1
|
Peschek J, Tuorto F. Interplay Between tRNA Modifications and Processing. J Mol Biol 2025:169198. [PMID: 40404521 DOI: 10.1016/j.jmb.2025.169198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 05/05/2025] [Accepted: 05/05/2025] [Indexed: 05/24/2025]
Abstract
Transfer RNAs play a key role during protein synthesis by decoding genetic information at the translating ribosome. During their biosynthesis, tRNA molecules undergo numerous processing steps. Moreover, tRNAs represent the RNA class that carries the largest variety and highest relative number of chemical modifications. While our functional and mechanistic understanding of these processes is primarily based on studies in yeast, the findings on dynamic tRNA maturation can be translated to higher eukaryotes including humans, particularly regarding the biochemical characterization of the multitude of enzymes involved. In this review, we summarize current knowledge on the sequential hierarchy and interplay of various processing and modification steps for mitochondrial and cytoplasmic tRNA, as well as tRNA-like structures in eukaryotic cells. We also highlight recent structural advances that shed light on the function of enzyme-tRNA complexes.
Collapse
Affiliation(s)
- Jirka Peschek
- Heidelberg University, Biochemistry Center (BZH), Heidelberg, Germany.
| | - Francesca Tuorto
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany.
| |
Collapse
|
2
|
Ghosh S, Wimberly-Gard G, Jacewicz A, Schwer B, Shuman S. Identification, characterization, and structure of a tRNA splicing enzyme RNA 5'-OH kinase from the pathogenic fungi Mucorales. RNA (NEW YORK, N.Y.) 2024; 30:1674-1685. [PMID: 39357987 PMCID: PMC11571804 DOI: 10.1261/rna.080247.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Fungal Trl1 is an essential tRNA splicing enzyme composed of C-terminal cyclic phosphodiesterase and central polynucleotide kinase end-healing domains that convert the 2',3'-cyclic-PO4 and 5'-OH ends of tRNA exons into the 3'-OH,2'-PO4 and 5'-PO4 termini required for sealing by an N-terminal ATP-dependent ligase domain. Trifunctional Trl1 enzymes are present in most human fungal pathogens and are untapped targets for antifungal drug discovery. Mucorales species, deemed high-priority human pathogens by WHO, elaborate a noncanonical tRNA splicing apparatus in which a stand-alone monofunctional RNA ligase enzyme joins 3'-OH,2'-PO4 and 5'-PO4 termini. Here we identify a stand-alone Mucor circinelloides polynucleotide kinase (MciKIN) and affirm its biological activity in tRNA splicing by genetic complementation in yeast. Recombinant MciKIN catalyzes magnesium-dependent phosphorylation of 5'-OH RNA and DNA ends in vitro. MciKIN displays a strong preference for GTP as the phosphate donor in the kinase reaction, a trait shared with the stand-alone RNA kinase homologs from Mucorales species Rhizopus azygosporus (RazKIN) and Lichtheimia corymbifera (LcoKIN) and with the kinase domains of fungal Trl1 enzymes. We report a 1.65 Å crystal structure of RazKIN in complex with GDP•Mg2+ that illuminates the basis for guanosine nucleotide specificity.
Collapse
Affiliation(s)
- Shreya Ghosh
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Gina Wimberly-Gard
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Agata Jacewicz
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Beate Schwer
- Microbiology and Immunology Department, Weill Cornell Medical College, New York, New York 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
3
|
Ghosh S, Shuman S. Kinetic and structural insights into the requirement of fungal tRNA ligase for a 2'-phosphate end. RNA (NEW YORK, N.Y.) 2024; 30:1306-1314. [PMID: 39013577 PMCID: PMC11404444 DOI: 10.1261/rna.080120.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
Fungal RNA ligase (LIG) is an essential tRNA splicing enzyme that joins 3'-OH,2'-PO4 and 5'-PO4 RNA ends to form a 2'-PO4,3'-5' phosphodiester splice junction. Sealing entails three divalent cation-dependent adenylate transfer steps. First, LIG reacts with ATP to form a covalent ligase-(lysyl-Nζ)-AMP intermediate and displace pyrophosphate. Second, LIG transfers AMP to the 5'-PO4 RNA terminus to form an RNA-adenylate intermediate (A5'pp5'RNA). Third, LIG directs the attack of an RNA 3'-OH on AppRNA to form the splice junction and displace AMP. A defining feature of fungal LIG vis-à-vis canonical polynucleotide ligases is the requirement for a 2'-PO4 to synthesize a 3'-5' phosphodiester bond. Fungal LIG consists of an N-terminal adenylyltransferase domain and a unique C-terminal domain. The C-domain of Chaetomium thermophilum LIG (CthLIG) engages a sulfate anion thought to be a mimetic of the terminal 2'-PO4 Here, we interrogated the contributions of the C-domain and the conserved sulfate ligands (His227, Arg334, Arg337) to ligation of a pRNA2'p substrate. We find that the C-domain is essential for end-joining but dispensable for ligase adenylylation. Mutations H227A, R334A, and R337A slowed the rate of step 2 RNA adenylation by 420-fold, 120-fold, and 60-fold, respectively, vis-à-vis wild-type CthLIG. An R334A-R337A double-mutation slowed step 2 by 580-fold. These results fortify the case for the strictly conserved His-Arg-Arg triad as the enforcer of the 2'-PO4 end-specificity of fungal tRNA ligases and as a target for small molecule interdiction of fungal tRNA splicing.
Collapse
Affiliation(s)
- Shreya Ghosh
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
4
|
Ares M, Igel H, Katzman S, Donohue JP. Intron lariat spliceosomes convert lariats to true circles: implications for intron transposition. Genes Dev 2024; 38:322-335. [PMID: 38724209 PMCID: PMC11146597 DOI: 10.1101/gad.351764.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
Rare, full-length circular intron RNAs distinct from lariats have been reported in several species, but their biogenesis is not understood. We envisioned and tested a hypothesis for their formation using Saccharomyces cerevisiae, documenting full-length and novel processed circular RNAs from multiple introns. Evidence implicates a previously undescribed catalytic activity of the intron lariat spliceosome (ILS) in which the 3'-OH of the lariat tail (with optional trimming and adenylation by the nuclear 3' processing machinery) attacks the branch, joining the intron 3' end to the 5' splice site in a 3'-5' linked circle. Human U2 and U12 spliceosomes produce analogous full-length and processed circles. Postsplicing catalytic activity of the spliceosome may promote intron transposition during eukaryotic genome evolution.
Collapse
Affiliation(s)
- Manuel Ares
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA;
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - Haller Igel
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - Sol Katzman
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - John P Donohue
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
5
|
Ares M, Igel H, Katzman S, Donohue JP. Intron-lariat spliceosomes convert lariats to true circles: implications for intron transposition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586863. [PMID: 38585890 PMCID: PMC10996645 DOI: 10.1101/2024.03.26.586863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Rare, full length circular intron RNAs distinct from lariats have been reported in several species, but their biogenesis is not understood. We envision and test a hypothesis for their formation using Saccharomyces cerevisiae, documenting full length and novel processed circular RNAs from multiple introns. Evidence implicates a previously undescribed catalytic activity of the intron-lariat spliceosome (ILS) in which the 3'-OH of the lariat tail (with optional trimming and adenylation by the nuclear 3' processing machinery) attacks the branch, joining the intron 3' end to the 5' splice site in a 3'-5' linked circle. Human U2 and U12 spliceosomes produce analogous full length and processed circles. Post-splicing catalytic activity of the spliceosome may promote intron transposition during eukaryotic genome evolution.
Collapse
Affiliation(s)
- Manuel Ares
- Center for Molecular Biology of RNA, University of California, Santa Cruz
- Genomics Institute, Santa Cruz, CA 95064 USA
| | - Haller Igel
- Center for Molecular Biology of RNA, University of California, Santa Cruz
| | - Sol Katzman
- Center for Molecular Biology of RNA, University of California, Santa Cruz
- Genomics Institute, Santa Cruz, CA 95064 USA
| | - John P. Donohue
- Center for Molecular Biology of RNA, University of California, Santa Cruz
| |
Collapse
|
6
|
Ahammed KS, van Hoof A. Fungi of the order Mucorales express a "sealing-only" tRNA ligase. RNA (NEW YORK, N.Y.) 2024; 30:354-366. [PMID: 38307611 PMCID: PMC10946435 DOI: 10.1261/rna.079957.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/20/2024] [Indexed: 02/04/2024]
Abstract
Some eukaryotic pre-tRNAs contain an intron that is removed by a dedicated set of enzymes. Intron-containing pre-tRNAs are cleaved by tRNA splicing endonuclease, followed by ligation of the two exons and release of the intron. Fungi use a "heal and seal" pathway that requires three distinct catalytic domains of the tRNA ligase enzyme, Trl1. In contrast, humans use a "direct ligation" pathway carried out by RTCB, an enzyme completely unrelated to Trl1. Because of these mechanistic differences, Trl1 has been proposed as a promising drug target for fungal infections. To validate Trl1 as a broad-spectrum drug target, we show that fungi from three different phyla contain Trl1 orthologs with all three domains. This includes the major invasive human fungal pathogens, and these proteins can each functionally replace yeast Trl1. In contrast, species from the order Mucorales, including the pathogens Rhizopus arrhizus and Mucor circinelloides, have an atypical Trl1 that contains the sealing domain but lacks both healing domains. Although these species contain fewer tRNA introns than other pathogenic fungi, they still require splicing to decode three of the 61 sense codons. These sealing-only Trl1 orthologs can functionally complement defects in the corresponding domain of yeast Trl1 and use a conserved catalytic lysine residue. We conclude that Mucorales use a sealing-only enzyme together with unidentified nonorthologous healing enzymes for their heal and seal pathway. This implies that drugs that target the sealing activity are more likely to be broader-spectrum antifungals than drugs that target the healing domains.
Collapse
Affiliation(s)
- Khondakar Sayef Ahammed
- Department of Microbiology and Molecular Genetics, UT MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, UT MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, Texas 77030, USA
| |
Collapse
|
7
|
Ghosh S, Dantuluri S, Jacewicz A, Sanchez AM, Abdullahu L, Damha MJ, Schwer B, Shuman S. Characterization of tRNA splicing enzymes RNA ligase and tRNA 2'-phosphotransferase from the pathogenic fungi Mucorales. RNA (NEW YORK, N.Y.) 2024; 30:367-380. [PMID: 38238085 PMCID: PMC10946426 DOI: 10.1261/rna.079911.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/09/2024] [Indexed: 03/20/2024]
Abstract
Fungal Trl1 is an essential trifunctional tRNA splicing enzyme that heals and seals tRNA exons with 2',3'-cyclic-PO4 and 5'-OH ends. Trl1 is composed of C-terminal cyclic phosphodiesterase and central polynucleotide kinase end-healing domains that generate the 3'-OH,2'-PO4 and 5'-PO4 termini required for sealing by an N-terminal ATP-dependent ligase domain. Trl1 enzymes are present in many human fungal pathogens and are promising targets for antifungal drug discovery because their domain structures and biochemical mechanisms are unique compared to the mammalian RtcB-type tRNA splicing enzyme. Here we report that Mucorales species (deemed high-priority human pathogens by WHO) elaborate a noncanonical tRNA splicing apparatus in which a monofunctional RNA ligase enzyme is encoded separately from any end-healing enzymes. We show that Mucor circinelloides RNA ligase (MciRNL) is active in tRNA splicing in vivo in budding yeast in lieu of the Trl1 ligase domain. Biochemical and kinetic characterization of recombinant MciRNL underscores its requirement for a 2'-PO4 terminus in the end-joining reaction, whereby the 2'-PO4 enhances the rates of RNA 5'-adenylylation (step 2) and phosphodiester synthesis (step 3) by ∼125-fold and ∼6200-fold, respectively. In the canonical fungal tRNA splicing pathway, the splice junction 2'-PO4 installed by RNA ligase is removed by a dedicated NAD+-dependent RNA 2'-phosphotransferase Tpt1. Here we identify and affirm by genetic complementation in yeast the biological activity of Tpt1 orthologs from three Mucorales species. Recombinant M. circinelloides Tpt1 has vigorous NAD+-dependent RNA 2'-phosphotransferase activity in vitro.
Collapse
Affiliation(s)
- Shreya Ghosh
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Swathi Dantuluri
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Agata Jacewicz
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Ana M Sanchez
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, New York 10065, USA
| | - Leonora Abdullahu
- Department of Chemistry, McGill University, Montreal, Quebec H3A0B8, Canada
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Quebec H3A0B8, Canada
| | - Beate Schwer
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
8
|
Gerber JL, Morales Guzmán SI, Worf L, Hubbe P, Kopp J, Peschek J. Structural and mechanistic insights into activation of the human RNA ligase RTCB by Archease. Nat Commun 2024; 15:2378. [PMID: 38493148 PMCID: PMC10944509 DOI: 10.1038/s41467-024-46568-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
RNA ligases of the RTCB-type play an essential role in tRNA splicing, the unfolded protein response and RNA repair. RTCB is the catalytic subunit of the pentameric human tRNA ligase complex. RNA ligation by the tRNA ligase complex requires GTP-dependent activation of RTCB. This active site guanylylation reaction relies on the activation factor Archease. The mechanistic interplay between both proteins has remained unknown. Here, we report a biochemical and structural analysis of the human RTCB-Archease complex in the pre- and post-activation state. Archease reaches into the active site of RTCB and promotes the formation of a covalent RTCB-GMP intermediate through coordination of GTP and metal ions. During the activation reaction, Archease prevents futile RNA substrate binding to RTCB. Moreover, monomer structures of Archease and RTCB reveal additional states within the RNA ligation mechanism. Taken together, we present structural snapshots along the reaction cycle of the human tRNA ligase.
Collapse
Affiliation(s)
- Janina Lara Gerber
- Heidelberg University, Biochemistry Center (BZH), Im Neuenheimer Feld 328, Heidelberg, Germany
| | | | - Lorenz Worf
- Heidelberg University, Biochemistry Center (BZH), Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Petra Hubbe
- Heidelberg University, Biochemistry Center (BZH), Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Jürgen Kopp
- Heidelberg University, Biochemistry Center (BZH), Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Jirka Peschek
- Heidelberg University, Biochemistry Center (BZH), Im Neuenheimer Feld 328, Heidelberg, Germany.
| |
Collapse
|
9
|
Abstract
Enzymes that phosphorylate, dephosphorylate, and ligate RNA 5' and 3' ends were discovered more than half a century ago and were eventually shown to repair purposeful site-specific endonucleolytic breaks in the RNA phosphodiester backbone. The pace of discovery and characterization of new candidate RNA repair activities in taxa from all phylogenetic domains greatly exceeds our understanding of the biological pathways in which they act. The key questions anent RNA break repair in vivo are (a) identifying the triggers, agents, and targets of RNA cleavage and (b) determining whether RNA repair results in restoration of the original RNA, modification of the RNA (by loss or gain at the ends), or rearrangements of the broken RNA segments (i.e., RNA recombination). This review provides a perspective on the discovery, mechanisms, and physiology of purposeful RNA break repair, highlighting exemplary repair pathways (e.g., tRNA restriction-repair and tRNA splicing) for which genetics has figured prominently in their elucidation.
Collapse
Affiliation(s)
- Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA;
| |
Collapse
|
10
|
Ahammed KS, van Hoof A. Fungi of the order Mucorales express a "sealing-only" tRNA ligase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567474. [PMID: 38014270 PMCID: PMC10680797 DOI: 10.1101/2023.11.16.567474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Some eukaryotic pre-tRNAs contain an intron that is removed by a dedicated set of enzymes. Intron-containing pre-tRNAs are cleaved by tRNA splicing endonuclease (TSEN), followed by ligation of the two exons and release of the intron. Fungi use a "heal and seal" pathway that requires three distinct catalytic domains of the tRNA ligase enzyme, Trl1. In contrast, humans use a "direct ligation" pathway carried out by RTCB, an enzyme completely unrelated to Trl1. Because of these mechanistic differences, Trl1 has been proposed as a promising drug target for fungal infections. To validate Trl1 as a broad-spectrum drug target, we show that fungi from three different phyla contain Trl1 orthologs with all three domains. This includes the major invasive human fungal pathogens, and these proteins each can functionally replace yeast Trl1. In contrast, species from the order Mucorales, including the pathogens Rhizopus arrhizus and Mucor circinelloides, contain an atypical Trl1 that contains the sealing domain, but lack both healing domains. Although these species contain fewer tRNA introns than other pathogenic fungi, they still require splicing to decode three of the 61 sense codons. These sealing-only Trl1 orthologs can functionally complement defects in the corresponding domain of yeast Trl1 and use a conserved catalytic lysine residue. We conclude that Mucorales use a sealing-only enzyme together with unidentified non-orthologous healing enzymes for their heal and seal pathway. This implies that drugs that target the sealing activity are more likely to be broader-spectrum antifungals than drugs that target the healing domains.
Collapse
Affiliation(s)
- Khondakar Sayef Ahammed
- Department of Microbiology and Molecular Genetics. UT MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences. University of Texas Health Science Center at Houston
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics. UT MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences. University of Texas Health Science Center at Houston
| |
Collapse
|
11
|
Ishiwata-Kimata Y, Kimata Y. Fundamental and Applicative Aspects of the Unfolded Protein Response in Yeasts. J Fungi (Basel) 2023; 9:989. [PMID: 37888245 PMCID: PMC10608004 DOI: 10.3390/jof9100989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Upon the dysfunction or functional shortage of the endoplasmic reticulum (ER), namely, ER stress, eukaryotic cells commonly provoke a protective gene expression program called the unfolded protein response (UPR). The molecular mechanism of UPR has been uncovered through frontier genetic studies using Saccharomyces cerevisiae as a model organism. Ire1 is an ER-located transmembrane protein that directly senses ER stress and is activated as an RNase. During ER stress, Ire1 promotes the splicing of HAC1 mRNA, which is then translated into a transcription factor that induces the expression of various genes, including those encoding ER-located molecular chaperones and protein modification enzymes. While this mainstream intracellular UPR signaling pathway was elucidated in the 1990s, new intriguing insights have been gained up to now. For instance, various additional factors allow UPR evocation strictly in response to ER stress. The UPR machineries in other yeasts and fungi, including pathogenic species, are another important research topic. Moreover, industrially beneficial yeast strains carrying an enforced and enlarged ER have been produced through the artificial and constitutive induction of the UPR. In this article, we review canonical and up-to-date insights concerning the yeast UPR, mainly from the viewpoint of the functions and regulation of Ire1 and HAC1.
Collapse
Affiliation(s)
| | - Yukio Kimata
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| |
Collapse
|
12
|
Abstract
The study of eukaryotic tRNA processing has given rise to an explosion of new information and insights in the last several years. We now have unprecedented knowledge of each step in the tRNA processing pathway, revealing unexpected twists in biochemical pathways, multiple new connections with regulatory pathways, and numerous biological effects of defects in processing steps that have profound consequences throughout eukaryotes, leading to growth phenotypes in the yeast Saccharomyces cerevisiae and to neurological and other disorders in humans. This review highlights seminal new results within the pathways that comprise the life of a tRNA, from its birth after transcription until its death by decay. We focus on new findings and revelations in each step of the pathway including the end-processing and splicing steps, many of the numerous modifications throughout the main body and anticodon loop of tRNA that are so crucial for tRNA function, the intricate tRNA trafficking pathways, and the quality control decay pathways, as well as the biogenesis and biology of tRNA-derived fragments. We also describe the many interactions of these pathways with signaling and other pathways in the cell.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, Ohio 43235, USA
| |
Collapse
|
13
|
Hayne CK, Lewis TA, Stanley RE. Recent insights into the structure, function, and regulation of the eukaryotic transfer RNA splicing endonuclease complex. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1717. [PMID: 35156311 PMCID: PMC9465713 DOI: 10.1002/wrna.1717] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 04/30/2023]
Abstract
The splicing of transfer RNA (tRNA) introns is a critical step of tRNA maturation, for intron-containing tRNAs. In eukaryotes, tRNA splicing is a multi-step process that relies on several RNA processing enzymes to facilitate intron removal and exon ligation. Splicing is initiated by the tRNA splicing endonuclease (TSEN) complex which catalyzes the excision of the intron through its two nuclease subunits. Mutations in all four subunits of the TSEN complex are linked to a family of neurodegenerative and neurodevelopmental diseases known as pontocerebellar hypoplasia (PCH). Recent studies provide molecular insights into the structure, function, and regulation of the eukaryotic TSEN complex and are beginning to illuminate how mutations in the TSEN complex lead to neurodegenerative disease. Using new advancements in the prediction of protein structure, we created a three-dimensional model of the human TSEN complex. We review functions of the TSEN complex beyond tRNA splicing by highlighting recently identified substrates of the eukaryotic TSEN complex and discuss mechanisms for the regulation of tRNA splicing, by enzymes that modify cleaved tRNA exons and introns. Finally, we review recent biochemical and animal models that have worked to address the mechanisms that drive PCH and synthesize these studies with previous studies to try to better understand PCH pathogenesis. This article is categorized under: RNA Processing > tRNA Processing RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition.
Collapse
Affiliation(s)
- Cassandra K Hayne
- Department of Health and Human Services, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Tanae A Lewis
- Department of Chemistry, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Robin E Stanley
- Department of Health and Human Services, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|
14
|
Gerber JL, Köhler S, Peschek J. Eukaryotic tRNA splicing - one goal, two strategies, many players. Biol Chem 2022; 403:765-778. [PMID: 35621519 DOI: 10.1515/hsz-2021-0402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 05/10/2022] [Indexed: 12/28/2022]
Abstract
Transfer RNAs (tRNAs) are transcribed as precursor molecules that undergo several maturation steps before becoming functional for protein synthesis. One such processing mechanism is the enzyme-catalysed splicing of intron-containing pre-tRNAs. Eukaryotic tRNA splicing is an essential process since intron-containing tRNAs cannot fulfil their canonical function at the ribosome. Splicing of pre-tRNAs occurs in two steps: The introns are first excised by a tRNA-splicing endonuclease and the exons are subsequently sealed by an RNA ligase. An intriguing complexity has emerged from newly identified tRNA splicing factors and their interplay with other RNA processing pathways during the past few years. This review summarises our current understanding of eukaryotic tRNA splicing and the underlying enzyme machinery. We highlight recent structural advances and how they have shaped our mechanistic understanding of tRNA splicing in eukaryotic cells. A special focus lies on biochemically distinct strategies for exon-exon ligation in fungi versus metazoans.
Collapse
Affiliation(s)
- Janina L Gerber
- Biochemistry Center (BZH), Heidelberg University, D-69120 Heidelberg, Germany
| | - Sandra Köhler
- Biochemistry Center (BZH), Heidelberg University, D-69120 Heidelberg, Germany
| | - Jirka Peschek
- Biochemistry Center (BZH), Heidelberg University, D-69120 Heidelberg, Germany
| |
Collapse
|
15
|
Cairrão F, Santos CC, Le Thomas A, Marsters S, Ashkenazi A, Domingos PM. Pumilio protects Xbp1 mRNA from regulated Ire1-dependent decay. Nat Commun 2022; 13:1587. [PMID: 35332141 PMCID: PMC8948244 DOI: 10.1038/s41467-022-29105-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
The unfolded protein response (UPR) maintains homeostasis of the endoplasmic reticulum (ER). Residing in the ER membrane, the UPR mediator Ire1 deploys its cytoplasmic kinase-endoribonuclease domain to activate the key UPR transcription factor Xbp1 through non-conventional splicing of Xbp1 mRNA. Ire1 also degrades diverse ER-targeted mRNAs through regulated Ire1-dependent decay (RIDD), but how it spares Xbp1 mRNA from this decay is unknown. Here, we identify binding sites for the RNA-binding protein Pumilio in the 3'UTR Drosophila Xbp1. In the developing Drosophila eye, Pumilio binds both the Xbp1unspliced and Xbp1spliced mRNAs, but only Xbp1spliced is stabilized by Pumilio. Furthermore, Pumilio displays Ire1 kinase-dependent phosphorylation during ER stress, which is required for its stabilization of Xbp1spliced. hIRE1 can phosphorylate Pumilio directly, and phosphorylated Pumilio protects Xbp1spliced mRNA against RIDD. Thus, Ire1-mediated phosphorylation enables Pumilio to shield Xbp1spliced from RIDD. These results uncover an unexpected regulatory link between an RNA-binding protein and the UPR.
Collapse
Affiliation(s)
- Fátima Cairrão
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
| | - Cristiana C Santos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Adrien Le Thomas
- Cancer Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Scot Marsters
- Cancer Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Avi Ashkenazi
- Cancer Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Pedro M Domingos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
16
|
Kellner N, Hurt E. Transformation of Chaetomium thermophilum and Affinity Purification of Native Thermostable Protein Complexes. Methods Mol Biol 2022; 2502:35-50. [PMID: 35412229 DOI: 10.1007/978-1-0716-2337-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chaetomium thermophilum, a eukaryotic thermophile, is an aspiring organism holding great potential for various biochemical and biotechnological applications. Prerequisite for genetic manipulation is a reliable transformation system for target genes combined with selection markers operating at the high growth temperatures of the fungus. Here, we present a detailed protocol for Chaetomium thermophilum protoplast transformation to allow stable chromosomal integration of constructs into its genome, rendering this eukaryotic thermophile a valuable resource for affinity purification of native thermostable protein complexes, like nuclear pore subcomplexes.
Collapse
Affiliation(s)
- Nikola Kellner
- Biochemistry Center, University of Heidelberg, Heidelberg, Germany
| | - Ed Hurt
- Biochemistry Center, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
17
|
Decoding non-canonical mRNA decay by the endoplasmic-reticulum stress sensor IRE1α. Nat Commun 2021; 12:7310. [PMID: 34911951 PMCID: PMC8674358 DOI: 10.1038/s41467-021-27597-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/24/2021] [Indexed: 12/21/2022] Open
Abstract
Inositol requiring enzyme 1 (IRE1) mitigates endoplasmic-reticulum (ER) stress by orchestrating the unfolded-protein response (UPR). IRE1 spans the ER membrane, and signals through a cytosolic kinase-endoribonuclease module. The endoribonuclease generates the transcription factor XBP1s by intron excision between similar RNA stem-loop endomotifs, and depletes select cellular mRNAs through regulated IRE1-dependent decay (RIDD). Paradoxically, in mammals RIDD seems to target only mRNAs with XBP1-like endomotifs, while in flies RIDD exhibits little sequence restriction. By comparing nascent and total IRE1α-controlled mRNAs in human cells, we identify not only canonical endomotif-containing RIDD substrates, but also targets without such motifs-degraded by a process we coin RIDDLE, for RIDD lacking endomotif. IRE1α displays two basic endoribonuclease modalities: highly specific, endomotif-directed cleavage, minimally requiring dimers; and more promiscuous, endomotif-independent processing, requiring phospho-oligomers. An oligomer-deficient IRE1α mutant fails to support RIDDLE in vitro and in cells. Our results advance current mechanistic understanding of the UPR.
Collapse
|
18
|
Kroupova A, Ackle F, Asanović I, Weitzer S, Boneberg FM, Faini M, Leitner A, Chui A, Aebersold R, Martinez J, Jinek M. Molecular architecture of the human tRNA ligase complex. eLife 2021; 10:e71656. [PMID: 34854379 PMCID: PMC8668186 DOI: 10.7554/elife.71656] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/01/2021] [Indexed: 01/23/2023] Open
Abstract
RtcB enzymes are RNA ligases that play essential roles in tRNA splicing, unfolded protein response, and RNA repair. In metazoa, RtcB functions as part of a five-subunit tRNA ligase complex (tRNA-LC) along with Ddx1, Cgi-99, Fam98B, and Ashwin. The human tRNA-LC or its individual subunits have been implicated in additional cellular processes including microRNA maturation, viral replication, DNA double-strand break repair, and mRNA transport. Here, we present a biochemical analysis of the inter-subunit interactions within the human tRNA-LC along with crystal structures of the catalytic subunit RTCB and the N-terminal domain of CGI-99. We show that the core of the human tRNA-LC is assembled from RTCB and the C-terminal alpha-helical regions of DDX1, CGI-99, and FAM98B, all of which are required for complex integrity. The N-terminal domain of CGI-99 displays structural homology to calponin-homology domains, and CGI-99 and FAM98B associate via their N-terminal domains to form a stable subcomplex. The crystal structure of GMP-bound RTCB reveals divalent metal coordination geometry in the active site, providing insights into its catalytic mechanism. Collectively, these findings shed light on the molecular architecture and mechanism of the human tRNA ligase complex and provide a structural framework for understanding its functions in cellular RNA metabolism.
Collapse
Affiliation(s)
- Alena Kroupova
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Fabian Ackle
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Igor Asanović
- Max Perutz Labs, Vienna BioCenter (VBC)ViennaAustria
| | | | | | - Marco Faini
- Department of Biology, Institute of Molecular Systems Biology, ETH ZurichZurichSwitzerland
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH ZurichZurichSwitzerland
| | - Alessia Chui
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH ZurichZurichSwitzerland
| | | | - Martin Jinek
- Department of Biochemistry, University of ZurichZurichSwitzerland
| |
Collapse
|
19
|
Vps34 and TOR Kinases Coordinate HAC1 mRNA Translation in the Presence or Absence of Ire1-Dependent Splicing. Mol Cell Biol 2021; 41:e0066220. [PMID: 33972394 DOI: 10.1128/mcb.00662-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, an mRNA, called HAC1, exists in a translationally repressed form in the cytoplasm. Under conditions of cellular stress, such as when unfolded proteins accumulate inside the endoplasmic reticulum (ER), an RNase Ire1 removes an intervening sequence (intron) from the HAC1 mRNA by nonconventional cytosolic splicing. Removal of the intron results in translational derepression of HAC1 mRNA and production of a transcription factor that activates expression of many enzymes and chaperones to increase the protein-folding capacity of the cell. Here, we show that Ire1-mediated RNA cleavage requires Watson-Crick base pairs in two RNA hairpins, which are located at the HAC1 mRNA exon-intron junctions. Then, we show that the translational derepression of HAC1 mRNA can occur independent of cytosolic splicing. These results are obtained from HAC1 variants that translated an active Hac1 protein from the unspliced mRNA. Additionally, we show that the phosphatidylinositol-3-kinase Vps34 and the nutrient-sensing kinases TOR and GCN2 are key regulators of HAC1 mRNA translation and consequently the ER stress responses. Collectively, our data suggest that the cytosolic splicing and the translational derepression of HAC1 mRNA are coordinated by unique and parallel networks of signaling pathways.
Collapse
|
20
|
Li W, Crotty K, Garrido Ruiz D, Voorhies M, Rivera C, Sil A, Mullins RD, Jacobson MP, Peschek J, Walter P. Protomer alignment modulates specificity of RNA substrate recognition by Ire1. eLife 2021; 10:e67425. [PMID: 33904404 PMCID: PMC8104961 DOI: 10.7554/elife.67425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/27/2021] [Indexed: 11/21/2022] Open
Abstract
The unfolded protein response (UPR) maintains protein folding homeostasis in the endoplasmic reticulum (ER). In metazoan cells, the Ire1 branch of the UPR initiates two functional outputs-non-conventional mRNA splicing and selective mRNA decay (RIDD). By contrast, Ire1 orthologs from Saccharomyces cerevisiae and Schizosaccharomyces pombe are specialized for only splicing or RIDD, respectively. Previously, we showed that the functional specialization lies in Ire1's RNase activity, which is either stringently splice-site specific or promiscuous (Li et al., 2018). Here, we developed an assay that reports on Ire1's RNase promiscuity. We found that conversion of two amino acids within the RNase domain of S. cerevisiae Ire1 to their S. pombe counterparts rendered it promiscuous. Using biochemical assays and computational modeling, we show that the mutations rewired a pair of salt bridges at Ire1 RNase domain's dimer interface, changing its protomer alignment. Thus, Ire1 protomer alignment affects its substrates specificity.
Collapse
Affiliation(s)
- Weihan Li
- Department of Biochemistry and Biophysics, University of California San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteSan FranciscoUnited States
| | - Kelly Crotty
- Department of Biochemistry and Biophysics, University of California San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteSan FranciscoUnited States
| | - Diego Garrido Ruiz
- Department of Pharmaceutical Chemistry, University of California at San FranciscoSan FranciscoUnited States
| | - Mark Voorhies
- Department of Microbiology and Immunology, University of California at San FranciscoSan FranciscoUnited States
| | - Carlos Rivera
- Department of Molecular Biophysics and Biochemistry, Yale School of MedicineNew HavenUnited States
| | - Anita Sil
- Department of Microbiology and Immunology, University of California at San FranciscoSan FranciscoUnited States
| | - R Dyche Mullins
- Howard Hughes Medical InstituteSan FranciscoUnited States
- Department of Cellular and Molecular Pharmacology, University of California at San FranciscoSan FranciscoUnited States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California at San FranciscoSan FranciscoUnited States
| | - Jirka Peschek
- Department of Biochemistry and Biophysics, University of California San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteSan FranciscoUnited States
| | - Peter Walter
- Department of Biochemistry and Biophysics, University of California San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteSan FranciscoUnited States
| |
Collapse
|
21
|
Bashir S, Banday M, Qadri O, Bashir A, Hilal N, Nida-I-Fatima, Rader S, Fazili KM. The molecular mechanism and functional diversity of UPR signaling sensor IRE1. Life Sci 2020; 265:118740. [PMID: 33188833 DOI: 10.1016/j.lfs.2020.118740] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum is primarily responsible for protein folding and maturation. However, the organelle is subject to varied stress conditions from time to time, which lead to the activation of a signaling program known as the Unfolded Protein Response (UPR) pathway. This pathway, upon sensing any disturbance in the protein-folding milieu sends signals to the nucleus and cytoplasm in order to restore homeostasis. One of the prime UPR signaling sensors is Inositol-requiring enzyme 1 (IRE1); an ER membrane embedded protein with dual enzyme activities, kinase and endoribonuclease. The ribonuclease activity of IRE1 results in Xbp1 splicing in mammals or Hac1 splicing in yeast. However, IRE1 can switch its substrate specificity to the mRNAs that are co-transnationally transported to the ER, a phenomenon known as Regulated IRE1 Dependent Decay (RIDD). IRE1 is also reported to act as a principal molecule that coordinates with other proteins and signaling pathways, which in turn might be responsible for its regulation. The current review highlights studies on IRE1 explaining the structural features and molecular mechanism behind its ribonuclease outputs. The emphasis is also laid on the molecular effectors, which directly or indirectly interact with IRE1 to either modulate its function or connect it to other pathways. This is important in understanding the functional pleiotropy of IRE1, by which it can switch its activity from pro-survival to pro-apoptotic, thus determining the fate of cells.
Collapse
Affiliation(s)
- Samirul Bashir
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Mariam Banday
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Ozaira Qadri
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Arif Bashir
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Nazia Hilal
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Nida-I-Fatima
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Stephen Rader
- Department of Chemistry, University of Northern British Columbia, Prince George, BC, Canada
| | - Khalid Majid Fazili
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
22
|
Unciuleac MC, Goldgur Y, Shuman S. Caveat mutator: alanine substitutions for conserved amino acids in RNA ligase elicit unexpected rearrangements of the active site for lysine adenylylation. Nucleic Acids Res 2020; 48:5603-5615. [PMID: 32315072 PMCID: PMC7261155 DOI: 10.1093/nar/gkaa238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 11/25/2022] Open
Abstract
Naegleria gruberi RNA ligase (NgrRnl) exemplifies the Rnl5 family of adenosine triphosphate (ATP)-dependent polynucleotide ligases that seal 3′-OH RNA strands in the context of 3′-OH/5′-PO4 nicked duplexes. Like all classic ligases, NgrRnl forms a covalent lysyl–AMP intermediate. A two-metal mechanism of lysine adenylylation was established via a crystal structure of the NgrRnl•ATP•(Mn2+)2 Michaelis complex. Here we conducted an alanine scan of active site constituents that engage the ATP phosphates and the metal cofactors. We then determined crystal structures of ligase-defective NgrRnl-Ala mutants in complexes with ATP/Mn2+. The unexpected findings were that mutations K170A, E227A, K326A and R149A (none of which impacted overall enzyme structure) triggered adverse secondary changes in the active site entailing dislocations of the ATP phosphates, altered contacts to ATP, and variations in the numbers and positions of the metal ions that perverted the active sites into off-pathway states incompatible with lysine adenylylation. Each alanine mutation elicited a distinctive off-pathway distortion of the ligase active site. Our results illuminate a surprising plasticity of the ligase active site in its interactions with ATP and metals. More broadly, they underscore a valuable caveat when interpreting mutational data in the course of enzyme structure-function studies.
Collapse
Affiliation(s)
| | - Yehuda Goldgur
- Structural Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
23
|
A Functional Non-coding RNA Is Produced from xbp-1 mRNA. Neuron 2020; 107:854-863.e6. [PMID: 32640191 DOI: 10.1016/j.neuron.2020.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/23/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022]
Abstract
The xbp-1 mRNA encodes the XBP-1 transcription factor, a critical part of the unfolded protein response. Here we report that an RNA fragment produced from xbp-1 mRNA cleavage is a biologically active non-coding RNA (ncRNA) essential for axon regeneration in Caenorhabditis elegans. We show that the xbp-1 ncRNA acts independently of the protein-coding function of the xbp-1 transcript as part of a dual output xbp-1 mRNA stress response axis. Structural analysis indicates that the function of the xbp-1 ncRNA depends on a single RNA stem; this stem forms only in the cleaved xbp-1 ncRNA fragment. Disruption of this stem abolishes the non-coding, but not the coding, function of the endogenous xbp-1 transcript. Thus, cleavage of the xbp-1 mRNA bifurcates it into a coding and a non-coding pathway; modulation of the two pathways may allow neurons to fine-tune their response to injury and other stresses.
Collapse
|
24
|
Payea MJ, Hauke AC, De Zoysa T, Phizicky EM. Mutations in the anticodon stem of tRNA cause accumulation and Met22-dependent decay of pre-tRNA in yeast. RNA (NEW YORK, N.Y.) 2020; 26:29-43. [PMID: 31619505 PMCID: PMC6913130 DOI: 10.1261/rna.073155.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/11/2019] [Indexed: 05/20/2023]
Abstract
During tRNA maturation in yeast, aberrant pre-tRNAs are targeted for 3'-5' degradation by the nuclear surveillance pathway, and aberrant mature tRNAs are targeted for 5'-3' degradation by the rapid tRNA decay (RTD) pathway. RTD is catalyzed by the 5'-3' exonucleases Xrn1 and Rat1, which act on tRNAs with an exposed 5' end due to the lack of certain body modifications or the presence of destabilizing mutations in the acceptor stem, T-stem, or tRNA fold. RTD is inhibited by mutation of MET22, likely due to accumulation of the Met22 substrate adenosine 3',5' bis-phosphate, which inhibits 5'-3' exonucleases. Here we provide evidence for a new tRNA quality control pathway in which intron-containing pre-tRNAs with destabilizing mutations in the anticodon stem are targeted for Met22-dependent pre-tRNA decay (MPD). Multiple SUP4οc anticodon stem variants that are subject to MPD each perturb the bulge-helix-bulge structure formed by the anticodon stem-loop and intron, which is important for splicing, resulting in substantial accumulation of end-matured unspliced pre-tRNA as well as pre-tRNA decay. Mutations that restore exon-intron structure commensurately reduce pre-tRNA accumulation and MPD. The MPD pathway can contribute substantially to decay of anticodon stem variants, since pre-tRNA decay is largely suppressed by removal of the intron or by restoration of exon-intron structure, each also resulting in increased tRNA levels. The MPD pathway is general as it extends to variants of tRNATyr(GUA) and tRNASer(CGA) These results demonstrate that the integrity of the anticodon stem-loop and the efficiency of tRNA splicing are monitored by a quality control pathway.
Collapse
Affiliation(s)
- Matthew J Payea
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Alayna C Hauke
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Thareendra De Zoysa
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| |
Collapse
|