1
|
He Y, Wei Z, Xu J, Jin F, Li T, Qian L, Ma J, Zheng W, Javanmardi N, Wang T, Sun K, Feng ZQ. Genetics-Based Targeting Strategies for Precise Neuromodulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e13817. [PMID: 40387259 DOI: 10.1002/advs.202413817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/10/2025] [Indexed: 05/20/2025]
Abstract
Genetics-based neuromodulation schemes are capable of selectively manipulating the activity of defined cell populations with high temporal-spatial resolution, providing unprecedented opportunities for probing cellular biological mechanisms, resolving neuronal projection pathways, mapping neural profiles, and precisely treating neurological and psychiatric disorders. Multimodal implementation schemes, which involve the use of exogenous stimuli such as light, heat, mechanical force, chemicals, electricity, and magnetic stimulation in combination with specific genetically engineered effectors, greatly expand their application space and scenarios. In particular, advanced wireless stimulation schemes have enabled low-invasive targeted neuromodulation through local delivery of navigable micro- and nanosized stimulators. In this review, the fundamental principles and implementation protocols of genetics-based precision neuromodulation are first introduced.The implementation schemes are systematically summarized, including optical, thermal, force, chemical, electrical, and magnetic stimulation, with an emphasis on those wireless and low-invasive strategies. Representative studies are dissected and analyzed for their advantages and disadvantages. Finally, the significance of genetics-based precision neuromodulation is emphasized and the open challenges and future perspectives are concluded.
Collapse
Affiliation(s)
- Yuyuan He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P.R. China
| | - Zhidong Wei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P.R. China
| | - Jianda Xu
- Department of Orthopedics, Changzhou Hospital of Traditional Chinese Medicine, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, 213003, P. R. China
| | - Fei Jin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P.R. China
| | - Tong Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P.R. China
| | - Lili Qian
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P.R. China
| | - Juan Ma
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P.R. China
| | - Weiying Zheng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P.R. China
| | - Negar Javanmardi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P.R. China
| | - Ting Wang
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, P.R. China
| | - Kangjian Sun
- The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210031, P. R. China
| | - Zhang-Qi Feng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P.R. China
| |
Collapse
|
2
|
Wang S, Yang J, Zhen C, Wang H, Shang P. Electromagnetic fields regulate iron metabolism: From mechanisms to applications. J Adv Res 2025:S2090-1232(25)00288-7. [PMID: 40311754 DOI: 10.1016/j.jare.2025.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 04/06/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND Electromagnetic fields (EMFs), as a form of physical therapy, have been widely applied in biomedicine. Iron, the most abundant trace metal in living organisms, plays a critical role in various physiological processes, and imbalances in its metabolism are closely associated with the development and progression of numerous diseases. Numerous studies have demonstrated that EMF exposureinduces significant changes in both systemic and cellular iron metabolism. AIM OF REVIEW This review aims to summarize the evidence and potential biophysical mechanisms underlying the role of EMFs in regulating iron metabolism, thereby enhancing the understanding of their biological mechanisms and expanding their potential applications in biomedical fields. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, we have synthesized research findings and proposed the hypothesis that the biophysical mechanisms of EMFs regulate iron metabolism involve the special electromagnetic properties of iron-containing proteins and iron-enriched tissues, as well as the modulation of membrane structure and function, ion channels, and the generation and activity of Reactive Oxygen Species (ROS). Then, the review summarizes the latest advances in the effects of EMFs on iron metabolism and their safety, as well as their impact on immunoregulation, cardiovascular diseases, neurological diseases, orthopedic diseases, diabetes, liver injury, and cancer.
Collapse
Affiliation(s)
- Shenghang Wang
- Department of Spine Surgery, People's Hospital of Longhua, Shenzhen, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
| | - Jiancheng Yang
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Chenxiao Zhen
- Department of Spine Surgery, People's Hospital of Longhua, Shenzhen, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China; School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Huiru Wang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China; School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China.
| |
Collapse
|
3
|
Alipour M, Abdolmaleki M, Shabanpour Y, Zali A, Ashrafi F, Nohesara S, Hajipour-Verdom B. Advances in magnetic field approaches for non-invasive targeting neuromodulation. Front Hum Neurosci 2025; 19:1489940. [PMID: 40356879 PMCID: PMC12066545 DOI: 10.3389/fnhum.2025.1489940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 04/09/2025] [Indexed: 05/15/2025] Open
Abstract
Neuromodulation, the targeted regulation of nerve activity, has emerged as a promising approach for treating various neurological and psychiatric disorders. While deep brain stimulation has shown efficacy, its invasive nature poses substantial risks, including surgical complications and high costs. In contrast, non-invasive neuromodulation techniques, particularly those utilizing magnetic fields (MFs), have gained increasing attention as safer, more accessible alternatives. Magnetothermal stimulation has emerged as an innovative method that enables precise modulation of neuronal ion channels through localized heating induced by interaction of MF with biological tissues. This review discusses the principles of MF-based neuromodulation and highlights the critical role of ion channels in synaptic transmission, and the therapeutic potential of these advanced techniques. Additionally, it highlights key challenges such as spatial targeting precision, safety considerations, and the long-term effects of magnetic exposure on brain function. The findings presente the promise of MF-based neuromodulation as a non-invasive, highly targeted therapeutic strategy for conditions such as epilepsy, movement disorders, and neurodegenerative diseases, with potential applications in chronic pain management and future clinical interventions.
Collapse
Affiliation(s)
- Mozhgan Alipour
- Functional Neurosurgery Research Center, Research Institute of Functional Neurosurgery, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Abdolmaleki
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yaser Shabanpour
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Research Institute of Functional Neurosurgery, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Ashrafi
- Functional Neurosurgery Research Center, Research Institute of Functional Neurosurgery, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Behnam Hajipour-Verdom
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Integrative Oncology, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| |
Collapse
|
4
|
Pozo MR, Heinson YW, Chua CJ, Entcheva E. Control of cardiac waves in human iPSC-CM syncytia by a Halbach array and magnetic nanoparticles. Biophys J 2025; 124:1273-1284. [PMID: 40077966 PMCID: PMC12044394 DOI: 10.1016/j.bpj.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/11/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025] Open
Abstract
The Halbach array, originally developed for particle accelerators, is a compact arrangement of permanent magnets that creates well-defined magnetic fields without heating. Here, we demonstrate its use for modulating the speed of electromechanical waves in cardiac syncytia of human stem cell-derived cardiomyocytes. At 40-50 mT magnetic field strength, a cylindrical dipolar Halbach array boosted the conduction velocity (CV) by up to 25% when the magnetic field was co-aligned with the electromechanical wave (but not when perpendicular to it). To observe the effects, a short-term incubation of the cardiac cell constructs with non-targeted magnetic nanoparticles (mNPs) was sufficient. This led to increased CV anisotropy, and effects were most pronounced at slower pacing rates. Instantaneous formation and rearrangement of elongated mNP clusters upon magnetic-field rotation was seen, creating dynamic structural anisotropy that may have contributed to the directional CV effects. This approach may be useful for anti-arrhythmic control of cardiac waves.
Collapse
Affiliation(s)
- Maria R Pozo
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | - Yuli W Heinson
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | - Christianne J Chua
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia.
| |
Collapse
|
5
|
Zhou Y. Focused Ultrasound Neuromodulation to Peripheral Nerve System. Eur J Neurosci 2025; 61:e70062. [PMID: 40170299 DOI: 10.1111/ejn.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 04/03/2025]
Abstract
Noninvasive focused ultrasound (FUS) has been applied in the treatment of various targets. Neuromodulation using FUS is emerging as a promising therapeutic modality for the central nerve system (CNS) with the advantages of deep penetration and precise targeting in the brain. This technique can also be applied to the peripheral nerve system (PNS). The principle of FUS and the mechanisms of neromodulation on PNS are summarized. Current experimental observations on the PNS targets are introduced to show their therapeutic effects. Discussion on the limitations and perspectives of this technology illustrates the pros and cons for future development. FUS provides a noninvasive, safe, and effective modality for neurotherapeutics. Although the relevant research on PNS is much less than that on CNS, the limited studies have already shown the satisfactory performance of FUS in comparison to the FDA-approved implanted device, especially the vagus nerve stimulation (VNS). Wide applications in clinics and fast development in technology are expected in the near future.
Collapse
Affiliation(s)
- Yufeng Zhou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Evaluation of Ultrasonic Surgical Equipment, Wuhan, Hubei, China
| |
Collapse
|
6
|
Zablotskii V, Polyakova T, Dejneka A. Exploring Ion Channel Magnetic Pharmacology: Are Magnetic Cues a Viable Alternative to Ion Channel Drugs? Bioessays 2025; 47:e202400200. [PMID: 39651810 PMCID: PMC11848120 DOI: 10.1002/bies.202400200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 12/11/2024]
Abstract
We explore the potential of using magnetic cues as a novel approach to modulating ion channel expression, which could provide an alternative to traditional pharmacological interventions. Ion channels are crucial targets for pharmacological therapies, and ongoing research in this field continues to introduce new methods for treating various diseases. However, the efficacy of ion channel drugs is often compromised by issues such as target selectivity, leading to side effects, toxicity, and complex drug interactions. These challenges, along with problems like drug resistance and difficulties in crossing biological barriers, highlight the need for innovative strategies. In this context, the proposed use of magnetic cues to modulate ion channel expression may offer a promising solution to address these limitations, potentially improving the safety and effectiveness of treatments, particularly for long-term use. Key developments in this area are reviewed, the relationships between changes in ion channel expression and magnetic fields are summarized, knowledge gaps are identified, and central issues relevant to future research are discussed.
Collapse
Affiliation(s)
- Vitalii Zablotskii
- Institute of Physics of the Czech Academy of SciencesPragueCzech Republic
| | - Tatyana Polyakova
- Institute of Physics of the Czech Academy of SciencesPragueCzech Republic
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of SciencesPragueCzech Republic
| |
Collapse
|
7
|
Yang X, Kubican SE, Yi Z, Tong S. Advances in magnetic nanoparticles for molecular medicine. Chem Commun (Camb) 2025; 61:3093-3108. [PMID: 39846549 PMCID: PMC11756346 DOI: 10.1039/d4cc05167j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/20/2025] [Indexed: 01/24/2025]
Abstract
Magnetic nanoparticles (MNPs) are highly versatile nanomaterials in nanomedicine, owing to their diverse magnetic properties, which can be tailored through variations in size, shape, composition, and exposure to inductive magnetic fields. Over four decades of research have led to the clinical approval or ongoing trials of several MNP formulations, fueling continued innovation. Beyond traditional applications in drug delivery, imaging, and cancer hyperthermia, MNPs have increasingly advanced into molecular medicine. Under external magnetic fields, MNPs can generate mechano- or thermal stimuli to modulate individual molecules or cells deep within tissue, offering precise, remote control of biological processes at cellular and molecular levels. These unique capabilities have opened new avenues in emerging fields such as genome editing, cell therapies, and neuroscience, underpinned by a growing understanding of nanomagnetism and the molecular mechanisms responding to mechanical and thermal cues. Research on MNPs as a versatile synthetic material capable of engineering control at the cellular and molecular levels holds great promise for advancing the frontiers of molecular medicine, including areas such as genome editing and synthetic biology. This review summarizes recent clinical studies showcasing the classical applications of MNPs and explores their integration into molecular medicine, with the goal of inspiring the development of next-generation MNP-based platforms for disease treatment.
Collapse
Affiliation(s)
- Xiaoyue Yang
- F. Joseph Halcomb III, M. D. Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40536, USA.
| | - Sarah E Kubican
- F. Joseph Halcomb III, M. D. Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40536, USA.
| | - Zhongchao Yi
- F. Joseph Halcomb III, M. D. Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40536, USA.
| | - Sheng Tong
- F. Joseph Halcomb III, M. D. Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40536, USA.
| |
Collapse
|
8
|
Duret G, Coffler S, Avant B, Kim W, Peterchev AV, Robinson J. Magnetic activation of electrically active cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.636926. [PMID: 39975002 PMCID: PMC11839070 DOI: 10.1101/2025.02.07.636926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Magnetic control of cell activity has applications ranging from non-invasive neurostimulation to remote activation of cell-based therapies. Unlike other methods of regulating cell activity like heat and light, which are based on known receptors or proteins, no magnetically gated channel has been identified to date. As a result, effective approaches for magnetic control of cell activity are based on strong alternating magnetic fields able to induce electric fields or materials that convert magnetic energy into electrical, thermal, or mechanical energy to stimulate cells. In our investigations of magnetic cell responses, we found that a spiking HEK cell line with no other co-factors responds to a magnetic field that reaches a maximum of 500 mT within 200 ms using a permanent magnet. The response is rare, approximately 1 in 50 cells, but is fast and reproducible, generating an action potential within 200 ms of magnetic field stimulation. The magnetic field stimulation is over 10,000 times slower than the magnetic fields used in transcranial magnetic stimulation (TMS) and the induced electric field is more than an order of magnitude lower than necessary for neuromodulation, suggesting that induced electric currents do not drive the cell response. Instead, our calculation suggests that this response depends on mechanoreception pathways activated by the magnetic torque of TRP-associated lipid rafts. Despite the relatively rare response to magnetic stimulation, when cells form gap junctions, the magnetic stimulation can propagate to nearby cells, causing tissue-level responses. As an example, we co-cultured spiking HEK cells with beta-pancreatic MIN6 cells and found that this co-culture responds to magnetic fields by increasing insulin production. Together, these results point toward a method for the magnetic control of biological activity without the need for a material co-factor such as synthetic nanoparticles. By better understanding this mechanism and enriching for magneto-sensitivity it may be possible to adapt this approach to the rapidly expanding tool kit for wireless cell activity regulation.
Collapse
|
9
|
Zablotskii V, Gorobets O, Gorobets S, Polyakova T. Effects of Static and Low-Frequency Magnetic Fields on Gene Expression. J Magn Reson Imaging 2025. [PMID: 39887550 DOI: 10.1002/jmri.29726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 02/01/2025] Open
Abstract
Substantial research over the past two decades has established that magnetic fields affect fundamental cellular processes, including gene expression. However, since biological cells and subcellular components exhibit diamagnetic behavior and are therefore subjected to very small magnetic forces that cannot directly compete with the viscoelastic and bioelectric intracellular forces responsible for cellular machinery functions, it becomes challenging to understand cell-magnetic field interactions and to reveal the mechanisms through which these interactions differentially influence gene expression in cells. The limited understanding of the molecular mechanisms underlying biomagnetic effects has hindered progress in developing effective therapeutic applications of magnetic fields. This review examines the expanding body of literature on genetic events during static and low-frequency magnetic field exposure, focusing particularly on how changes in gene expression interact with cellular machinery. To address this, we conducted a systematic review utilizing extensive search strategies across multiple databases. We explore the intracellular mechanisms through which transcription functions may be modified by a magnetic field in contexts where other cellular signaling pathways are also activated by the field. This review summarizes key findings in the field, outlines the connections between magnetic fields and gene expression changes, identifies critical gaps in current knowledge, and proposes directions for future research. LEVEL OF EVIDENCE: NA TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Vitalii Zablotskii
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
- International Magnetobiology Frontier Research Center (iMFRC), Science Island, Hefei, China
| | - Oksana Gorobets
- Faculty of Physics and Mathematics, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
| | - Svitlana Gorobets
- Faculty of Biotechnology and Biotechnics, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
| | - Tatyana Polyakova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
10
|
Hou Z. The New Era of Neural Modulation Led by Smart Nanomaterials. Int J Nanomedicine 2024; 19:12287-12295. [PMID: 39588257 PMCID: PMC11586479 DOI: 10.2147/ijn.s491440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024] Open
Abstract
Understanding the physiology and pathology of neural circuits is crucial in neuroscience research. A variety of techniques have been utilized in medical research, with several established methods applied in clinical therapy to enhance patient' neurological functions. Traditional methods include generating electric fields near neural tissue using electrodes, or non-contact modulation using light, chemicals, magnetic fields, and ultrasound. The advent of nanotechnology represents a new advancement in neural modulation techniques, offering high precision and the ability to target specific cell types. Smart nanomaterials enable the conversion of remote signals (such as light, magnetic, or ultrasound) into local stimuli (eg, electric fields or heat) for neurons. Surface treatment technologies of nanomaterials have enhanced biocompatibility, making targeted delivery to specific cell types possible and paving the way for precise neural modulation. This perspective will explore neural modulation techniques supported by nanomedical materials, focusing on photoelectric, photothermal, magnetoelectric, magnetothermal, and acoustoelectric conversion mechanisms, and looking forward to their medical applications.
Collapse
Affiliation(s)
- Zhitao Hou
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, People’s Republic of China
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neurology, the Second Hospital Affiliated with Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150010, People’s Republic of China
- Department of Neurology, the First Hospital Affiliated with Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150010, People’s Republic of China
- Institute of Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi’an, 710119, People’s Republic of China
| |
Collapse
|
11
|
Unda SR, Pomeranz LE, Marongiu R, Yu X, Kelly L, Hassanzadeh G, Molina H, Vaisey G, Wang P, Dyke JP, Fung EK, Grosenick L, Zirkel R, Antoniazzi AM, Norman S, Liston CM, Schaffer C, Nishimura N, Stanley SA, Friedman JM, Kaplitt MG. Bidirectional regulation of motor circuits using magnetogenetic gene therapy. SCIENCE ADVANCES 2024; 10:eadp9150. [PMID: 39383230 PMCID: PMC11463271 DOI: 10.1126/sciadv.adp9150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
Here, we report a magnetogenetic system, based on a single anti-ferritin nanobody-TRPV1 receptor fusion protein, which regulated neuronal activity when exposed to magnetic fields. Adeno-associated virus (AAV)-mediated delivery of a floxed nanobody-TRPV1 into the striatum of adenosine-2a receptor-Cre drivers resulted in motor freezing when placed in a magnetic resonance imaging machine or adjacent to a transcranial magnetic stimulation device. Functional imaging and fiber photometry confirmed activation in response to magnetic fields. Expression of the same construct in the striatum of wild-type mice along with a second injection of an AAVretro expressing Cre into the globus pallidus led to similar circuit specificity and motor responses. Last, a mutation was generated to gate chloride and inhibit neuronal activity. Expression of this variant in the subthalamic nucleus in PitX2-Cre parkinsonian mice resulted in reduced c-fos expression and motor rotational behavior. These data demonstrate that magnetogenetic constructs can bidirectionally regulate activity of specific neuronal circuits noninvasively in vivo using clinically available devices.
Collapse
Affiliation(s)
- Santiago R. Unda
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Lisa E. Pomeranz
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA
| | - Roberta Marongiu
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Xiaofei Yu
- School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Leah Kelly
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA
| | | | - Henrik Molina
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
| | - George Vaisey
- Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, New York, NY 10065, USA
| | - Putianqi Wang
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA
| | - Jonathan P. Dyke
- Citigroup Bioimaging Center, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Edward K. Fung
- Citigroup Bioimaging Center, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Logan Grosenick
- Department of Psychiatry, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Rick Zirkel
- Meining School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Aldana M. Antoniazzi
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Sofya Norman
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Conor M. Liston
- Department of Psychiatry, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Chris Schaffer
- Meining School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Nozomi Nishimura
- Meining School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Sarah A. Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
| | - Jeffrey M. Friedman
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Michael G. Kaplitt
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| |
Collapse
|
12
|
Guzmán-Armenteros TM, Ruales J, Ramos-Guerrero L. A Review of Electromagnetic Fields in Cellular Interactions and Cacao Bean Fermentation. Foods 2024; 13:3058. [PMID: 39410093 PMCID: PMC11475052 DOI: 10.3390/foods13193058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
The influence of magnetic fields on biological systems, including fermentation processes and cocoa bean fermentation, is an area of study that is under development. Mechanisms, such as magnetosensitivity, protein conformational changes, changes to cellular biophysical properties, ROS production, regulation of gene expression, and epigenetic modifications, have been identified to explain how magnetic fields affect microorganisms and cellular processes. These mechanisms can alter enzyme activity, protein stability, cell signaling, intercellular communication, and oxidative stress. In cacao fermentation, electromagnetic fields offer a potential means to enhance the sensory attributes of chocolate by modulating microbial metabolism and optimizing flavor and aroma development. This area of study offers possibilities for innovation and the creation of premium food products. In this review, these aspects will be explored systematically and illustratively.
Collapse
Affiliation(s)
- Tania María Guzmán-Armenteros
- Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional (EPN), Quito 170525, Ecuador; (T.M.G.-A.); (J.R.)
- Facultad de Ingeniería Mecánica y Ciencias de la Producción, Carrera de Ingeniería en Alimentos, Escuela Superior Politécnica del Litoral, Campus Gustavo Galindo, km 30.5 Vía Perimetral, Guayaquil 090902, Ecuador
| | - Jenny Ruales
- Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional (EPN), Quito 170525, Ecuador; (T.M.G.-A.); (J.R.)
| | - Luis Ramos-Guerrero
- Grupo de Investigación Bio-Quimioinformática, Carrera de Ingeniería Agroindustrial, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas (UDLA), Quito 170503, Ecuador
| |
Collapse
|
13
|
Ricci C, Abbandonato G, Giannangeli M, Matthews L, Almásy L, Sartori B, Podestà A, Caselli A, Boffi A, Thiel G, Del Favero E, Moroni A. Ferritin at different iron loading: From biological to nanotechnological applications. Int J Biol Macromol 2024; 276:133812. [PMID: 39032902 DOI: 10.1016/j.ijbiomac.2024.133812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
The characterization of the structure of ferritin in solution and the arrangement of iron stored in its cavity are intriguing subjects for both cell biology and applied science, since the protein structure, stability, and easiness of production make it an ideal tool for biomedical applications. We characterized the ferritin structure over a wide range of iron loadings by visible light, X-ray, and neutron scattering techniques. We found that the arrangement of iron ions inside the protein cage resulted in a more disposable arrangement at lower loading factors and then in a crystalline structure. At very high iron content the inner core is composed of magnetite more than ferrihydrite, and the shell of the protein is elastically deformed by the iron crystal growth in an ellipsoidal arrangement. The application of an external radiofrequency (RF) magnetic field affected ferritins at low iron loading factors. Notably the RF modified the iron disposition towards a more dispersed arrangement. The structural characterization of the ferritin at different LFs and in presence of magnetic fields provides useful insights into their physiological behaviour and can help in the design and fine-tuning of ferritin-based nanosystems for biotechnological applications.
Collapse
Affiliation(s)
| | | | | | - Lauren Matthews
- ESRF, The European Synchrotron, 71 avenue des Martyrs, 38043 Grenoble, France
| | - László Almásy
- HUN-REN Centre for Energy Research, POB 49, Budapest 1525, Hungary
| | - Barbara Sartori
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/4, Graz, Austria
| | - Alessandro Podestà
- Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy
| | | | - Alberto Boffi
- Department of Biochemical Sciences, Sapienza University of Rome, Italy
| | - Gerhard Thiel
- Department of Biosciences, University of Milan, Milan, Italy
| | | | - Anna Moroni
- Department of Biosciences, University of Milan, Milan, Italy
| |
Collapse
|
14
|
Chen C, Chen H, Wang P, Wang X, Wang X, Chen C, Pan W. Reactive Oxygen Species Activate a Ferritin-Linked TRPV4 Channel under a Static Magnetic Field. ACS Chem Biol 2024; 19:1151-1160. [PMID: 38648729 DOI: 10.1021/acschembio.4c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Magnetogenetics has shown great potential for cell function and neuromodulation using heat or force effects under different magnetic fields; however, there is still a contradiction between experimental effects and underlying mechanisms by theoretical computation. In this study, we aimed to investigate the role of reactive oxygen species (ROS) in mechanical force-dependent regulation from a physicochemical perspective. The transient receptor potential vanilloid 4 (TRPV4) cation channels fused to ferritin (T4F) were overexpressed in HEK293T cells and exposed to static magnetic fields (sMF, 1.4-5.0 mT; gradient: 1.62 mT/cm). An elevation of ROS levels was found under sMF in T4F-overexpressing cells, which could lead to lipid oxidation. Compared with the overexpression of TRPV4, ferritin in T4F promoted the generation of ROS under the stimulation of sMF, probably related to the release of iron ions from ferritin. Then, the resulting ROS regulated the opening of the TRPV4 channel, which was attenuated by the direct addition of ROS inhibitors or an iron ion chelator, highlighting a close relationship among iron release, ROS production, and TRPV4 channel activation. Taken together, these findings indicate that the produced ROS under sMF act on the TRPV4 channel, regulating the influx of calcium ions. The study would provide a scientific basis for the application of magnetic regulation in cellular or neural regulation and disease treatment and contribute to the development of the more sensitive regulatory technology.
Collapse
Affiliation(s)
- Changyou Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
| | - Haitao Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
| | - Pingping Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
| | - Xue Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xuting Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanfang Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
| | - Weidong Pan
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
| |
Collapse
|
15
|
Pomeranz L, Li R, Yu X, Kelly L, Hassanzadeh G, Molina H, Gross D, Brier M, Vaisey G, Wang P, Jimenez-Gonzalez M, Garcia-Ocana A, Dordick J, Friedman J, Stanley S. Magnetogenetic cell activation using endogenous ferritin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.20.545120. [PMID: 37786709 PMCID: PMC10541561 DOI: 10.1101/2023.06.20.545120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The ability to precisely control the activity of defined cell populations enables studies of their physiological roles and may provide therapeutic applications. While prior studies have shown that magnetic activation of ferritin-tagged ion channels allows cell-specific modulation of cellular activity, the large size of the constructs made the use of adeno-associated virus, AAV, the vector of choice for gene therapy, impractical. In addition, simple means for generating magnetic fields of sufficient strength have been lacking. Toward these ends, we first generated a novel anti-ferritin nanobody that when fused to transient receptor potential cation channel subfamily V member 1, TRPV1, enables direct binding of the channel to endogenous ferritin in mouse and human cells. This smaller construct can be delivered in a single AAV and we validated that it robustly enables magnetically induced cell activation in vitro. In parallel, we developed a simple benchtop electromagnet capable of gating the nanobody-tagged channel in vivo. Finally, we showed that delivering these new constructs by AAV to pancreatic beta cells in combination with the benchtop magnetic field delivery stimulates glucose-stimulated insulin release to improve glucose tolerance in mice in vivo. Together, the novel anti-ferritin nanobody, nanobody-TRPV1 construct and new hardware advance the utility of magnetogenetics in animals and potentially humans.
Collapse
Affiliation(s)
- Lisa Pomeranz
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA
| | - Rosemary Li
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xiaofei Yu
- School of Life Sciences, Fudan University, Shanghai, 200433
| | - Leah Kelly
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA
| | | | - Henrik Molina
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel Gross
- Current address, Dept. of Radiology, Weill Cornell Medicine, 1300 York Avenue New York, NY 10065
| | - Matthew Brier
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - George Vaisey
- Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, New York, NY 10065, USA
| | - Putianqi Wang
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA
| | - Maria Jimenez-Gonzalez
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo Garcia-Ocana
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010
| | - Jonathan Dordick
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Jeffrey Friedman
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA
| | - Sarah Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
16
|
Mundell JW, Brier MI, Orloff E, Stanley SA, Dordick JS. Alternating magnetic fields drive stimulation of gene expression via generation of reactive oxygen species. iScience 2024; 27:109186. [PMID: 38420587 PMCID: PMC10901079 DOI: 10.1016/j.isci.2024.109186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/23/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Magnetogenetics represents a method for remote control of cellular function. Previous work suggests that generation of reactive oxygen species (ROS) initiates downstream signaling. Herein, a chemical biology approach was used to elucidate further the mechanism of radio frequency-alternating magnetic field (RF-AMF) stimulation of a TRPV1-ferritin magnetogenetics platform that leads to Ca2+ flux. RF-AMF stimulation of HEK293T cells expressing TRPV1-ferritin resulted in ∼30% and ∼140% increase in intra- and extracellular ROS levels, respectively. Mutations to specific cysteine residues in TRPV1 responsible for ROS sensitivity eliminated RF-AMF driven Ca2+-dependent transcription of secreted embryonic alkaline phosphatase (SEAP). Using a non-tethered (to TRPV1) ferritin also eliminated RF-AMF driven SEAP production, and using specific inhibitors, ROS-activated TRPV1 signaling involves protein kinase C, NADPH oxidase, and the endoplasmic reticulum. These results suggest ferritin-dependent ROS activation of TRPV1 plays a key role in the initiation of magnetogenetics, and provides relevance for potential applications in medicine and biotechnology.
Collapse
Affiliation(s)
- Jordan W. Mundell
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Matthew I. Brier
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Everest Orloff
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Sarah A. Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jonathan S. Dordick
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Departments of Biomedical Engineering and Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
17
|
Shubhra QTH. Iron oxide nanoparticles in magnetic drug targeting and ferroptosis-based cancer therapy. MEDICAL REVIEW (2021) 2023; 3:444-447. [PMID: 38283254 PMCID: PMC10811351 DOI: 10.1515/mr-2023-0029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/11/2023] [Indexed: 01/30/2024]
Abstract
Iron oxide (IO) nanoparticles (NPs) have gained significant attention in the field of biomedicine, particularly in drug targeting and cancer therapy. Their potential in magnetic drug targeting (MDT) and ferroptosis-based cancer therapy is highly promising. IO NPs serve as an effective drug delivery system (DDS), utilizing external magnetic fields (EMFs) to target cancer cells while minimizing damage to healthy organs. Additionally, IO NPs can generate reactive oxygen species (ROS) and induce ferroptosis, resulting in cytotoxic effects on cancer cells. This article explores how IO NPs can potentially revolutionize cancer research, focusing on their applications in MDT and ferroptosis-based therapy.
Collapse
Affiliation(s)
- Quazi T. H. Shubhra
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Institute of Chemistry, University of Silesia in KatowiceChorzów, Poland
| |
Collapse
|
18
|
Romero G, Park J, Koehler F, Pralle A, Anikeeva P. Modulating cell signalling in vivo with magnetic nanotransducers. NATURE REVIEWS. METHODS PRIMERS 2022; 2:92. [PMID: 38111858 PMCID: PMC10727510 DOI: 10.1038/s43586-022-00170-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/15/2022] [Indexed: 12/20/2023]
Abstract
Weak magnetic fields offer nearly lossless transmission of signals within biological tissue. Magnetic nanomaterials are capable of transducing magnetic fields into a range of biologically relevant signals in vitro and in vivo. These nanotransducers have recently enabled magnetic control of cellular processes, from neuronal firing and gene expression to programmed apoptosis. Effective implementation of magnetically controlled cellular signalling relies on careful tailoring of magnetic nanotransducers and magnetic fields to the responses of the intended molecular targets. This primer discusses the versatility of magnetic modulation modalities and offers practical guidelines for selection of appropriate materials and field parameters, with a particular focus on applications in neuroscience. With recent developments in magnetic instrumentation and nanoparticle chemistries, including those that are commercially available, magnetic approaches promise to empower research aimed at connecting molecular and cellular signalling to physiology and behaviour in untethered moving subjects.
Collapse
Affiliation(s)
- Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Jimin Park
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Florian Koehler
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arnd Pralle
- Department of Physics, University at Buffalo, the State University of New York, Buffalo, NY, USA
| | - Polina Anikeeva
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
19
|
Hagen WR. Maximum iron loading of ferritin: half a century of sustained citation distortion. Metallomics 2022; 14:mfac063. [PMID: 36002017 DOI: 10.1093/mtomcs/mfac063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Analysis of citation networks in biomedical research has indicated that belief in a specific scientific claim can gain unfounded authority through citation bias (systematic ignoring of papers that contain content conflicting with a claim), amplification (citation to papers that don't contain primary data), and invention (citing content but claiming it has a different meaning). There is no a priori reason to expect that citation distortion is limited to particular fields of science. This Pespective presents a case study of the literature on maximum iron loading of the ferritin protein to illustrate that the field of metallomics is no exception to the rule that citation distortion is a widespread phenomenon.
Collapse
Affiliation(s)
- Wilfred R Hagen
- Delft University of Technology, Department of Biotechnology, Building 58, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
20
|
Saletnik B, Saletnik A, Słysz E, Zaguła G, Bajcar M, Puchalska-Sarna A, Puchalski C. The Static Magnetic Field Regulates the Structure, Biochemical Activity, and Gene Expression of Plants. Molecules 2022; 27:molecules27185823. [PMID: 36144557 PMCID: PMC9506020 DOI: 10.3390/molecules27185823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 01/09/2023] Open
Abstract
The purpose of this paper is to review the scientific results and summarise the emerging topic of the effects of statistic magnetic field on the structure, biochemical activity, and gene expression of plants. The literature on the subject reports a wide range of possibilities regarding the use of the magnetic field to modify the properties of plant cells. MFs have a significant impact on the photosynthesis efficiency of the biomass and vigour accumulation indexes. Treating plants with SMFs accelerates the formation and accumulation of reactive oxygen species. At the same time, the influence of MFs causes the high activity of antioxidant enzymes, which reduces oxidative stress. SMFs have a strong influence on the shape of the cell and the structure of the cell membrane, thus increasing their permeability and influencing the various activities of the metabolic pathways. The use of magnetic treatments on plants causes a higher content of proteins, carbohydrates, soluble and reducing sugars, and in some cases, lipids and fatty acid composition and influences the uptake of macro- and microelements and different levels of gene expression. In this study, the effect of MFs was considered as a combination of MF intensity and time exposure, for different varieties and plant species. The following article shows the wide-ranging possibilities of applying magnetic fields to the dynamics of changes in the life processes and structures of plants. Thus far, the magnetic field is not widely used in agricultural practice. The current knowledge about the influence of MFs on plant cells is still insufficient. It is, therefore, necessary to carry out detailed research for a more in-depth understanding of the possibilities of modifying the properties of plant cells and achieving the desired effects by means of a magnetic field.
Collapse
Affiliation(s)
- Bogdan Saletnik
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszow University, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland
- Correspondence:
| | - Aneta Saletnik
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszow University, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland
| | - Ewelina Słysz
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszow University, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland
| | - Grzegorz Zaguła
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszow University, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland
| | - Marcin Bajcar
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszow University, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland
| | - Anna Puchalska-Sarna
- Laboratory of Physiotherapy in Developmental Disorders, Institute of Health Sciences, College of Medical Sciences, Rzeszow University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszow, Poland
| | - Czesław Puchalski
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszow University, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland
| |
Collapse
|
21
|
Ouyang J, Xie A, Zhou J, Liu R, Wang L, Liu H, Kong N, Tao W. Minimally invasive nanomedicine: nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging. Chem Soc Rev 2022; 51:4996-5041. [PMID: 35616098 DOI: 10.1039/d1cs01148k] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Traditional treatments such as chemotherapy and surgery usually cause severe side effects and excruciating pain. The emergence of nanomedicines and minimally invasive therapies (MITs) has brought hope to patients with malignant diseases. Especially, minimally invasive nanomedicines (MINs), which combine the advantages of nanomedicines and MITs, can effectively target pathological cells/tissues/organs to improve the bioavailability of drugs, minimize side effects and achieve painless treatment with a small incision or no incision, thereby acquiring good therapeutic effects. In this review, we provide a comprehensive review of the research status and challenges of MINs, which generally refers to the medical applications of nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging. Additionally, we also discuss their combined application in various fields including cancers, cardiovascular diseases, tissue engineering, neuro-functional diseases, and infectious diseases. The prospects, and potential bench-to-bedside translation of MINs are also presented in this review. We expect that this review can inspire the broad interest for a wide range of readers working in the fields of interdisciplinary subjects including (but not limited to) chemistry, nanomedicine, bioengineering, nanotechnology, materials science, pharmacology, and biomedicine.
Collapse
Affiliation(s)
- Jiang Ouyang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Angel Xie
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Jun Zhou
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Runcong Liu
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong 519000, China
| | - Liqiang Wang
- Henan Province Industrial Technology Research Institute of Resources and Materials, School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Haijun Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Del Sol-Fernández S, Martínez-Vicente P, Gomollón-Zueco P, Castro-Hinojosa C, Gutiérrez L, Fratila RM, Moros M. Magnetogenetics: remote activation of cellular functions triggered by magnetic switches. NANOSCALE 2022; 14:2091-2118. [PMID: 35103278 PMCID: PMC8830762 DOI: 10.1039/d1nr06303k] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/13/2021] [Indexed: 05/03/2023]
Abstract
During the last decade, the possibility to remotely control intracellular pathways using physical tools has opened the way to novel and exciting applications, both in basic research and clinical applications. Indeed, the use of physical and non-invasive stimuli such as light, electricity or magnetic fields offers the possibility of manipulating biological processes with spatial and temporal resolution in a remote fashion. The use of magnetic fields is especially appealing for in vivo applications because they can penetrate deep into tissues, as opposed to light. In combination with magnetic actuators they are emerging as a new instrument to precisely manipulate biological functions. This approach, coined as magnetogenetics, provides an exclusive tool to study how cells transform mechanical stimuli into biochemical signalling and offers the possibility of activating intracellular pathways connected to temperature-sensitive proteins. In this review we provide a critical overview of the recent developments in the field of magnetogenetics. We discuss general topics regarding the three main components for magnetic field-based actuation: the magnetic fields, the magnetic actuators and the cellular targets. We first introduce the main approaches in which the magnetic field can be used to manipulate the magnetic actuators, together with the most commonly used magnetic field configurations and the physicochemical parameters that can critically influence the magnetic properties of the actuators. Thereafter, we discuss relevant examples of magneto-mechanical and magneto-thermal stimulation, used to control stem cell fate, to activate neuronal functions, or to stimulate apoptotic pathways, among others. Finally, although magnetogenetics has raised high expectations from the research community, to date there are still many obstacles to be overcome in order for it to become a real alternative to optogenetics for instance. We discuss some controversial aspects related to the insufficient elucidation of the mechanisms of action of some magnetogenetics constructs and approaches, providing our opinion on important challenges in the field and possible directions for the upcoming years.
Collapse
Affiliation(s)
- Susel Del Sol-Fernández
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
| | - Pablo Martínez-Vicente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
| | - Pilar Gomollón-Zueco
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
| | - Christian Castro-Hinojosa
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
| | - Lucía Gutiérrez
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Departamento de Química Analítica, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Raluca M Fratila
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Departamento de Química Orgánica, Universidad de Zaragoza, C/Pedro Cerbuna 12, Zaragoza 50009, Spain
| | - María Moros
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| |
Collapse
|
23
|
Zablotskii V, Polyakova T, Dejneka A. Effects of High Magnetic Fields on the Diffusion of Biologically Active Molecules. Cells 2021; 11:cells11010081. [PMID: 35011642 PMCID: PMC8750908 DOI: 10.3390/cells11010081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/23/2021] [Accepted: 12/26/2021] [Indexed: 12/16/2022] Open
Abstract
The diffusion of biologically active molecules is a ubiquitous process, controlling many mechanisms and the characteristic time scales for pivotal processes in living cells. Here, we show how a high static magnetic field (MF) affects the diffusion of paramagnetic and diamagnetic species including oxygen, hemoglobin, and drugs. We derive and solve the equation describing diffusion of such biologically active molecules in the presence of an MF as well as reveal the underlying mechanism of the MF’s effect on diffusion. We found that a high MF accelerates diffusion of diamagnetic species while slowing the diffusion of paramagnetic molecules in cell cytoplasm. When applied to oxygen and hemoglobin diffusion in red blood cells, our results suggest that an MF may significantly alter the gas exchange in an erythrocyte and cause swelling. Our prediction that the diffusion rate and characteristic time can be controlled by an MF opens new avenues for experimental studies foreseeing numerous biomedical applications.
Collapse
Affiliation(s)
- Vitalii Zablotskii
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (T.P.); (A.D.)
- International Magnetobiology Frontier Research Center, Hefei 230031, China
- Correspondence:
| | - Tatyana Polyakova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (T.P.); (A.D.)
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (T.P.); (A.D.)
| |
Collapse
|
24
|
Gaburjáková M, Gaburjáková J, Krejčíová E, Kosnáč D, Kosnáčová H, Nagy Š, Polák Š, Sabo M, Trnka M, Kopáni M. Blocking effect of ferritin on the ryanodine receptor-isoform 2. Arch Biochem Biophys 2021; 712:109031. [PMID: 34534540 DOI: 10.1016/j.abb.2021.109031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
Iron, an essential element for most living organism, participates in a wide variety of physiological processes. Disturbance in iron homeostasis has been associated with numerous pathologies, particularly in the heart and brain, which are the most susceptible organs. Under iron-overload conditions, the generation of reactive oxygen species leads to impairment in Ca2+ signaling, fundamentally implicated in cardiac and neuronal physiology. Since iron excess is accompanied by increased expression of iron-storage protein, ferritin, we examined whether ferritin has an effect on the ryanodine receptor - isoform 2 (RYR2), which is one of the major components of Ca2+ signaling. Using the method of planar lipid membranes, we show that ferritin induced an abrupt, permanent blockage of the RYR2 channel. The ferritin effect was strongly voltage dependent and competitively antagonized by cytosolic TEA+, an impermeant RYR2 blocker. Our results collectively indicate that monomeric ferritin highly likely blocks the RYR2 channel by a direct electrostatic interaction within the wider region of the channel permeation pathway.
Collapse
Affiliation(s)
- Marta Gaburjáková
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Gaburjáková
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Eva Krejčíová
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Daniel Kosnáč
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia; Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Helena Kosnáčová
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, Bratislava, Slovakia; Slovak Academy of Sciences, Department of Genetics, Cancer Research Institute, Biomedical Research Center, Bratislava, Slovakia
| | - Štefan Nagy
- Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Štefan Polák
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Michal Sabo
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Michal Trnka
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Martin Kopáni
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
25
|
Evaluating methods and protocols of ferritin-based magnetogenetics. iScience 2021; 24:103094. [PMID: 34622149 PMCID: PMC8479696 DOI: 10.1016/j.isci.2021.103094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/15/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022] Open
Abstract
FeRIC (Ferritin iron Redistribution to Ion Channels) is a magnetogenetic technique that uses radiofrequency (RF) alternating magnetic fields to activate the transient receptor potential channels, TRPV1 and TRPV4, coupled to cellular ferritins. In cells expressing ferritin-tagged TRPV, RF stimulation increases the cytosolic Ca2+ levels via a biochemical pathway. The interaction between RF and ferritin increases the free cytosolic iron levels that, in turn, trigger chemical reactions producing reactive oxygen species and oxidized lipids that activate the ferritin-tagged TRPV. In this pathway, it is expected that experimental factors that disturb the ferritin expression, the ferritin iron load, the TRPV functional expression, or the cellular redox state will impact the efficiency of RF in activating ferritin-tagged TRPV. Here, we examined several experimental factors that either enhance or abolish the RF control of ferritin-tagged TRPV. The findings may help optimize and establish reproducible magnetogenetic protocols.
Collapse
|
26
|
Banerjee A, Egger R, Long MA. Using focal cooling to link neural dynamics and behavior. Neuron 2021; 109:2508-2518. [PMID: 34171292 PMCID: PMC8376768 DOI: 10.1016/j.neuron.2021.05.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/21/2022]
Abstract
Establishing a causal link between neural function and behavioral output has remained a challenging problem. Commonly used perturbation techniques enable unprecedented control over intrinsic activity patterns and can effectively identify crucial circuit elements important for specific behaviors. However, these approaches may severely disrupt activity, precluding an investigation into the behavioral relevance of moment-to-moment neural dynamics within a specified brain region. Here we discuss the application of mild focal cooling to slow down intrinsic neural circuit activity while preserving its overall structure. Using network modeling and examples from multiple species, we highlight the power and versatility of focal cooling for understanding how neural dynamics control behavior and argue for its wider adoption within the systems neuroscience community.
Collapse
Affiliation(s)
- Arkarup Banerjee
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Robert Egger
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Michael A Long
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
27
|
Dominguez-Paredes D, Jahanshahi A, Kozielski KL. Translational considerations for the design of untethered nanomaterials in human neural stimulation. Brain Stimul 2021; 14:1285-1297. [PMID: 34375694 DOI: 10.1016/j.brs.2021.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/03/2021] [Accepted: 08/01/2021] [Indexed: 12/18/2022] Open
Abstract
Neural stimulation is a powerful tool to study brain physiology and an effective treatment for many neurological disorders. Conventional interfaces use electrodes implanted in the brain. As these are often invasive and have limited spatial targeting, they carry a potential risk of side-effects. Smaller neural devices may overcome these obstacles, and as such, the field of nanoscale and remotely powered neural stimulation devices is growing. This review will report on current untethered, injectable nanomaterial technologies intended for neural stimulation, with a focus on material-tissue interface engineering. We will review nanomaterials capable of wireless neural stimulation, and discuss their stimulation mechanisms. Taking cues from more established nanomaterial fields (e.g., cancer theranostics, drug delivery), we will then discuss methods to modify material interfaces with passive and bioactive coatings. We will discuss methods of delivery to a desired brain region, particularly in the context of how delivery and localization are affected by surface modification. We will also consider each of these aspects of nanoscale neurostimulators with a focus on their prospects for translation to clinical use.
Collapse
Affiliation(s)
- David Dominguez-Paredes
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Ali Jahanshahi
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Kristen L Kozielski
- Department of Bioengineering and Biosystems, Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany; Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany.
| |
Collapse
|
28
|
|
29
|
Madderson O, Teixeira AP, Fussenegger M. Emerging mammalian gene switches for controlling implantable cell therapies. Curr Opin Chem Biol 2021; 64:98-105. [PMID: 34216875 DOI: 10.1016/j.cbpa.2021.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022]
Abstract
Engineered cell-based therapies have emerged as a new paradigm in modern medicine, with several engineered T cell therapies currently approved to treat blood cancers and many more in clinical development. Tremendous progress in synthetic biology over the past two decades has allowed us to program cells with sophisticated sense-and-response modules that can effectively control therapeutic functions. In this review, we highlight recent advances in mammalian synthetic gene switches, focusing on devices designed for therapeutic applications. Although many gene switches responding to endogenous or exogenous molecular signals have been developed, the focus is shifting towards achieving remote-controlled production of therapeutic effectors by stimulating implanted engineered cells with traceless physical signals, such as light, electrical signals, magnetic fields, heat or ultrasound.
Collapse
Affiliation(s)
- Oliver Madderson
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Ana Palma Teixeira
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Martin Fussenegger
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058, Basel, Switzerland; University of Basel, Faculty of Life Science, Basel, Switzerland.
| |
Collapse
|
30
|
Li X, Xiong H, Rommelfanger N, Xu X, Youn J, Slesinger PA, Hong G, Qin Z. Nanotransducers for Wireless Neuromodulation. MATTER 2021; 4:1484-1510. [PMID: 33997768 PMCID: PMC8117115 DOI: 10.1016/j.matt.2021.02.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Understanding the signal transmission and processing within the central nervous system (CNS) is a grand challenge in neuroscience. The past decade has witnessed significant advances in the development of new tools to address this challenge. Development of these new tools draws diverse expertise from genetics, materials science, electrical engineering, photonics and other disciplines. Among these tools, nanomaterials have emerged as a unique class of neural interfaces due to their small size, remote coupling and conversion of different energy modalities, various delivery methods, and mitigated chronic immune responses. In this review, we will discuss recent advances in nanotransducers to modulate and interface with the neural system without physical wires. Nanotransducers work collectively to modulate brain activity through optogenetic, mechanical, thermal, electrical and chemical modalities. We will compare important parameters among these techniques including the invasiveness, spatiotemporal precision, cell-type specificity, brain penetration, and translation to large animals and humans. Important areas for future research include a better understanding of the nanomaterials-brain interface, integration of sensing capability for bidirectional closed-loop neuromodulation, and genetically engineered functional materials for cell-type specific neuromodulation.
Collapse
Affiliation(s)
- Xiuying Li
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Hejian Xiong
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Nicholas Rommelfanger
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Xueqi Xu
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Jonghae Youn
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Paul A. Slesinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY,10029, USA
| | - Guosong Hong
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Zhenpeng Qin
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
- Department of Surgery, The University of Texas at Southwestern Medical Center, Dallas, TX, 75080, USA
- The Center for Advanced Pain Studies, The University of Texas at Southwestern Medical Center, Dallas, TX, 75080, USA
| |
Collapse
|
31
|
Lipid Oxidation Induced by RF Waves and Mediated by Ferritin Iron Causes Activation of Ferritin-Tagged Ion Channels. Cell Rep 2021; 30:3250-3260.e7. [PMID: 32160534 DOI: 10.1016/j.celrep.2020.02.070] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/19/2019] [Accepted: 02/18/2020] [Indexed: 12/26/2022] Open
Abstract
One approach to magnetogenetics uses radiofrequency (RF) waves to activate transient receptor potential channels (TRPV1 and TRPV4) that are coupled to cellular ferritins. The mechanisms underlying this effect are unclear and controversial. Theoretical calculations suggest that the heat produced by RF fields is likely orders of magnitude weaker than needed for channel activation. Using the FeRIC (Ferritin iron Redistribution to Ion Channels) system, we have uncovered a mechanism of activation of ferritin-tagged channels via a biochemical pathway initiated by RF disturbance of ferritin and mediated by ferritin-associated iron. We show that, in cells expressing TRPVFeRIC channels, RF increases the levels of the labile iron pool in a ferritin-dependent manner. Free iron participates in chemical reactions, producing reactive oxygen species and oxidized lipids that ultimately activate the TRPVFeRIC channels. This biochemical pathway predicts a similar RF-induced activation of other lipid-sensitive TRP channels and may guide future magnetogenetic designs.
Collapse
|
32
|
Zablotskii V, Polyakova T, Dejneka A. Modulation of the Cell Membrane Potential and Intracellular Protein Transport by High Magnetic Fields. Bioelectromagnetics 2020; 42:27-36. [PMID: 33179821 DOI: 10.1002/bem.22309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 01/26/2023]
Abstract
To explore cellular responses to high magnetic fields (HMF), we present a model of the interactions of cells with a homogeneous HMF that accounts for the magnetic force exerted on paramagnetic/diamagnetic species. There are various chemical species inside a living cell, many of which may have large concentration gradients. Thus, when an HMF is applied to a cell, the concentration-gradient magnetic forces act on paramagnetic or diamagnetic species and can either assist or oppose large particle movement through the cytoplasm. We demonstrate possibilities for changing the machinery in living cells with HMFs and predict two new mechanisms for modulating cellular functions with HMFs via (i) changes in the membrane potential and (ii) magnetically assisted intracellular diffusiophoresis of large proteins. By deriving a generalized form for the Nernst equation, we find that an HMF can change the membrane potential of the cell and thus have a significant impact on the properties and biological functionality of cells. The elaborated model provides a universal framework encompassing current studies on controlling cell functions by high static magnetic fields. Bioelectromagnetics. 2021;42:27-36. © 2020 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Vitalii Zablotskii
- Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tatyana Polyakova
- Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
33
|
Brier MI, Mundell JW, Yu X, Su L, Holmann A, Squeri J, Zhang B, Stanley SA, Friedman JM, Dordick JS. Uncovering a possible role of reactive oxygen species in magnetogenetics. Sci Rep 2020; 10:13096. [PMID: 32753716 PMCID: PMC7403421 DOI: 10.1038/s41598-020-70067-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
Recent reports have shown that intracellular, (super)paramagnetic ferritin nanoparticles can gate TRPV1, a non-selective cation channel, in a magnetic field. Here, we report the effects of differing field strength and frequency as well as chemical inhibitors on channel gating using a Ca2+-sensitive promoter to express a secreted embryonic alkaline phosphatase (SEAP) reporter. Exposure of TRPV1-ferritin-expressing HEK-293T cells at 30 °C to an alternating magnetic field of 501 kHz and 27.1 mT significantly increased SEAP secretion by ~ 82% relative to control cells, with lesser effects at other field strengths and frequencies. Between 30-32 °C, SEAP production was strongly potentiated 3.3-fold by the addition of the TRPV1 agonist capsaicin. This potentiation was eliminated by the competitive antagonist AMG-21629, the NADPH oxidase assembly inhibitor apocynin, and the reactive oxygen species (ROS) scavenger N-acetylcysteine, suggesting that ROS contributes to magnetogenetic TRPV1 activation. These results provide a rational basis to address the heretofore unknown mechanism of magnetogenetics.
Collapse
Affiliation(s)
- Matthew I Brier
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jordan W Mundell
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Xiaofei Yu
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY, 10065, USA
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Lichao Su
- State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing, College of Material Science and Engineering, Guilin University of Technology, Jian Gan Road 12, Guilin, 541004, China
| | - Alexander Holmann
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jessica Squeri
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Baolin Zhang
- State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing, College of Material Science and Engineering, Guilin University of Technology, Jian Gan Road 12, Guilin, 541004, China
| | - Sarah A Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine At Mount Sinai, New York, NY, 10029, USA
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY, 10065, USA
- Howard Hughes Medical Institute, New York, NY, 10065, USA
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
- Departments of Biomedical Engineering and Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
34
|
Zhu L, Wu Y, Yoon CW, Wang Y. Mechanogenetics for cellular engineering and cancer immunotherapy. Curr Opin Biotechnol 2020; 66:88-94. [PMID: 32717634 DOI: 10.1016/j.copbio.2020.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/09/2020] [Accepted: 06/13/2020] [Indexed: 12/14/2022]
Abstract
Recent synthetic biology advancements have shown that cells can be engineered to respond to external stimuli such as chemical compounds and light, which significantly improves the specificity and controllability of CAR T therapy. However, the lack of both spatiotemporal and depth control is still the main issue in the clinic of CAR T treatment. At the same time, mechanogenetics, capable of penetrating deep tissues with high spatiotemporal precision, is rapidly evolving and advancing to reveal its potential for cancer immunotherapy. In the past few years, researchers have demonstrated the precise and remote control of engineered cells with mechanical perturbation originated from ultrasound, which may become a new solution to circumvent the limitations of CAR T therapy in the future. This review will discuss mechanobiology and the state-of art designs of controllable CAR T cells. A specific focus of this review will be on the mechanical control of CAR T therapy.
Collapse
Affiliation(s)
- Linshan Zhu
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0435, USA
| | - Yiqian Wu
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0435, USA
| | - Chi Woo Yoon
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0435, USA
| | - Yingxiao Wang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0435, USA.
| |
Collapse
|
35
|
Kamimura HAS, Conti A, Toschi N, Konofagou EE. Ultrasound neuromodulation: mechanisms and the potential of multimodal stimulation for neuronal function assessment. FRONTIERS IN PHYSICS 2020; 8:150. [PMID: 32509757 PMCID: PMC7274478 DOI: 10.3389/fphy.2020.00150] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Focused ultrasound (FUS) neuromodulation has shown that mechanical waves can interact with cell membranes and mechanosensitive ion channels, causing changes in neuronal activity. However, the thorough understanding of the mechanisms involved in these interactions are hindered by different experimental conditions for a variety of animal scales and models. While the lack of complete understanding of FUS neuromodulation mechanisms does not impede benefiting from the current known advantages and potential of this technique, a precise characterization of its mechanisms of action and their dependence on experimental setup (e.g., tuning acoustic parameters and characterizing safety ranges) has the potential to exponentially improve its efficacy as well as spatial and functional selectivity. This could potentially reach the cell type specificity typical of other, more invasive techniques e.g., opto- and chemogenetics or at least orientation-specific selectivity afforded by transcranial magnetic stimulation. Here, the mechanisms and their potential overlap are reviewed along with discussions on the potential insights into mechanisms that magnetic resonance imaging sequences along with a multimodal stimulation approach involving electrical, magnetic, chemical, light, and mechanical stimuli can provide.
Collapse
Affiliation(s)
- Hermes A. S. Kamimura
- Ultrasound Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New Yor, NY, USA
| | - Allegra Conti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, USA
| | - Elisa E. Konofagou
- Ultrasound Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New Yor, NY, USA
| |
Collapse
|
36
|
Davis HC, Kang S, Lee JH, Shin TH, Putterman H, Cheon J, Shapiro MG. Nanoscale Heat Transfer from Magnetic Nanoparticles and Ferritin in an Alternating Magnetic Field. Biophys J 2020; 118:1502-1510. [PMID: 32061270 PMCID: PMC7091488 DOI: 10.1016/j.bpj.2020.01.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 11/28/2022] Open
Abstract
Recent suggestions of nanoscale heat confinement on the surface of synthetic and biogenic magnetic nanoparticles during heating by radio frequency-alternating magnetic fields have generated intense interest because of the potential utility of this phenomenon for noninvasive control of biomolecular and cellular function. However, such confinement would represent a significant departure from the classical heat transfer theory. Here, we report an experimental investigation of nanoscale heat confinement on the surface of several types of iron oxide nanoparticles commonly used in biological research, using an all-optical method devoid of the potential artifacts present in previous studies. By simultaneously measuring the fluorescence of distinct thermochromic dyes attached to the particle surface or dissolved in the surrounding fluid during radio frequency magnetic stimulation, we found no measurable difference between the nanoparticle surface temperature and that of the surrounding fluid for three distinct nanoparticle types. Furthermore, the metalloprotein ferritin produced no temperature increase on the protein surface nor in the surrounding fluid. Experiments mimicking the designs of previous studies revealed potential sources of the artifacts. These findings inform the use of magnetic nanoparticle hyperthermia in engineered cellular and molecular systems.
Collapse
Affiliation(s)
- Hunter C Davis
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Sunghwi Kang
- Center for NanoMedicine,Yonsei-Institute for Basic Science, Seoul, Republic of Korea
| | - Jae-Hyun Lee
- Center for NanoMedicine,Yonsei-Institute for Basic Science, Seoul, Republic of Korea
| | - Tae-Hyun Shin
- Center for NanoMedicine,Yonsei-Institute for Basic Science, Seoul, Republic of Korea
| | - Harry Putterman
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Jinwoo Cheon
- Center for NanoMedicine,Yonsei-Institute for Basic Science, Seoul, Republic of Korea
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California; Center for NanoMedicine,Yonsei-Institute for Basic Science, Seoul, Republic of Korea.
| |
Collapse
|
37
|
Abstract
Iron is critically important and highly regulated trace metal in the human body. However, in its free ion form, it is known to be cytotoxic; therefore, it is bound to iron storing protein, ferritin. Ferritin is a key regulator of body iron homeostasis able to form various types of minerals depending on the tissue environment. Each mineral, e.g. magnetite, maghemite, goethite, akaganeite or hematite, present in the ferritin core carry different characteristics possibly affecting cells in the tissue. In specific cases, it can lead to disease development. Widely studied connection with neurodegenerative conditions is widely studied, including Alzheimer disease. Although the exact ferritin structure and its distribution throughout a human body are still not fully known, many studies have attempted to elucidate the mechanisms involved in its regulation and pathogenesis. In this review, we try to summarize the iron uptake into the body. Next, we discuss the known occurrence of ferritin in human tissues. Lastly, we also examine the formation of iron oxides and their involvement in brain functions.
Collapse
|
38
|
Reply to: Magneto is ineffective in controlling electrical properties of cerebellar Purkinje cells, Assessing the utility of Magneto to control neuronal excitability in the somatosensory cortex and Revaluation of magnetic properties of Magneto. Nat Neurosci 2019; 23:1051-1054. [PMID: 31570860 DOI: 10.1038/s41593-019-0472-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 07/23/2019] [Indexed: 01/16/2023]
|