
Collapse
|
48
|
Ecovoiu AA, Ratiu AC, Micheu MM, Chifiriuc MC. Inter-Species Rescue of Mutant Phenotype-The Standard for Genetic Analysis of Human Genetic Disorders in Drosophila melanogaster Model. Int J Mol Sci 2022; 23:2613. [PMID: 35269756 PMCID: PMC8909942 DOI: 10.3390/ijms23052613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Drosophila melanogaster (the fruit fly) is arguably a superstar of genetics, an astonishing versatile experimental model which fueled no less than six Nobel prizes in medicine. Nowadays, an evolving research endeavor is to simulate and investigate human genetic diseases in the powerful D. melanogaster platform. Such a translational experimental strategy is expected to allow scientists not only to understand the molecular mechanisms of the respective disorders but also to alleviate or even cure them. In this regard, functional gene orthology should be initially confirmed in vivo by transferring human or vertebrate orthologous transgenes in specific mutant backgrounds of D. melanogaster. If such a transgene rescues, at least partially, the mutant phenotype, then it qualifies as a strong candidate for modeling the respective genetic disorder in the fruit fly. Herein, we review various examples of inter-species rescue of relevant mutant phenotypes of the fruit fly and discuss how these results recommend several human genes as candidates to study and validate genetic variants associated with human diseases. We also consider that a wider implementation of this evolutionist exploratory approach as a standard for the medicine of genetic disorders would allow this particular field of human health to advance at a faster pace.
Collapse
Affiliation(s)
- Alexandru Al. Ecovoiu
- Department of Genetics, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| | - Attila Cristian Ratiu
- Department of Genetics, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| | - Miruna Mihaela Micheu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania;
| | - Mariana Carmen Chifiriuc
- The Research Institute of the University of Bucharest and Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania;
| |
Collapse
|
49
|
Requirement of Xk and Vps13a for the P2X7-mediated phospholipid scrambling and cell lysis in mouse T cells. Proc Natl Acad Sci U S A 2022; 119:2119286119. [PMID: 35140185 PMCID: PMC8851519 DOI: 10.1073/pnas.2119286119] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
A high extracellular adenosine triphosphate (ATP) concentration rapidly and reversibly exposes phosphatidylserine (PtdSer) in T cells by binding to the P2X7 receptor, which ultimately leads to necrosis. Using mouse T cell transformants expressing P2X7, we herein performed CRISPR/Cas9 screening for the molecules responsible for P2X7-mediated PtdSer exposure. In addition to Eros, which is required for the localization of P2X7 to the plasma membrane, this screening identified Xk and Vps13a as essential components for this process. Xk is present at the plasma membrane, and its paralogue, Xkr8, functions as a phospholipid scramblase. Vps13a is a lipid transporter in the cytoplasm. Blue-native polyacrylamide gel electrophoresis indicated that Xk and Vps13a interacted at the membrane. A null mutation in Xk or Vps13a blocked P2X7-mediated PtdSer exposure, the internalization of phosphatidylcholine, and cytolysis. Xk and Vps13a formed a complex in mouse splenic T cells, and Xk was crucial for ATP-induced PtdSer exposure and cytolysis in CD25+CD4+ T cells. XK and VPS13A are responsible for McLeod syndrome and chorea-acanthocytosis, both characterized by a progressive movement disorder and cognitive and behavior changes. Our results suggest that the phospholipid scrambling activity mediated by XK and VPS13A is essential for maintaining homeostasis in the immune and nerve systems.
Collapse
|
50
|
Peikert K, Hermann A, Danek A. XK-Associated McLeod Syndrome: Nonhematological Manifestations and Relation to VPS13A Disease. Transfus Med Hemother 2022; 49:4-12. [PMID: 35221863 PMCID: PMC8832239 DOI: 10.1159/000521417] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/03/2021] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND McLeod syndrome (MLS) is an X-linked multisystemic progressive disorder caused by loss of function mutations in the XK gene. The rare blood group phenotype of MLS patients with absent Kx antigen requires the support of specialized transfusion institutions because of the risk of transfusion complications. Acanthocytosis of red blood cells occurs in almost all patients. Nonhematological manifestations of MLS are very similar to those of VPS13A disease (chorea-acanthocytosis), an autosomal-recessive condition. Their shared phenotype apart from acanthocytosis includes movement disorders such as chorea and dystonia, epilepsy, peripheral neuropathy, and muscle involvement, typically with creatine kinase (CK) elevation, cardiomyopathy included. SUMMARY In this review, we describe the nonhematological manifestations of MLS in comparison with those of VPS13A disease. While there are many similarities, differences such as mode of inheritance, sex distribution, age at manifestation, severity of heart involvement, frequency of feeding dystonia or of involuntary head drops may help to distinguish these disorders in the clinic. Immunohematological demonstration of the McLeod-Kell phenotype or detection of pathogenic mutations of XK (or VPS13A, respectively) is the gold standard for distinction. "Neuroacanthocytosis" was often used as an overarching term, but is potentially misleading, as the term does not refer to a defined disease entity. Its use, if continued, must not prevent clinicians to seek a final diagnosis on the basis of molecular findings. The clinical similarity of MLS and VPS13A disease has long suggested some shared pathophysiology. Evidence for molecular interaction between XK, the McLeod protein, and chorein, the VPS13A gene product, has recently been put forward: XK forms a complex with chorein/VPS13A, a bulk lipid transporter located at various membrane contact sites. The exact role of XK in this complex needs to be further elucidated. Impairment of bulk lipid transport appears as the common denominator of both MLS and VPS13A disease. A variety of further conditions may in time be added to the "bulk lipid transport diseases," such as the recently recognized disorders caused by mutations in the VPS13B, VPS13C, and VPS13D genes. KEY MESSAGES (1) Patients diagnosed with the rare red cell McLeod phenotype (McLeod syndrome, MLS) require interdisciplinary collaboration of transfusion medicine specialists, neurologists, and cardiologists for both their hematological and nonhematological disease manifestations. (2) The phenotypical similarity of MLS and VPS13A disease, often leading to either confusion or insufficient diagnostic depth (under the label of "neuroacanthocytosis"), is based on interaction of the respective proteins, XK and chorein, within the cellular machinery for bulk lipid transport. (3) Overall, the term "bulk lipid transport diseases" seems useful for further research on a group of conditions that may not only share pathophysiology, but may also share treatment approaches.
Collapse
Affiliation(s)
- Kevin Peikert
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
- DZNE, German Center for Neurodegenerative Diseases, Research Site Rostock/Greifswald, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Adrian Danek
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|