1
|
Ungermann C, Moeller A. Structuring of the endolysosomal system by HOPS and CORVET tethering complexes. Curr Opin Cell Biol 2025; 94:102504. [PMID: 40187049 DOI: 10.1016/j.ceb.2025.102504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 04/07/2025]
Abstract
Eukaryotic cells depend on their endolysosomal system for membrane protein and organelle turnover, plasma membrane quality control, or regulation of their nutrient uptake. All material eventually ends up in the lytic environment of the lysosome for cellular recycling. At endosomes and lysosomes, the multisubunit complexes CORVET and HOPS tether membranes by binding both their cognate Rab GTPase and specific membrane lipids. Additionally, they carry one Sec1/Munc18-like subunit at their center and thus promote SNARE assembly and, subsequently, bilayer mixing. Recent structural and functional analysis provided insights into their organization and suggested how these complexes combine tethering with fusion catalysis. This review discusses the function and structural organization of HOPS and CORVET in the context of recent studies in yeast and metazoan cells.
Collapse
Affiliation(s)
- Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Barbarastrasse 13, 49076, Osnabrück, Germany; Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, Barbarastrasse 11, 49076, Osnabrück, Germany.
| | - Arne Moeller
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, Barbarastrasse 11, 49076, Osnabrück, Germany; Department of Biology/Chemistry, Structural Biology Section, Osnabrück University, Barbarastrasse 13, 49076, Osnabrück, Germany.
| |
Collapse
|
2
|
Shvarev D, König C, Susan N, Langemeyer L, Walter S, Perz A, Fröhlich F, Ungermann C, Moeller A. Structure of the endosomal CORVET tethering complex. Nat Commun 2024; 15:5227. [PMID: 38898033 PMCID: PMC11187117 DOI: 10.1038/s41467-024-49137-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Cells depend on their endolysosomal system for nutrient uptake and downregulation of plasma membrane proteins. These processes rely on endosomal maturation, which requires multiple membrane fusion steps. Early endosome fusion is promoted by the Rab5 GTPase and its effector, the hexameric CORVET tethering complex, which is homologous to the lysosomal HOPS. How these related complexes recognize their specific target membranes remains entirely elusive. Here, we solve the structure of CORVET by cryo-electron microscopy and revealed its minimal requirements for membrane tethering. As expected, the core of CORVET and HOPS resembles each other. However, the function-defining subunits show marked structural differences. Notably, we discover that unlike HOPS, CORVET depends not only on Rab5 but also on phosphatidylinositol-3-phosphate (PI3P) and membrane lipid packing defects for tethering, implying that an organelle-specific membrane code enables fusion. Our data suggest that both shape and membrane interactions of CORVET and HOPS are conserved in metazoans, thus providing a paradigm how tethering complexes function.
Collapse
Affiliation(s)
- Dmitry Shvarev
- Department of Biology/Chemistry, Structural Biology Section, Osnabrück University, 49076, Osnabrück, Germany
| | - Caroline König
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, 49076, Osnabrück, Germany
| | - Nicole Susan
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, 49076, Osnabrück, Germany
| | - Lars Langemeyer
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, 49076, Osnabrück, Germany
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Stefan Walter
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Angela Perz
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, 49076, Osnabrück, Germany
| | - Florian Fröhlich
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
- Department of Biology/Chemistry, Bioanalytical Chemistry Section, Osnabrück University, 49076, Osnabrück, Germany
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, 49076, Osnabrück, Germany.
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany.
| | - Arne Moeller
- Department of Biology/Chemistry, Structural Biology Section, Osnabrück University, 49076, Osnabrück, Germany.
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany.
| |
Collapse
|
3
|
Sőth Á, Molnár M, Lőrincz P, Simon-Vecsei Z, Juhász G. CORVET-specific subunit levels determine the balance between HOPS/CORVET endosomal tethering complexes. Sci Rep 2024; 14:10146. [PMID: 38698024 PMCID: PMC11066007 DOI: 10.1038/s41598-024-59775-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024] Open
Abstract
The closely related endolysosomal tethering complexes HOPS and CORVET play pivotal roles in the homo- and heterotypic fusion of early and late endosomes, respectively, and HOPS also mediates the fusion of lysosomes with incoming vesicles including late endosomes and autophagosomes. These heterohexameric complexes share their four core subunits that assemble with additional two, complex-specific subunits. These features and the similar structure of the complexes could allow the formation of hybrid complexes, and the complex specific subunits may compete for binding to the core. Indeed, our biochemical analyses revealed the overlap of binding sites for HOPS-specific VPS41 and CORVET-specific VPS8 on the shared core subunit VPS18. We found that the overexpression of CORVET-specific VPS8 or Tgfbrap1 decreased the amount of core proteins VPS11 and VPS18 that are assembled with HOPS-specific subunits VPS41 or VPS39, indicating reduced amount of assembled HOPS. In line with this, we observed the elevation of both lipidated, autophagosome-associated LC3 protein and the autophagic cargo p62 in these cells, suggesting impaired autophagosome-lysosome fusion. In contrast, overexpression of HOPS-specific VPS39 or VPS41 did not affect the level of assembled CORVET or autophagy. VPS8 or Tgfbrap1 overexpression also induced Cathepsin D accumulation, suggesting that HOPS-dependent biosynthetic delivery of lysosomal hydrolases is perturbed, too. These indicate that CORVET-specific subunit levels fine-tune HOPS assembly and activity in vivo.
Collapse
Affiliation(s)
- Ármin Sőth
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University (ELTE), Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Márton Molnár
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University (ELTE), Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
- Momentum Vesicle Trafficking Research Group, Hungarian Academy of Sciences-Eötvös Loránd University, Budapest, Hungary
| | - Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University (ELTE), Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
- Momentum Vesicle Trafficking Research Group, Hungarian Academy of Sciences-Eötvös Loránd University, Budapest, Hungary
| | - Zsófia Simon-Vecsei
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University (ELTE), Pázmány Péter sétány 1/C, Budapest, 1117, Hungary.
- Momentum Vesicle Trafficking Research Group, Hungarian Academy of Sciences-Eötvös Loránd University, Budapest, Hungary.
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University (ELTE), Pázmány Péter sétány 1/C, Budapest, 1117, Hungary.
- Momentum Lysosomal Degradation Research Group, Institute of Genetics, HUN-REN Biological Research Centre Szeged, Szeged, Hungary.
| |
Collapse
|
4
|
Terawaki S, Vasilev F, Moriwaki T, Otomo T. HOPS, CORVET and newly-identified Hybrid tethering complexes contribute differentially towards multiple modes of endocytosis. Sci Rep 2023; 13:18734. [PMID: 37907479 PMCID: PMC10618185 DOI: 10.1038/s41598-023-45418-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
Vesicular transport driven by membrane trafficking systems conserved in eukaryotes is critical to cellular functionality and homeostasis. It is known that homotypic fusion and vacuole protein sorting (HOPS) and class C core endosomal vacuole tethering (CORVET) interact with Rab-GTPases and SNARE proteins to regulate vesicle transport, fusion, and maturation in autophagy and endocytosis pathways. In this study, we identified two novel "Hybrid" tethering complexes in mammalian cells in which one of the subunits of HOPS or CORVET is replaced with the subunit from the other. Substrates taken up by receptor-mediated endocytosis or pinocytosis were transported by distinctive pathways, and the newly identified hybrid complexes contributed to pinocytosis in the presence of HOPS, whereas receptor-mediated endocytosis was exclusively dependent on HOPS. Our study provides new insights into the molecular mechanisms of the endocytic pathway and the function of the vacuolar protein sorting-associated (VPS) protein family.
Collapse
Affiliation(s)
- Seigo Terawaki
- Department of Molecular and Genetic Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Filipp Vasilev
- Department of Molecular and Genetic Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Takahito Moriwaki
- Department of Molecular and Genetic Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Takanobu Otomo
- Department of Molecular and Genetic Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| |
Collapse
|
5
|
Kong K, Xu M, Xu Z, Lv W, Lv P, Begum N, Liu B, Liu B, Zhao T. Dysfunction of GmVPS8a causes compact plant architecture in soybean. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 331:111677. [PMID: 36931563 DOI: 10.1016/j.plantsci.2023.111677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Vacuolar Protein Sorting 8 (Vps8) protein is a specific subunit of the class C core vacuole/endosome tethering (CORVET) complex that plays a key role in endosomal trafficking in yeast (Saccharomyces cerevisiae). However, its functions remain largely unclear in plant vegetative growth. Here, we identified a soybean (Glycine max) T4219 mutant characterized with compact plant architecture. Map-based cloning targeted to a candidate gene GmVPS8a (Glyma.07g049700) and further found that two nucleotides deletion in the first exon of GmVPS8a causes a premature termination of the encoded protein in the T4219 mutant. Its functions were validated by CRISPR/Cas9-engineered mutation in the GmVPS8a gene that recapitulated the T4219 mutant phenotypes. Furthermore, NbVPS8a-silenced tobacco (Nicotiana benthamiana) plants exhibited similar phenotypes to the T4219 mutant, suggesting its conserved roles in plant growth. The GmVPS8a is widely expressed in multiple organs and its protein interacts with GmAra6a and GmRab5a. Combined analysis of transcriptomic and proteomic data revealed that dysfunction of GmVPS8a mainly affects pathways on auxin signal transduction, sugar transport and metabolism, and lipid metabolism. Collectively, our work reveals the function of GmVPS8a in plant architecture, which may extend a new way for genetic improvement of ideal plant-architecture breeding in soybean and other crops.
Collapse
Affiliation(s)
- Keke Kong
- Soybean Research Institute, Key Laboratory of Biology and Genetic Improvement of Soybean, National Center for Soybean Improvement (Ministry of Agriculture), National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengge Xu
- Soybean Research Institute, Key Laboratory of Biology and Genetic Improvement of Soybean, National Center for Soybean Improvement (Ministry of Agriculture), National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyong Xu
- Soybean Research Institute, Key Laboratory of Biology and Genetic Improvement of Soybean, National Center for Soybean Improvement (Ministry of Agriculture), National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenhuan Lv
- Soybean Research Institute, Key Laboratory of Biology and Genetic Improvement of Soybean, National Center for Soybean Improvement (Ministry of Agriculture), National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Peiyun Lv
- Soybean Research Institute, Key Laboratory of Biology and Genetic Improvement of Soybean, National Center for Soybean Improvement (Ministry of Agriculture), National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Naheeda Begum
- Soybean Research Institute, Key Laboratory of Biology and Genetic Improvement of Soybean, National Center for Soybean Improvement (Ministry of Agriculture), National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Bingqiang Liu
- National Soybean Improvement Center Shijiazhuang Sub-Center, North China Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Laboratory of Crop Genetics and Breeding of Hebei, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Bin Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Tuanjie Zhao
- Soybean Research Institute, Key Laboratory of Biology and Genetic Improvement of Soybean, National Center for Soybean Improvement (Ministry of Agriculture), National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
Cornet-Gomez A, Retana Moreira L, Kronenberger T, Osuna A. Extracellular vesicles of trypomastigotes of Trypanosoma cruzi induce changes in ubiquitin-related processes, cell-signaling pathways and apoptosis. Sci Rep 2023; 13:7618. [PMID: 37165081 PMCID: PMC10171165 DOI: 10.1038/s41598-023-34820-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/08/2023] [Indexed: 05/12/2023] Open
Abstract
Chagas disease is caused by the protozoan parasite Trypanosoma cruzi. The disease has an acute and a chronic phase in which approximately 30% of the chronic patients suffer from heart disease and/or gastrointestinal symptoms. The pathogenesis of the disease is multifactorial and involves the virulence of the strains, immunological factors and extracellular vesicles (EV) shed by the parasite which participate in cell-cell communication and evasion of the immune response. In this work, we present a transcriptomic analysis of cells stimulated with EV of the trypomastigote stage of T. cruzi. Results after EV-cell incubation revealed 322 differentially expressed genes (168 were upregulated and 154 were downregulated). In this regard, the overexpression of genes related to ubiquitin-related processes (Ube2C, SUMO1 and SUMO2) is highlighted. Moreover, the expression of Rho-GTPases (RhoA, Rac1 and Cdc42) after the interaction was analyzed, revealing a downregulation of the analyzed genes after 4 h of interaction. Finally, a protective role of EV over apoptosis is suggested, as relative values of cells in early and late apoptosis were significantly lower in EV-treated cells, which also showed increased CSNK1G1 expression. These results contribute to a better understanding of the EV-cell interaction and support the role of EV as virulence factors.
Collapse
Affiliation(s)
- Alberto Cornet-Gomez
- Grupo de Bioquímica y Parasitología Molecular (CTS 183), Departamento de Parasitología, Instituto de Biotecnología, Universidad de Granada, Campus de Fuentenueva, 18071, Granada, Spain
| | - Lissette Retana Moreira
- Grupo de Bioquímica y Parasitología Molecular (CTS 183), Departamento de Parasitología, Instituto de Biotecnología, Universidad de Granada, Campus de Fuentenueva, 18071, Granada, Spain
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, 11501, Costa Rica
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery (TüCAD2), Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Antonio Osuna
- Grupo de Bioquímica y Parasitología Molecular (CTS 183), Departamento de Parasitología, Instituto de Biotecnología, Universidad de Granada, Campus de Fuentenueva, 18071, Granada, Spain.
| |
Collapse
|
7
|
Boda A, Varga LP, Nagy A, Szenci G, Csizmadia T, Lőrincz P, Juhász G. Rab26 controls secretory granule maturation and breakdown in Drosophila. Cell Mol Life Sci 2023; 80:24. [PMID: 36600084 PMCID: PMC9813115 DOI: 10.1007/s00018-022-04674-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023]
Abstract
At the onset of Drosophila metamorphosis, plenty of secretory glue granules are released from salivary gland cells and the glue is deposited on the ventral side of the forming (pre)pupa to attach it to a dry surface. Prior to this, a poorly understood maturation process takes place during which secretory granules gradually grow via homotypic fusions, and their contents are reorganized. Here we show that the small GTPase Rab26 localizes to immature (smaller, non-acidic) glue granules and its presence prevents vesicle acidification. Rab26 mutation accelerates the maturation, acidification and release of these secretory vesicles as well as the lysosomal breakdown (crinophagy) of residual, non-released glue granules. Strikingly, loss of Mon1, an activator of the late endosomal and lysosomal fusion factor Rab7, results in Rab26 remaining associated even with the large glue granules and a concomitant defect in glue release, similar to the effects of Rab26 overexpression. Our data thus identify Rab26 as a key regulator of secretory vesicle maturation that promotes early steps (vesicle growth) and inhibits later steps (lysosomal transport, acidification, content reorganization, release, and breakdown), which is counteracted by Mon1.
Collapse
Affiliation(s)
- Attila Boda
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Luca Petra Varga
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Anikó Nagy
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Győző Szenci
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Tamás Csizmadia
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary.
- Institute of Genetics, Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
8
|
Hargitai D, Kenéz L, Al-Lami M, Szenczi G, Lőrincz P, Juhász G. Autophagy controls Wolbachia infection upon bacterial damage and in aging Drosophila. Front Cell Dev Biol 2022; 10:976882. [PMID: 36299486 PMCID: PMC9589277 DOI: 10.3389/fcell.2022.976882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Autophagy is a conserved catabolic process in eukaryotic cells that degrades intracellular components in lysosomes, often in an organelle-specific selective manner (mitophagy, ERphagy, etc). Cells also use autophagy as a defense mechanism, eliminating intracellular pathogens via selective degradation known as xenophagy. Wolbachia pipientis is a Gram-negative intracellular bacterium, which is one of the most common parasites on Earth affecting approximately half of terrestrial arthropods. Interestingly, infection grants the host resistance against other pathogens and modulates lifespan, so this bacterium resembles an endosymbiont. Here we demonstrate that Drosophila somatic cells normally degrade a subset of these bacterial cells, and autophagy is required for selective elimination of Wolbachia upon antibiotic damage. In line with these, Wolbachia overpopulates in autophagy-compromised animals during aging while its presence fails to affect host lifespan unlike in case of control flies. The autophagic degradation of Wolbachia thus represents a novel antibacterial mechanism that controls the propagation of this unique bacterium, behaving both as parasite and endosymbiont at the same time.
Collapse
Affiliation(s)
- Dávid Hargitai
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Lili Kenéz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Muna Al-Lami
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Győző Szenczi
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
- *Correspondence: Péter Lőrincz, ; Gábor Juhász,
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
- *Correspondence: Péter Lőrincz, ; Gábor Juhász,
| |
Collapse
|
9
|
Kovács AL, Lőw P, Juhász G. The legacy of János Kovács: a lifelong devotion to advancing autophagy research. Autophagy 2022; 18:2017-2019. [PMID: 35737695 DOI: 10.1080/15548627.2022.2091263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Affiliation(s)
- Attila L Kovács
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Péter Lőw
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary.,Institute of Genetics, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
10
|
Lakatos Z, Benkő P, Juhász G, Lőrincz P. Drosophila Rab39 Attenuates Lysosomal Degradation. Int J Mol Sci 2021; 22:ijms221910635. [PMID: 34638976 PMCID: PMC8508792 DOI: 10.3390/ijms221910635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
Lysosomal degradation, the common destination of autophagy and endocytosis, is one of the most important elements of eukaryotic metabolism. The small GTPases Rab39A and B are potential new effectors of this pathway, as their malfunction is implicated in severe human diseases like cancer and neurodegeneration. In this study, the lysosomal regulatory role of the single Drosophila Rab39 ortholog was characterized, providing valuable insight into the potential cell biological mechanisms mediated by these proteins. Using a de novo CRISPR-generated rab39 mutant, we found no failure in the early steps of endocytosis and autophagy. On the contrary, we found that Rab39 mutant nephrocytes internalize and degrade endocytic cargo at a higher rate compared to control cells. In addition, Rab39 mutant fat body cells contain small yet functional autolysosomes without lysosomal fusion defect. Our data identify Drosophila Rab39 as a negative regulator of lysosomal clearance during both endocytosis and autophagy.
Collapse
Affiliation(s)
- Zsolt Lakatos
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, H-1117 Budapest, Hungary; (Z.L.); (P.B.)
| | - Péter Benkő
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, H-1117 Budapest, Hungary; (Z.L.); (P.B.)
- Department of Physiology, Semmelweis University, H-1094 Budapest, Hungary
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, H-1117 Budapest, Hungary; (Z.L.); (P.B.)
- Biological Research Centre, Institute of Genetics, Hungarian Academy of Sciences, H-6726 Szeged, Hungary
- Correspondence: (G.J.); (P.L.)
| | - Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, H-1117 Budapest, Hungary; (Z.L.); (P.B.)
- Premium Postdoctoral Research Program, Hungarian Academy of Sciences, H-1052 Budapest, Hungary
- Correspondence: (G.J.); (P.L.)
| |
Collapse
|
11
|
Simon-Vecsei Z, Sőth Á, Lőrincz P, Rubics A, Tálas A, Kulcsár PI, Juhász G. Identification of New Interactions between Endolysosomal Tethering Factors. J Mol Biol 2021; 433:166965. [PMID: 33781757 DOI: 10.1016/j.jmb.2021.166965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 02/28/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Proper functioning of the precisely controlled endolysosomal system is essential for maintaining the homeostasis of the entire cell. Tethering factors play pivotal roles in mediating the fusion of different transport vesicles, such as endosomes or autophagosomes with each other or with lysosomes. In this work, we uncover several new interactions between the endolysosomal tethering factors Rabenosyn-5 (Rbsn) and the HOPS and CORVET complexes. We find that Rbsn binds to the HOPS/CORVET complexes mainly via their shared subunit Vps18 and we mapped this interaction to the 773-854 region of Vps18. Based on genetic rescue experiments, the binding between Rbsn and Vps18 is required for endosomal transport and is dispensable for autophagy. Moreover, Vps18 seems to be important for β1 integrin recycling by binding to Rbsn and its known partner Vps45.
Collapse
Affiliation(s)
- Zsófia Simon-Vecsei
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary.
| | - Ármin Sőth
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary; Premium Postdoctoral Research Program, Eötvös Loránd Research Network, Budapest, Hungary
| | - András Rubics
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - András Tálas
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Péter István Kulcsár
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary; Institute of Genetics, Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
12
|
The Role of Deubiquitinating Enzymes in the Various Forms of Autophagy. Int J Mol Sci 2020; 21:ijms21124196. [PMID: 32545524 PMCID: PMC7352190 DOI: 10.3390/ijms21124196] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022] Open
Abstract
Deubiquitinating enzymes (DUBs) have an essential role in several cell biological processes via removing the various ubiquitin patterns as posttranslational modification forms from the target proteins. These enzymes also contribute to the normal cytoplasmic ubiquitin pool during the recycling of this molecule. Autophagy, a summary name of the lysosome dependent self-degradative processes, is necessary for maintaining normal cellular homeostatic equilibrium. Numerous forms of autophagy are known depending on how the cellular self-material is delivered into the lysosomal lumen. In this review we focus on the colorful role of DUBs in autophagic processes and discuss the mechanistic contribution of these molecules to normal cellular homeostasis via the possible regulation forms of autophagic mechanisms.
Collapse
|
13
|
Takáts S, Lévay L, Boda A, Tóth S, Simon-Vecsei Z, Rubics A, Varga Á, Lippai M, Lőrincz P, Glatz G, Juhász G. The Warburg Micro Syndrome-associated Rab3GAP-Rab18 module promotes autolysosome maturation through the Vps34 Complex I. FEBS J 2020; 288:190-211. [PMID: 32248620 DOI: 10.1111/febs.15313] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 02/10/2020] [Accepted: 03/26/2020] [Indexed: 12/23/2022]
Abstract
Warburg micro syndrome (WMS) is a hereditary autosomal neuromuscular disorder in humans caused by mutations in Rab18, Rab3GAP1, or Rab3GAP2 genes. Rab3GAP1/2 forms a heterodimeric complex, which acts as a guanosine nucleotide exchange factor and activates Rab18. Although the genetic causes of WMS are known, it is still unclear whether loss of the Rab3GAP-Rab18 module affects neuronal or muscle cell physiology or both, and how. In this work, we characterize a Rab3GAP2 mutant Drosophila line to establish a novel animal model for WMS. Similarly to symptoms of WMS, loss of Rab3GAP2 leads to highly decreased motility in Drosophila that becomes more serious with age. We demonstrate that these mutant flies are defective for autophagic degradation in multiple tissues including fat cells and muscles. Loss of Rab3GAP-Rab18 module members leads to perturbed autolysosome morphology due to destabilization of Rab7-positive autophagosomal and late endosomal compartments and perturbation of lysosomal biosynthetic transport. Importantly, overexpression of UVRAG or loss of Atg14, two alternative subunits of the Vps34/PI3K (vacuole protein sorting 34/phosphatidylinositol 3-kinase) complexes in fat cells, mimics the autophagic phenotype of Rab3GAP-Rab18 module loss. We find that GTP-bound Rab18 binds to Atg6/Beclin1, a permanent subunit of Vps34 complexes. Finally, we show that Rab3GAP2 and Rab18 are present on autophagosomal and autolysosomal membranes and colocalize with Vps34 Complex I subunits. Our data suggest that the Rab3GAP-Rab18 module regulates autolysosomal maturation through its interaction with the Vps34 Complex I, and perturbed autophagy due to loss of the Rab3GAP-Rab18 module may contribute to the development of WMS.
Collapse
Affiliation(s)
- Szabolcs Takáts
- Department of Anatomy, Cell and Developmental Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,Premium Postdoctorate Research Program, Hungarian Academy of Sciences, Budapest, Hungary
| | - Luca Lévay
- Department of Anatomy, Cell and Developmental Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Attila Boda
- Department of Anatomy, Cell and Developmental Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Sarolta Tóth
- Department of Anatomy, Cell and Developmental Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zsófia Simon-Vecsei
- Department of Anatomy, Cell and Developmental Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - András Rubics
- Department of Anatomy, Cell and Developmental Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ágnes Varga
- Department of Anatomy, Cell and Developmental Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Mónika Lippai
- Department of Anatomy, Cell and Developmental Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,Premium Postdoctorate Research Program, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Glatz
- Department of Anatomy, Cell and Developmental Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
14
|
Lőrincz P, Juhász G. Autophagosome-Lysosome Fusion. J Mol Biol 2020; 432:2462-2482. [DOI: 10.1016/j.jmb.2019.10.028] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 12/26/2022]
|
15
|
Stefaniak S, Wojtyla Ł, Pietrowska-Borek M, Borek S. Completing Autophagy: Formation and Degradation of the Autophagic Body and Metabolite Salvage in Plants. Int J Mol Sci 2020; 21:E2205. [PMID: 32210003 PMCID: PMC7139740 DOI: 10.3390/ijms21062205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an evolutionarily conserved process that occurs in yeast, plants, and animals. Despite many years of research, some aspects of autophagy are still not fully explained. This mostly concerns the final stages of autophagy, which have not received as much interest from the scientific community as the initial stages of this process. The final stages of autophagy that we take into consideration in this review include the formation and degradation of the autophagic bodies as well as the efflux of metabolites from the vacuole to the cytoplasm. The autophagic bodies are formed through the fusion of an autophagosome and vacuole during macroautophagy and by vacuolar membrane invagination or protrusion during microautophagy. Then they are rapidly degraded by vacuolar lytic enzymes, and products of the degradation are reused. In this paper, we summarize the available information on the trafficking of the autophagosome towards the vacuole, the fusion of the autophagosome with the vacuole, the formation and decomposition of autophagic bodies inside the vacuole, and the efflux of metabolites to the cytoplasm. Special attention is given to the formation and degradation of autophagic bodies and metabolite salvage in plant cells.
Collapse
Affiliation(s)
- Szymon Stefaniak
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (S.S.); (Ł.W.)
| | - Łukasz Wojtyla
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (S.S.); (Ł.W.)
| | - Małgorzata Pietrowska-Borek
- Department of Biochemistry and Biotechnology, Faculty of Agronomy and Bioengineering, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| | - Sławomir Borek
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (S.S.); (Ł.W.)
| |
Collapse
|
16
|
Zhang C, Ma Y, Miao H, Tang X, Xu B, Wu Q, Mu Y, Huang Z. Transcriptomic Analysis of Pichia pastoris ( Komagataella phaffii) GS115 During Heterologous Protein Production Using a High-Cell-Density Fed-Batch Cultivation Strategy. Front Microbiol 2020; 11:463. [PMID: 32265887 PMCID: PMC7098997 DOI: 10.3389/fmicb.2020.00463] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/04/2020] [Indexed: 12/27/2022] Open
Abstract
Pichia pastoris (Komagataella phaffii) is a methylotrophic yeast that is widely used in industry as a host system for heterologous protein expression. Heterologous gene expression is typically facilitated by strongly inducible promoters derived from methanol utilization genes or constitutive glycolytic promoters. However, protein production is usually accomplished by a fed-batch induction process, which is known to negatively affect cell physiology, resulting in limited protein yields and quality. To assess how yields of exogenous proteins can be increased and to further understand the physiological response of P. pastoris to the carbon conversion of glycerol and methanol, as well as the continuous induction of methanol, we analyzed recombinant protein production in a 10,000-L fed-batch culture. Furthermore, we investigated gene expression during the yeast cell culture phase, glycerol feed phase, glycerol-methanol mixture feed (GM) phase, and at different time points following methanol induction using RNA-Seq. We report that the addition of the GM phase may help to alleviate the adverse effects of methanol addition (alone) on P. pastoris cells. Secondly, enhanced upregulation of the mitogen-activated protein kinase (MAPK) signaling pathway was observed in P. pastoris following methanol induction. The MAPK signaling pathway may be related to P. pastoris cell growth and may regulate the alcohol oxidase1 (AOX1) promoter via regulatory factors activated by methanol-mediated stimulation. Thirdly, the unfolded protein response (UPR) and ER-associated degradation (ERAD) pathways were not significantly upregulated during the methanol induction period. These results imply that the presence of unfolded or misfolded phytase protein did not represent a serious problem in our study. Finally, the upregulation of the autophagy pathway during the methanol induction phase may be related to the degradation of damaged peroxisomes but not to the production of phytase. This work describes the metabolic characteristics of P. pastoris during heterologous protein production under high-cell-density fed-batch cultivation. We believe that the results of this study will aid further in-depth studies of P. pastoris heterologous protein expression, regulation, and secretory mechanisms.
Collapse
Affiliation(s)
- Chengbo Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
| | - Yu Ma
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Huabiao Miao
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
| | - Xianghua Tang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Bo Xu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Qian Wu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Yuelin Mu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| |
Collapse
|
17
|
Csizmadia T, Juhász G. Crinophagy mechanisms and its potential role in human health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 172:239-255. [PMID: 32620244 DOI: 10.1016/bs.pmbts.2020.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autophagic-lysosomal degradation is essential for the maintenance of normal homeostasis in eukaryotic cells. Several types of such self-degradative and recycling pathways have been identified. From these, probably the least known autophagic process is crinophagy, during which unnecessary or obsolete secretory granules directly fuse with late endosomes/lysosomes as a means of rapid elimination of unused secretory material from the cytoplasm. This process was identified in 1966, but we are only beginning to understand the molecular mechanisms and regulation of crinophagy. In this review, we summarize the current examination methods and possible model systems, discuss the recently identified factors that are required for crinophagy, and give an overview of the potential medical relevance of this process.
Collapse
Affiliation(s)
- Tamás Csizmadia
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary; Institute of Genetics, Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
18
|
Lakatos Z, Lőrincz P, Szabó Z, Benkő P, Kenéz LA, Csizmadia T, Juhász G. Sec20 is Required for Autophagic and Endocytic Degradation Independent of Golgi-ER Retrograde Transport. Cells 2019; 8:cells8080768. [PMID: 31344970 PMCID: PMC6721519 DOI: 10.3390/cells8080768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 01/07/2023] Open
Abstract
Endocytosis and autophagy are evolutionarily conserved degradative processes in all eukaryotes. Both pathways converge to the lysosome where cargo is degraded. Improper lysosomal degradation is observed in many human pathologies, so its regulatory mechanisms are important to understand. Sec20/BNIP1 (BCL2/adenovirus E1B 19 kDa protein-interacting protein 1) is a BH3 (Bcl-2 homology 3) domain-containing SNARE (soluble N-ethylmaleimide-sensitive factor-attachment protein receptors) protein that has been suggested to promote Golgi-ER retrograde transport, mitochondrial fission, apoptosis and mitophagy in yeast and vertebrates. Here, we show that loss of Sec20 in Drosophila fat cells causes the accumulation of autophagic vesicles and prevents proper lysosomal acidification and degradation during bulk, starvation-induced autophagy. Furthermore, Sec20 knockdown leads to the enlargement of late endosomes and accumulation of defective endolysosomes in larval Drosophila nephrocytes. Importantly, the loss of Syx18 (Syntaxin 18), one of the known partners of Sec20, led to similar changes in nephrocytes and fat cells. Interestingly. Sec20 appears to function independent of its role in Golgi-ER retrograde transport in regulating lysosomal degradation, as the loss of its other partner SNAREs Use1 (Unconventional SNARE In The ER 1) and Sec22 or tethering factor Zw10 (Zeste white 10), which function together in the Golgi-ER pathway, does not cause defects in autophagy or endocytosis. Thus, our data identify a potential new transport route specific to lysosome biogenesis and function.
Collapse
Affiliation(s)
- Zsolt Lakatos
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, H-1117 Budapest, Hungary
- Premium Postdoctoral Research Program, Hungarian Academy of Sciences, H-1117 Budapest, Hungary
| | - Zoltán Szabó
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Péter Benkő
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Lili Anna Kenéz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Tamás Csizmadia
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, H-1117 Budapest, Hungary.
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Hungary.
| |
Collapse
|