1
|
Moynihan D, Monaco S, Ting TW, Narasimhalu K, Hsieh J, Kam S, Lim JY, Lim WK, Davila S, Bylstra Y, Balakrishnan ID, Heng M, Chia E, Yeo KK, Goh BK, Gupta R, Tan T, Baynam G, Jamuar SS. Cluster analysis and visualisation of electronic health records data to identify undiagnosed patients with rare genetic diseases. Sci Rep 2024; 14:5056. [PMID: 38424111 PMCID: PMC10904843 DOI: 10.1038/s41598-024-55424-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024] Open
Abstract
Rare genetic diseases affect 5-8% of the population but are often undiagnosed or misdiagnosed. Electronic health records (EHR) contain large amounts of data, which provide opportunities for analysing and mining. Data mining, in the form of cluster analysis and visualisation, was performed on a database containing deidentified health records of 1.28 million patients across 3 major hospitals in Singapore, in a bid to improve the diagnostic process for patients who are living with an undiagnosed rare disease, specifically focusing on Fabry Disease and Familial Hypercholesterolaemia (FH). On a baseline of 4 patients, we identified 2 additional patients with potential diagnosis of Fabry disease, suggesting a potential 50% increase in diagnosis. Similarly, we identified > 12,000 individuals who fulfil the clinical and laboratory criteria for FH but had not been diagnosed previously. This proof-of-concept study showed that it is possible to perform mining on EHR data albeit with some challenges and limitations.
Collapse
Affiliation(s)
| | | | - Teck Wah Ting
- Genetics Service, Department of Paediatrics, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore
- SingHealth Duke-NUS Genomic Medicine Centre, Singapore, Singapore
| | - Kaavya Narasimhalu
- SingHealth Duke-NUS Genomic Medicine Centre, Singapore, Singapore
- Department of Neurology, National Neuroscience Institute (Singapore General Hospital), Singapore, Singapore
| | - Jenny Hsieh
- SingHealth Duke-NUS Genomic Medicine Centre, Singapore, Singapore
- Department of Internal Medicine, Singapore General Hospital, Singapore, Singapore
| | - Sylvia Kam
- Genetics Service, Department of Paediatrics, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore
- SingHealth Duke-NUS Genomic Medicine Centre, Singapore, Singapore
| | - Jiin Ying Lim
- Genetics Service, Department of Paediatrics, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore
- SingHealth Duke-NUS Genomic Medicine Centre, Singapore, Singapore
| | - Weng Khong Lim
- SingHealth Duke-NUS Genomic Medicine Centre, Singapore, Singapore
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore, Singapore
- Cancer & Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
- Laboratory of Genome Variation Analytics, Genome Institute of Singapore, Singapore, Singapore
| | - Sonia Davila
- SingHealth Duke-NUS Genomic Medicine Centre, Singapore, Singapore
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore, Singapore
| | - Yasmin Bylstra
- SingHealth Duke-NUS Genomic Medicine Centre, Singapore, Singapore
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore, Singapore
| | - Iswaree Devi Balakrishnan
- SingHealth Duke-NUS Genomic Medicine Centre, Singapore, Singapore
- National Heart Centre Singapore, Singapore, Singapore
| | - Mark Heng
- SingHealth Office of Insights and Analytics, Singapore, Singapore
| | - Elian Chia
- SingHealth Office of Insights and Analytics, Singapore, Singapore
| | | | - Bee Keow Goh
- Data Analytics Office, KK Women's and Children's Hospital, Singapore, Singapore
| | | | - Tele Tan
- Curtin University, Perth, Australia
| | - Gareth Baynam
- Rare Care Centre, Perth Children's Hospital, Perth, WA, Australia
- Western Australian Register of Developmental Anomalies, Perth, WA, Australia
| | - Saumya Shekhar Jamuar
- Genetics Service, Department of Paediatrics, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore.
- SingHealth Duke-NUS Genomic Medicine Centre, Singapore, Singapore.
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore, Singapore.
| |
Collapse
|
2
|
Misra S, Wagner R, Ozkan B, Schön M, Sevilla-Gonzalez M, Prystupa K, Wang CC, Kreienkamp RJ, Cromer SJ, Rooney MR, Duan D, Thuesen ACB, Wallace AS, Leong A, Deutsch AJ, Andersen MK, Billings LK, Eckel RH, Sheu WHH, Hansen T, Stefan N, Goodarzi MO, Ray D, Selvin E, Florez JC, Meigs JB, Udler MS. Precision subclassification of type 2 diabetes: a systematic review. COMMUNICATIONS MEDICINE 2023; 3:138. [PMID: 37798471 PMCID: PMC10556101 DOI: 10.1038/s43856-023-00360-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Heterogeneity in type 2 diabetes presentation and progression suggests that precision medicine interventions could improve clinical outcomes. We undertook a systematic review to determine whether strategies to subclassify type 2 diabetes were associated with high quality evidence, reproducible results and improved outcomes for patients. METHODS We searched PubMed and Embase for publications that used 'simple subclassification' approaches using simple categorisation of clinical characteristics, or 'complex subclassification' approaches which used machine learning or 'omics approaches in people with established type 2 diabetes. We excluded other diabetes subtypes and those predicting incident type 2 diabetes. We assessed quality, reproducibility and clinical relevance of extracted full-text articles and qualitatively synthesised a summary of subclassification approaches. RESULTS Here we show data from 51 studies that demonstrate many simple stratification approaches, but none have been replicated and many are not associated with meaningful clinical outcomes. Complex stratification was reviewed in 62 studies and produced reproducible subtypes of type 2 diabetes that are associated with outcomes. Both approaches require a higher grade of evidence but support the premise that type 2 diabetes can be subclassified into clinically meaningful subtypes. CONCLUSION Critical next steps toward clinical implementation are to test whether subtypes exist in more diverse ancestries and whether tailoring interventions to subtypes will improve outcomes.
Collapse
Affiliation(s)
- Shivani Misra
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, UK.
| | - Robert Wagner
- Department of Endocrinology and Diabetology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Bige Ozkan
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Martin Schön
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Magdalena Sevilla-Gonzalez
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Katsiaryna Prystupa
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Caroline C Wang
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Raymond J Kreienkamp
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Diabetes Unit, Division of Endocrinology, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
| | - Sara J Cromer
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Diabetes Unit, Division of Endocrinology, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Mary R Rooney
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Daisy Duan
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anne Cathrine Baun Thuesen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amelia S Wallace
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Aaron Leong
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Diabetes Unit, Division of Endocrinology, Massachusetts General Hospital, Boston, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, 100 Cambridge St 16th Floor, Boston, MA, USA
| | - Aaron J Deutsch
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Diabetes Unit, Division of Endocrinology, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Mette K Andersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Liana K Billings
- Division of Endocrinology, Diabetes and Metabolism, NorthShore University Health System, Skokie, IL, USA
- Department of Medicine, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Robert H Eckel
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Wayne Huey-Herng Sheu
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli County, Taiwan, ROC
- Division of Endocrinology and Metabolism, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
- Division of Endocrinology and Metabolism, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Norbert Stefan
- German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- University Hospital of Tübingen, Tübingen, Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM), Helmholtz Center Munich, Neuherberg, Germany
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Debashree Ray
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Elizabeth Selvin
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jose C Florez
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Diabetes Unit, Division of Endocrinology, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - James B Meigs
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, 100 Cambridge St 16th Floor, Boston, MA, USA
| | - Miriam S Udler
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Diabetes Unit, Division of Endocrinology, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
6
|
Brady V, Whisenant M, Wang X, Ly VK, Zhu G, Aguilar D, Wu H. Characterization of Symptoms and Symptom Clusters for Type 2 Diabetes Using a Large Nationwide Electronic Health Record Database. Diabetes Spectr 2022; 35:159-170. [PMID: 35668892 PMCID: PMC9160545 DOI: 10.2337/ds21-0064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE A variety of symptoms may be associated with type 2 diabetes and its complications. Symptoms in chronic diseases may be described in terms of prevalence, severity, and trajectory and often co-occur in groups, known as symptom clusters, which may be representative of a common etiology. The purpose of this study was to characterize type 2 diabetes-related symptoms using a large nationwide electronic health record (EHR) database. METHODS We acquired the Cerner Health Facts, a nationwide EHR database. The type 2 diabetes cohort (n = 1,136,301 patients) was identified using a rule-based phenotype method. A multistep procedure was then used to identify type 2 diabetes-related symptoms based on International Classification of Diseases, 9th and 10th revisions, diagnosis codes. Type 2 diabetes-related symptoms and co-occurring symptom clusters, including their temporal patterns, were characterized based the longitudinal EHR data. RESULTS Patients had a mean age of 61.4 years, 51.2% were female, and 70.0% were White. Among 1,136,301 patients, there were 8,008,276 occurrences of 59 symptoms. The most frequently reported symptoms included pain, heartburn, shortness of breath, fatigue, and swelling, which occurred in 21-60% of the patients. We also observed over-represented type 2 diabetes symptoms, including difficulty speaking, feeling confused, trouble remembering, weakness, and drowsiness/sleepiness. Some of these are rare and difficult to detect by traditional patient-reported outcomes studies. CONCLUSION To the best of our knowledge, this is the first study to use a nationwide EHR database to characterize type 2 diabetes-related symptoms and their temporal patterns. Fifty-nine symptoms, including both over-represented and rare diabetes-related symptoms, were identified.
Collapse
Affiliation(s)
- Veronica Brady
- Cizik School of Nursing, The University of Texas Health Science Center at Houston, Houston, TX
| | - Meagan Whisenant
- Cizik School of Nursing, The University of Texas Health Science Center at Houston, Houston, TX
| | - Xueying Wang
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Vi K. Ly
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Gen Zhu
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - David Aguilar
- McGovern School of Medicine, The University of Texas Health Science Center at Houston, Houston, TX
| | - Hulin Wu
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
- Corresponding author: Hulin Wu,
| |
Collapse
|