1
|
Freitas MM, Gouaux E. The bile acid-sensitive ion channel is gated by Ca 2+-dependent conformational changes in the transmembrane domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632481. [PMID: 39829759 PMCID: PMC11741473 DOI: 10.1101/2025.01.10.632481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The bile acid-sensitive ion channel (BASIC) is the least understood member of the mammalian epithelial Na+ channel/degenerin (ENaC/DEG) superfamily of ion channels, which are involved in a variety of physiological processes. While some members of this superfamily, including BASIC, are inhibited by extracellular Ca2+ (Ca2+ o), the molecular mechanism underlying Ca2+ modulation remains unclear. Here, by determining the structure of human BASIC in the presence and absence of Ca2+ using single particle cryo-electron microscopy (cryo-EM), we reveal Ca2+-dependent conformational changes in the transmembrane domain and β-linkers. Electrophysiological experiments further show that a glutamate residue in the extracellular vestibule of the pore underpins the Ca2+-binding site, whose occupancy determines the conformation of the pore and therefore ion flow through the channel. These results reveal the molecular principles governing gating of BASIC and its regulation by Ca2+ ions, demonstrating that Ca2+ ions modulate BASIC function via changes in protein conformation rather than solely from pore-block, as proposed for other members of this superfamily.
Collapse
Affiliation(s)
- Makayla M. Freitas
- Vollum Institute, Oregon Health and Science University, 3232 SW Research Drive, Portland, OR, USA
| | - Eric Gouaux
- Vollum Institute, Oregon Health and Science University, 3232 SW Research Drive, Portland, OR, USA
- Howard Hughes Medical Institute, Oregon Health and Science University, 3232 SW Research Drive, Portland, OR, USA
| |
Collapse
|
2
|
Purohit R, Couch T, Rook ML, MacLean DM. Proline substitutions in the ASIC1 β11-12 linker slow desensitization. Biophys J 2024; 123:3507-3518. [PMID: 39182166 PMCID: PMC11494525 DOI: 10.1016/j.bpj.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/27/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
Desensitization is a prominent feature of nearly all ligand-gated ion channels. Acid-sensing ion channels (ASICs) undergo desensitization within hundreds of milliseconds to seconds upon continual extracellular acidification. The ASIC mechanism of desensitization is primarily due to the isomerization or "flipping" of a short linker joining the 11th and 12th β sheets in the extracellular domain. In the resting and active states this β11-12 linker adopts an "upward" conformation while in the desensitized conformation the linker assumes a "downward" state. It is unclear if a single linker adopting the downward state is sufficient to desensitize the entire channel, or if all three are needed or some more complex scheme. To accommodate this downward state, specific peptide bonds within the linker adopt either trans-like or cis-like conformations. Since proline-containing peptide bonds undergo cis-trans isomerization very slowly, we hypothesized that introducing proline residues in the linker may slow or even abolish ASIC desensitization, potentially providing a valuable research tool. Proline substitutions in the chicken ASIC1 β11-12 linker (L414P and Y416P) slowed desensitization decays approximately 100- to 1000-fold as measured in excised patches. Both L414P and Y416P shifted the steady-state desensitization curves to more acidic pH values while activation curves and ion selectivity were largely unaffected (except for a left-shifted activation pH50 of L414P). To investigate the functional stoichiometry of desensitization in the trimeric ASIC, we created families of L414P and Y416P concatemers with zero, one, two, or three proline substitutions in all possible configurations. Introducing one or two L414P or Y416P substitutions only slightly attenuated desensitization, suggesting that conformational changes in the single remaining faster wild-type subunits were sufficient to desensitize the channel. These data highlight the unusual cis-trans isomerization mechanism of ASIC desensitization and support a model where ASIC desensitization requires only a single subunit.
Collapse
Affiliation(s)
- Rutambhara Purohit
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Tyler Couch
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Matthew L Rook
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - David M MacLean
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York.
| |
Collapse
|
3
|
Ortega-Ramírez AM, Albani S, Bachmann M, Schmidt A, Pinoé-Schmidt M, Assmann M, Augustinowski K, Rossetti G, Gründer S. A conserved peptide-binding pocket in HyNaC/ASIC ion channels. Proc Natl Acad Sci U S A 2024; 121:e2409097121. [PMID: 39365813 PMCID: PMC11474038 DOI: 10.1073/pnas.2409097121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/05/2024] [Indexed: 10/06/2024] Open
Abstract
The only known peptide-gated ion channels-FaNaCs/WaNaCs and HyNaCs-belong to different clades of the DEG/ENaC family. FaNaCs are activated by the short neuropeptide FMRFamide, and HyNaCs by Hydra RFamides, which are not evolutionarily related to FMRFamide. The FMRFamide-binding site in FaNaCs was recently identified in a cleft atop the large extracellular domain. However, this cleft is not conserved in HyNaCs. Here, we combined molecular modeling and site-directed mutagenesis and identified a putative binding pocket for Hydra-RFamides in the extracellular domain of the heterotrimeric HyNaC2/3/5. This pocket localizes to only one of the three subunit interfaces, indicating that this trimeric ion channel binds a single peptide ligand. We engineered an unnatural amino acid at the putative binding pocket entrance, which allowed covalent tethering of Hydra RFamide to the channel, thereby trapping the channel in an open conformation. The identified pocket localizes to the same region as the acidic pocket of acid-sensing ion channels (ASICs), which binds peptide ligands. The pocket in HyNaCs is less acidic, and both electrostatic and hydrophobic interactions contribute to peptide binding. Collectively, our results reveal a conserved ligand-binding pocket in HyNaCs and ASICs and indicate independent evolution of peptide-binding cavities in the two subgroups of peptide-gated ion channels.
Collapse
Affiliation(s)
- Audrey Magdalena Ortega-Ramírez
- Medical Faculty, Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Simone Albani
- Computational Biomedicine—Institute for Advanced Simulation/Institute of Neuroscience and Medicine, Forschungszentrum Jülich, 52425Jülich, Germany
- Jülich Supercomputing Center, Forschungszentrum Jülich, 52425Jülich, Germany
- Department of Neurology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Michèle Bachmann
- Medical Faculty, Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Axel Schmidt
- Medical Faculty, Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Manuela Pinoé-Schmidt
- Medical Faculty, Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Marc Assmann
- Medical Faculty, Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Katrin Augustinowski
- Medical Faculty, Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Giulia Rossetti
- Computational Biomedicine—Institute for Advanced Simulation/Institute of Neuroscience and Medicine, Forschungszentrum Jülich, 52425Jülich, Germany
- Jülich Supercomputing Center, Forschungszentrum Jülich, 52425Jülich, Germany
- Department of Neurology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Stefan Gründer
- Medical Faculty, Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| |
Collapse
|
4
|
Holm CM, Topaktas AB, Dannesboe J, Pless SA, Heusser SA. Dynamic conformational changes of acid-sensing ion channels in different desensitizing conditions. Biophys J 2024; 123:2122-2135. [PMID: 38549370 PMCID: PMC11309988 DOI: 10.1016/j.bpj.2024.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/21/2024] [Accepted: 03/26/2024] [Indexed: 04/18/2024] Open
Abstract
Acid-sensing ion channels (ASICs) are proton-gated cation channels that contribute to fast synaptic transmission and have roles in fear conditioning and nociception. Apart from activation at low pH, ASIC1a also undergoes several types of desensitization, including acute desensitization, which terminates activation; steady-state desensitization, which occurs at sub-activating proton concentrations and limits subsequent activation; and tachyphylaxis, which results in a progressive decrease in response during a series of activations. Structural insights from a desensitized state of ASIC1 have provided great spatial detail, but dynamic insights into conformational changes in different desensitizing conditions are largely missing. Here, we use electrophysiology and voltage-clamp fluorometry to follow the functional changes of the pore along with conformational changes at several positions in the extracellular and upper transmembrane domain via cysteine-labeled fluorophores. Acute desensitization terminates activation in wild type, but introducing an N414K mutation in the β11-12 linker of mouse ASIC1a interfered with this process. The mutation also affected steady-state desensitization and led to pronounced tachyphylaxis. Although the extracellular domain of this mutant remained sensitive to pH and underwent pH-dependent conformational changes, these conformational changes did not necessarily lead to desensitization. N414K-containing channels also remained sensitive to a known peptide modulator that increases steady-state desensitization, indicating that the mutation only reduced, but not precluded, desensitization. Together, this study contributes to our understanding of the fundamental properties of ASIC1a desensitization, emphasizing the complex interplay between the conformational changes of the extracellular domain and the pore during channel activation and desensitization.
Collapse
Affiliation(s)
- Caroline Marcher Holm
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Asli B Topaktas
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark; Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Johs Dannesboe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stephan A Pless
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Stephanie A Heusser
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Cristofori-Armstrong B, Budusan E, Smith JJ, Reynaud S, Voll K, Chassagnon IR, Durek T, Rash LD. Revealing molecular determinants governing mambalgin-3 pharmacology at acid-sensing ion channel 1 variants. Cell Mol Life Sci 2024; 81:266. [PMID: 38880807 PMCID: PMC11335189 DOI: 10.1007/s00018-024-05276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/19/2024] [Accepted: 05/12/2024] [Indexed: 06/18/2024]
Abstract
Acid-sensing ion channels (ASICs) are trimeric proton-gated cation channels that play a role in neurotransmission and pain sensation. The snake venom-derived peptides, mambalgins, exhibit potent analgesic effects in rodents by inhibiting central ASIC1a and peripheral ASIC1b. Despite their distinct species- and subtype-dependent pharmacology, previous structure-function studies have focussed on the mambalgin interaction with ASIC1a. Currently, the specific channel residues responsible for this pharmacological profile, and the mambalgin pharmacophore at ASIC1b remain unknown. Here we identify non-conserved residues at the ASIC1 subunit interface that drive differences in the mambalgin pharmacology from rat ASIC1a to ASIC1b, some of which likely do not make peptide binding interactions. Additionally, an amino acid variation below the core binding site explains potency differences between rat and human ASIC1. Two regions within the palm domain, which contribute to subtype-dependent effects for mambalgins, play key roles in ASIC gating, consistent with subtype-specific differences in the peptides mechanism. Lastly, there is a shared primary mambalgin pharmacophore for ASIC1a and ASIC1b activity, with certain peripheral peptide residues showing variant-specific significance for potency. Through our broad mutagenesis studies across various species and subtype variants, we gain a more comprehensive understanding of the pharmacophore and the intricate molecular interactions that underlie ligand specificity. These insights pave the way for the development of more potent and targeted peptide analogues required to advance our understating of human ASIC1 function and its role in disease.
Collapse
Affiliation(s)
- Ben Cristofori-Armstrong
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Elena Budusan
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Jennifer J Smith
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
- Genentech, 1 DNA Way, South San Francisco, CA, 94080, United States
| | - Steve Reynaud
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
- In Extenso Innovation Growth, Lyon, France
| | - Kerstin Voll
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riß, Germany
| | - Irène R Chassagnon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
- Servatus Ltd. Coolum Beach, Coolum Beach, QLD, Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Lachlan D Rash
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
6
|
Purohit R, Couch T, MacLean DM. Proline substitutions in the ASIC1 β11-12 linker slow desensitization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593312. [PMID: 38798386 PMCID: PMC11118455 DOI: 10.1101/2024.05.09.593312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Desensitization is a prominent feature of nearly all ligand gated ion channels. Acid-sensing ion channels (ASIC) undergo desensitization within hundreds of milliseconds to seconds upon continual extracellular acidification. The ASIC mechanism of desensitization is primarily due to the isomerization or "flipping" of a short linker joining the 11th and 12th beta sheets in the extracellular domain. In the resting and active states this β11-12 linker adopts an "upward" conformation while in the desensitized conformation the linker assumes a "downward" state. To accommodate this "downward" state, specific peptide bonds within the linker adopt either trans-like or cis-like conformations. Since proline-containing peptide bonds undergo cis-trans isomerization very slowly, we hypothesized that introducing proline residues in the linker may slow or even abolish ASIC desensitization, potentially providing a valuable research tools. Proline substitutions in the chicken ASIC1 β11-12 linker (L414P and Y416P) slowed desensitization decays approximately 100 to 1000-fold as measured in excised patches. Both L414P and Y416P shifted the steady state desensitization curves to more acidic pHs while activation curves and ion selectivity of these slow-desensitizing currents were largely unaffected. To investigate the functional stoichiometry of desensitization in the trimeric ASIC, we created families of L414P and Y416P concatemers with zero, one, two or three proline substitutions in all possible configurations. Introducing one or two L414P or Y416P mutations only slightly attenuated desensitization, suggesting that conformational changes in the remaining faster wild type subunits were sufficient to desensitize the channel. These data highlight the unusual cis-trans isomerization mechanism of ASIC desensitization and support a model where a single subunit is sufficient to desensitize the entire channel.
Collapse
Affiliation(s)
- Rutambhara Purohit
- Department of Pharmacology and Physiology, University of Rochester Medical Center
| | - Tyler Couch
- Department of Pharmacology and Physiology, University of Rochester Medical Center
| | - David M MacLean
- Department of Pharmacology and Physiology, University of Rochester Medical Center
| |
Collapse
|
7
|
Zhang Z, Chen M, Zhan W, Chen Y, Wang T, Chen Z, Fu Y, Zhao G, Mao D, Ruan J, Yuan FL. Acid-sensing ion channel 1a modulation of apoptosis in acidosis-related diseases: implications for therapeutic intervention. Cell Death Discov 2023; 9:330. [PMID: 37666823 PMCID: PMC10477349 DOI: 10.1038/s41420-023-01624-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/28/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023] Open
Abstract
Acid-sensing ion channel 1a (ASIC1a), a prominent member of the acid-sensing ion channel (ASIC) superfamily activated by extracellular protons, is ubiquitously expressed throughout the human body, including the nervous system and peripheral tissues. Excessive accumulation of Ca2+ ions via ASIC1a activation may occur in the acidified microenvironment of blood or local tissues. ASIC1a-mediated Ca2+‑induced apoptosis has been implicated in numerous pathologies, including neurological disorders, cancer, and rheumatoid arthritis. This review summarizes the role of ASIC1a in the modulation of apoptosis via various signaling pathways across different disease states to provide insights for future studies on the underlying mechanisms and development of therapeutic strategies.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Minnan Chen
- Nantong First People's Hospital, Nantong, 226001, China
| | - Wenjing Zhan
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, 230032, China
| | - Yuechun Chen
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Tongtong Wang
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Zhonghua Chen
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Yifei Fu
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Gang Zhao
- Orthopaedic Institute, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China
| | - Dong Mao
- Orthopaedic Institute, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China.
| | - Jingjing Ruan
- Nantong First People's Hospital, Nantong, 226001, China.
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| | - Feng-Lai Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China.
| |
Collapse
|
8
|
Zhang L, Wang X, Chen J, Sheng S, Kleyman TR. Extracellular intersubunit interactions modulate epithelial Na + channel gating. J Biol Chem 2023; 299:102914. [PMID: 36649907 PMCID: PMC9975279 DOI: 10.1016/j.jbc.2023.102914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/13/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Epithelial Na+ channels (ENaCs) and related channels have large extracellular domains where specific factors interact and induce conformational changes, leading to altered channel activity. However, extracellular structural transitions associated with changes in ENaC activity are not well defined. Using crosslinking and two-electrode voltage clamp in Xenopus oocytes, we identified several pairs of functional intersubunit contacts where mouse ENaC activity was modulated by inducing or breaking a disulfide bond between introduced Cys residues. Specifically, crosslinking E499C in the β-subunit palm domain and N510C in the α-subunit palm domain activated ENaC, whereas crosslinking βE499C with αQ441C in the α-subunit thumb domain inhibited ENaC. We determined that bridging βE499C to αN510C or αQ441C altered the Na+ self-inhibition response via distinct mechanisms. Similar to bridging βE499C and αQ441C, we found that crosslinking palm domain αE557C with thumb domain γQ398C strongly inhibited ENaC activity. In conclusion, we propose that certain residues at specific subunit interfaces form microswitches that convey a conformational wave during ENaC gating and its regulation.
Collapse
Affiliation(s)
- Lei Zhang
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xueqi Wang
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingxin Chen
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shaohu Sheng
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Thomas R Kleyman
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Osei-Owusu J, Ruan Z, Mihaljević L, Matasic DS, Chen KH, Lü W, Qiu Z. Molecular mechanism underlying desensitization of the proton-activated chloride channel PAC. eLife 2022; 11:e82955. [PMID: 36547405 PMCID: PMC9779784 DOI: 10.7554/elife.82955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Desensitization is a common property of membrane receptors, including ion channels. The newly identified proton-activated chloride (PAC) channel plays an important role in regulating the pH and size of organelles in the endocytic pathway, and is also involved in acid-induced cell death. However, how the PAC channel desensitizes is largely unknown. Here, we show by patch-clamp electrophysiological studies that PAC (also known as TMEM206/ASOR) undergoes pH-dependent desensitization upon prolonged acid exposure. Through structure-guided and comprehensive mutagenesis, we identified several residues critical for PAC desensitization, including histidine (H) 98, glutamic acid (E) 94, and aspartic acid (D) 91 at the extracellular extension of the transmembrane helix 1 (TM1), as well as E107, D109, and E250 at the extracellular domain (ECD)-transmembrane domain (TMD) interface. Structural analysis and molecular dynamic simulations revealed extensive interactions between residues at the TM1 extension and those at the ECD-TMD interface. These interactions likely facilitate PAC desensitization by stabilizing the desensitized conformation of TM1, which undergoes a characteristic rotational movement from the resting and activated states to the desensitized state. Our studies establish a new paradigm of channel desensitization in this ubiquitously expressed ion channel and pave the way for future investigation of its relevance in cellular physiology and disease.
Collapse
Affiliation(s)
- James Osei-Owusu
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Zheng Ruan
- Department of Structural Biology, Van Andel InstituteGrand RapidsUnited States
| | - Ljubica Mihaljević
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Daniel S Matasic
- Department of Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Kevin Hong Chen
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Wei Lü
- Department of Structural Biology, Van Andel InstituteGrand RapidsUnited States
| | - Zhaozhu Qiu
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
10
|
Verkest C, Salinas M, Diochot S, Deval E, Lingueglia E, Baron A. Mechanisms of Action of the Peptide Toxins Targeting Human and Rodent Acid-Sensing Ion Channels and Relevance to Their In Vivo Analgesic Effects. Toxins (Basel) 2022; 14:toxins14100709. [PMID: 36287977 PMCID: PMC9612379 DOI: 10.3390/toxins14100709] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are voltage-independent H+-gated cation channels largely expressed in the nervous system of rodents and humans. At least six isoforms (ASIC1a, 1b, 2a, 2b, 3 and 4) associate into homotrimers or heterotrimers to form functional channels with highly pH-dependent gating properties. This review provides an update on the pharmacological profiles of animal peptide toxins targeting ASICs, including PcTx1 from tarantula and related spider toxins, APETx2 and APETx-like peptides from sea anemone, and mambalgin from snake, as well as the dimeric protein snake toxin MitTx that have all been instrumental to understanding the structure and the pH-dependent gating of rodent and human cloned ASICs and to study the physiological and pathological roles of native ASICs in vitro and in vivo. ASICs are expressed all along the pain pathways and the pharmacological data clearly support a role for these channels in pain. ASIC-targeting peptide toxins interfere with ASIC gating by complex and pH-dependent mechanisms sometimes leading to opposite effects. However, these dual pH-dependent effects of ASIC-inhibiting toxins (PcTx1, mambalgin and APETx2) are fully compatible with, and even support, their analgesic effects in vivo, both in the central and the peripheral nervous system, as well as potential effects in humans.
Collapse
Affiliation(s)
- Clément Verkest
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Miguel Salinas
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
| | - Sylvie Diochot
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
| | - Emmanuel Deval
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
| | - Eric Lingueglia
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
| | - Anne Baron
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
- Correspondence:
| |
Collapse
|
11
|
Zhang L, Wang X, Chen J, Kleyman TR, Sheng S. Accessibility of ENaC extracellular domain central core residues. J Biol Chem 2022; 298:101860. [PMID: 35339489 PMCID: PMC9052164 DOI: 10.1016/j.jbc.2022.101860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 11/20/2022] Open
Abstract
The epithelial Na+ channel (ENaC)/degenerin family has a similar extracellular architecture, where specific regulatory factors interact and alter channel gating behavior. The extracellular palm domain serves as a key link to the channel pore. In this study, we used cysteine-scanning mutagenesis to assess the functional effects of Cys-modifying reagents on palm domain β10 strand residues in mouse ENaC. Of the 13 ENaC α subunit mutants with Cys substitutions examined, only mutants at sites in the proximal region of β10 exhibited changes in channel activity in response to methanethiosulfonate reagents. Additionally, Cys substitutions at three proximal sites of β and γ subunit β10 strands also rendered mutant channels methanethiosulfonate-responsive. Moreover, multiple Cys mutants were activated by low concentrations of thiophilic Cd2+. Using the Na+ self-inhibition response to assess ENaC gating behavior, we identified four α, two β, and two γ subunit β10 strand mutations that changed the Na+ self-inhibition response. Our results suggest that the proximal regions of β10 strands in all three subunits are accessible to small aqueous compounds and Cd2+ and have a role in modulating ENaC gating. These results are consistent with a structural model of mouse ENaC that predicts the presence of aqueous tunnels adjacent to the proximal part of β10 and with previously resolved structures of a related family member where palm domain structural transitions were observed with channels in an open or closed state.
Collapse
Affiliation(s)
- Lei Zhang
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xueqi Wang
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jingxin Chen
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Thomas R Kleyman
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Shaohu Sheng
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Heusser SA, Borg CB, Colding JM, Pless SA. Conformational decoupling in acid-sensing ion channels uncovers mechanism and stoichiometry of PcTx1-mediated inhibition. eLife 2022; 11:73384. [PMID: 35156612 PMCID: PMC8871370 DOI: 10.7554/elife.73384] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/11/2022] [Indexed: 01/10/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are trimeric proton-gated cation channels involved in fast synaptic transmission. Pharmacological inhibition of ASIC1a reduces neurotoxicity and stroke infarct volumes, with the cysteine knot toxin psalmotoxin-1 (PcTx1) being one of the most potent and selective inhibitors. PcTx1 binds at the subunit interface in the extracellular domain (ECD), but the mechanism and conformational consequences of the interaction, as well as the number of toxin molecules required for inhibition, remain unknown. Here, we use voltage-clamp fluorometry and subunit concatenation to decipher the mechanism and stoichiometry of PcTx1 inhibition of ASIC1a. Besides the known inhibitory binding mode, we propose PcTx1 to have at least two additional binding modes that are decoupled from the pore. One of these modes induces a long-lived ECD conformation that reduces the activity of an endogenous neuropeptide. This long-lived conformational state is proton-dependent and can be destabilized by a mutation that decreases PcTx1 sensitivity. Lastly, the use of concatemeric channel constructs reveals that disruption of a single PcTx1 binding site is sufficient to destabilize the toxin-induced conformation, while functional inhibition is not impaired until two or more binding sites are mutated. Together, our work provides insight into the mechanism of PcTx1 inhibition of ASICs and uncovers a prolonged conformational change with possible pharmacological implications.
Collapse
Affiliation(s)
- Stephanie A Heusser
- Department of Drug Design and Pharmacology, University of Copenhagen, Copehagen, Denmark
| | - Christian B Borg
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Janne M Colding
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Stephan A Pless
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Rook ML, Ananchenko A, Musgaard M, MacLean DM. Molecular Investigation of Chicken Acid-Sensing Ion Channel 1 β11-12 Linker Isomerization and Channel Kinetics. Front Cell Neurosci 2021; 15:761813. [PMID: 34924957 PMCID: PMC8675884 DOI: 10.3389/fncel.2021.761813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Structures of the trimeric acid-sensing ion channel have been solved in the resting, toxin-bound open and desensitized states. Within the extracellular domain, there is little difference between the toxin-bound open state and the desensitized state. The main exception is that a loop connecting the 11th and 12th β-strand, just two amino acid residues long, undergoes a significant and functionally critical re-orientation or flipping between the open and desensitized conformations. Here we investigate how specific interactions within the surrounding area influence linker stability in the "flipped" desensitized state using all-atom molecular dynamics simulations. An inherent challenge is bringing the relatively slow channel desensitization and recovery processes (in the milliseconds to seconds) within the time window of all-atom simulations (hundreds of nanoseconds). To accelerate channel behavior, we first identified the channel mutations at either the Leu414 or Asn415 position with the fastest recovery kinetics followed by molecular dynamics simulations of these mutants in a deprotonated state, accelerating recovery. By mutating one residue in the loop and examining the evolution of interactions in the neighbor, we identified a novel electrostatic interaction and validated prior important interactions. Subsequent functional analysis corroborates these findings, shedding light on the molecular factors controlling proton-mediated transitions between functional states of the channel. Together, these data suggest that the flipped loop in the desensitized state is stabilized by interactions from surrounding regions keeping both L414 and N415 in place. Interestingly, very few mutations in the loop allow for equivalent channel kinetics and desensitized state stability. The high degree of sequence conservation in this region therefore indicates that the stability of the ASIC desensitized state is under strong selective pressure and underlines the physiological importance of desensitization.
Collapse
Affiliation(s)
- Matthew L. Rook
- Graduate Program in Cellular and Molecular Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, United States
| | - Anna Ananchenko
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Maria Musgaard
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - David M. MacLean
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
14
|
Klipp RC, Cullinan MM, Bankston JR. Insights into the molecular mechanisms underlying the inhibition of acid-sensing ion channel 3 gating by stomatin. J Gen Physiol 2021; 152:133684. [PMID: 32012213 PMCID: PMC7054857 DOI: 10.1085/jgp.201912471] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/07/2019] [Accepted: 12/17/2019] [Indexed: 12/19/2022] Open
Abstract
Stomatin (STOM) is a monotopic integral membrane protein found in all classes of life that has been shown to regulate members of the acid-sensing ion channel (ASIC) family. However, the mechanism by which STOM alters ASIC function is not known. Using chimeric channels, we combined patch-clamp electrophysiology and FRET to search for regions of ASIC3 critical for binding to and regulation by STOM. With this approach, we found that regulation requires two distinct sites on ASIC3: the distal C-terminus and the first transmembrane domain (TM1). The C-terminal site is critical for formation of the STOM–ASIC3 complex, while TM1 is required only for the regulatory effect. We then looked at the mechanism of STOM-dependent regulation of ASIC3 and found that STOM does not alter surface expression of ASIC3 or shift the pH dependence of channel activation. However, a point mutation (Q269G) that prevents channel desensitization also prevents STOM regulation, suggesting that STOM may alter ASIC3 currents by stabilizing the desensitized state of the channel. Based on these findings, we propose a model whereby STOM is anchored to the channel via a site on the distal C-terminus and stabilizes the desensitized state of the channel via an interaction with TM1.
Collapse
Affiliation(s)
| | - Megan M Cullinan
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO
| | - John R Bankston
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO
| |
Collapse
|
15
|
Rook ML, Miaro M, Couch T, Kneisley DL, Musgaard M, MacLean DM. Mutation of a conserved glutamine residue does not abolish desensitization of acid-sensing ion channel 1. THE JOURNAL OF GENERAL PHYSIOLOGY 2021; 153:212203. [PMID: 34061161 PMCID: PMC8167889 DOI: 10.1085/jgp.202012855] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 05/13/2021] [Indexed: 12/14/2022]
Abstract
Desensitization is a common feature of ligand-gated ion channels, although the molecular cause varies widely between channel types. Mutations that greatly reduce or nearly abolish desensitization have been described for many ligand-gated ion channels, including glutamate, GABA, glycine, and nicotinic receptors, but not for acid-sensing ion channels (ASICs) until recently. Mutating Gln276 to a glycine (Q276G) in human ASIC1a was reported to mostly abolish desensitization at both the macroscopic and the single channel levels, potentially providing a valuable tool for subsequent studies. However, we find that in both human and chicken ASIC1, the effect of Q276G is modest. In chicken ASIC1, the equivalent Q277G slightly reduces desensitization when using pH 6.5 as a stimulus but desensitizes, essentially like wild-type, when using more acidic pH values. In addition, steady-state desensitization is intact, albeit right-shifted, and recovery from desensitization is accelerated. Molecular dynamics simulations indicate that the Gln277 side chain participates in a hydrogen bond network that might stabilize the desensitized conformation. Consistent with this, destabilizing this network with the Q277N or Q277L mutations largely mimics the Q277G phenotype. In human ASIC1a, the Q276G mutation also reduces desensitization, but not to the extent reported previously. Interestingly, the kinetic consequences of Q276G depend on the human variant used. In the common G212 variant, Q276G slows desensitization, while in the rare D212 variant desensitization accelerates. Our data reveal that while the Q/G mutation does not abolish or substantially impair desensitization as previously reported, it does point to unexpected differences between chicken and human ASICs and the need for careful scrutiny before using this mutation in future studies.
Collapse
Affiliation(s)
- Matthew L Rook
- Graduate Program in Cellular and Molecular Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY
| | - Megan Miaro
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Tyler Couch
- Graduate Program in Cellular and Molecular Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY
| | - Dana L Kneisley
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY
| | - Maria Musgaard
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - David M MacLean
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
16
|
Chen Z, Kuenze G, Meiler J, Canessa CM. An arginine residue in the outer segment of hASIC1a TM1 affects both proton affinity and channel desensitization. J Gen Physiol 2021; 153:211986. [PMID: 33851970 PMCID: PMC8050794 DOI: 10.1085/jgp.202012802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/14/2020] [Accepted: 03/11/2021] [Indexed: 12/25/2022] Open
Abstract
Acid-sensing ion channels (ASICs) respond to changes in pH in the central and peripheral nervous systems and participate in synaptic plasticity and pain perception. Understanding the proton-mediated gating mechanism remains elusive despite the of their structures in various conformational states. We report here that R64, an arginine located in the outer segment of the first transmembrane domain of all three isoforms of mammalian ASICs, markedly impacts the apparent proton affinity of activation and the degree of desensitization from the open and preopen states. Rosetta calculations of free energy changes predict that substitutions of R64 in hASIC1a by aromatic residues destabilize the closed conformation while stabilizing the open conformation. Accordingly, F64 enhances the efficacy of proton-mediated gating of hASIC1a, which increases the apparent pH50 and facilitates channel opening when only one or two subunits are activated. F64 also lengthens the duration of opening events, thus keeping channels open for extended periods of time and diminishing low pH-induced desensitization. Our results indicate that activation of a proton sensor(s) with pH50 equal to or greater than pH 7.2–7.1 opens F64hASIC1a, whereas it induces steady-state desensitization in wildtype channels due to the high energy of activation imposed by R64, which prevents opening of the pore. Together, these findings suggest that activation of a high-affinity proton-sensor(s) and a common gating mechanism may mediate the processes of activation and steady-state desensitization of hASIC1a.
Collapse
Affiliation(s)
- Zhuyuan Chen
- Department of Basic Sciences, Tsinghua University School of Medicine, Beijing, China
| | - Georg Kuenze
- Department of Chemistry, Vanderbilt University, Nashville, TN.,Center for Structural Biology, Vanderbilt University, Nashville, TN.,Institute for Drug Discovery, Leipzig University, Leipzig, Germany
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN.,Center for Structural Biology, Vanderbilt University, Nashville, TN.,Department of Pharmacology, Vanderbilt University, Nashville, TN.,Institute for Drug Discovery, Leipzig University, Leipzig, Germany
| | - Cecilia M Canessa
- Department of Basic Sciences, Tsinghua University School of Medicine, Beijing, China.,Cellular and Molecular Physiology, Yale University, New Haven, CT
| |
Collapse
|
17
|
Vullo S, Ambrosio N, Kucera JP, Bignucolo O, Kellenberger S. Kinetic analysis of ASIC1a delineates conformational signaling from proton-sensing domains to the channel gate. eLife 2021; 10:66488. [PMID: 33729158 PMCID: PMC8009679 DOI: 10.7554/elife.66488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/16/2021] [Indexed: 11/13/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are neuronal Na+ channels that are activated by a drop in pH. Their established physiological and pathological roles, involving fear behaviors, learning, pain sensation, and neurodegeneration after stroke, make them promising targets for future drugs. Currently, the ASIC activation mechanism is not understood. Here, we used voltage-clamp fluorometry (VCF) combined with fluorophore-quencher pairing to determine the kinetics and direction of movements. We show that conformational changes with the speed of channel activation occur close to the gate and in more distant extracellular sites, where they may be driven by local protonation events. Further, we provide evidence for fast conformational changes in a pathway linking protonation sites to the channel pore, in which an extracellular interdomain loop interacts via aromatic residue interactions with the upper end of a transmembrane helix and would thereby open the gate.
Collapse
Affiliation(s)
- Sabrina Vullo
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Ambrosio
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Jan P Kucera
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Olivier Bignucolo
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.,SIB, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Stephan Kellenberger
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
Liu Y, Ma J, DesJarlais RL, Hagan R, Rech J, Lin D, Liu C, Miller R, Schoellerman J, Luo J, Letavic M, Grasberger B, Maher M. Molecular mechanism and structural basis of small-molecule modulation of the gating of acid-sensing ion channel 1. Commun Biol 2021; 4:174. [PMID: 33564124 PMCID: PMC7873226 DOI: 10.1038/s42003-021-01678-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/07/2021] [Indexed: 01/07/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are proton-gated cation channels critical for neuronal functions. Studies of ASIC1, a major ASIC isoform and proton sensor, have identified acidic pocket, an extracellular region enriched in acidic residues, as a key participant in channel gating. While binding to this region by the venom peptide psalmotoxin modulates channel gating, molecular and structural mechanisms of ASIC gating modulation by small molecules are poorly understood. Here, combining functional, crystallographic, computational and mutational approaches, we show that two structurally distinct small molecules potently and allosterically inhibit channel activation and desensitization by binding at the acidic pocket and stabilizing the closed state of rat/chicken ASIC1. Our work identifies a previously unidentified binding site, elucidates a molecular mechanism of small molecule modulation of ASIC gating, and demonstrates directly the structural basis of such modulation, providing mechanistic and structural insight into ASIC gating, modulation and therapeutic targeting.
Collapse
Affiliation(s)
- Yi Liu
- Neuroscience Discovery, Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA.
| | - Jichun Ma
- Discovery Sciences, Janssen Research & Development, L.L.C., Welsh & McKean Roads, P.O. Box 776, Spring House, PA, 19477, USA
| | - Renee L DesJarlais
- Discovery Sciences, Janssen Research & Development, L.L.C., Welsh & McKean Roads, P.O. Box 776, Spring House, PA, 19477, USA
| | - Rebecca Hagan
- Neuroscience Discovery, Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Jason Rech
- Discovery Sciences, Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - David Lin
- Discovery Sciences, Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Changlu Liu
- Neuroscience Discovery, Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Robyn Miller
- Discovery Sciences, Janssen Research & Development, L.L.C., Welsh & McKean Roads, P.O. Box 776, Spring House, PA, 19477, USA
| | - Jeffrey Schoellerman
- Neuroscience Discovery, Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Jinquan Luo
- Lead Engineering, Janssen Research & Development, L.L.C., Welsh & McKean Roads, P.O. Box 776, Spring House, PA, 19477, USA
| | - Michael Letavic
- Discovery Sciences, Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Bruce Grasberger
- Discovery Sciences, Janssen Research & Development, L.L.C., Welsh & McKean Roads, P.O. Box 776, Spring House, PA, 19477, USA
| | - Michael Maher
- Neuroscience Discovery, Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| |
Collapse
|
19
|
Braun N, Sheikh ZP, Pless SA. The current chemical biology tool box for studying ion channels. J Physiol 2020; 598:4455-4471. [DOI: 10.1113/jp276695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- N. Braun
- Department of Drug Design and Pharmacology University of Copenhagen Jagtvej 160 Copenhagen 2100 Denmark
| | - Z. P. Sheikh
- Department of Drug Design and Pharmacology University of Copenhagen Jagtvej 160 Copenhagen 2100 Denmark
| | - S. A. Pless
- Department of Drug Design and Pharmacology University of Copenhagen Jagtvej 160 Copenhagen 2100 Denmark
| |
Collapse
|
20
|
The Role of Acid-sensing Ion Channel 3 in the Modulation of Tooth Mechanical Hyperalgesia Induced by Orthodontic Tooth Movement. Neuroscience 2020; 442:274-285. [PMID: 32592826 DOI: 10.1016/j.neuroscience.2020.06.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 02/05/2023]
Abstract
This study aimed to explore the role of acid-sensing ion channel 3 (ASIC3) in the modulation of tooth mechanical hyperalgesia induced by orthodontic tooth movement. In male Sprague-Dawley rats, closed coil springs were ligated between mandibular incisors and molars to mimic orthodontic tooth movement. Bite force was assessed to evaluate tooth mechanical hyperalgesia. The alveolar bone, trigeminal ganglia, and trigeminal nucleus caudalis underwent immunohistochemical staining and immunoblotting for ASIC3. The inferior alveolar nerves were transected to explore the interaction between the periodontal sensory endings and trigeminal ganglia. The role of ASIC3 in trigeminal ganglia was further explored with lentivirus-mediated ASIC3 ribonucleic acid interference. Results showed that ASIC3 was expressed in the periodontal Ruffini endings and expression of ASIC3 protein was elevated in periodontal tissues, trigeminal ganglia, and trigeminal nucleus caudalis, following orthodontic tooth movement. ASIC3 agonists and antagonists significantly aggravated and mitigated tooth mechanical hyperalgesia, respectively. ASIC3 expression decreased after inferior alveolar nerve transection in periodontal tissues. Both in vitro and vivo, the lentivirus vector carrying ASIC3 shRNA inhibited ASIC3 expression and relieved tooth mechanical hyperalgesia. To conclude, ASIC3 is important in the modulation of tooth mechanical hyperalgesia induced by orthodontic tooth movement. Further, the role of ASIC3 in the modulation of pain in periodontal tissues is regulated by trigeminal ganglia. An adjuvant analgesic therapy targeting ASIC3 could alleviate orthodontic movement-associated mechanical hyperalgesia in rats.
Collapse
|
21
|
Rook ML, Musgaard M, MacLean DM. Coupling structure with function in acid-sensing ion channels: challenges in pursuit of proton sensors. J Physiol 2020; 599:417-430. [PMID: 32306405 DOI: 10.1113/jp278707] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/27/2020] [Indexed: 12/25/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are a class of trimeric cation-selective ion channels activated by changes in pH within the physiological range. They are widely expressed in the central and peripheral nervous systems where they participate in a range of physiological and pathophysiological situations such as learning and memory, pain sensation, fear and anxiety, substance abuse and cell death. ASICs are localized to cell bodies and dendrites, including the postsynaptic density, and within the last 5 years several examples of proton-evoked ASIC excitatory postsynaptic currents have emerged. Thus, ASICs have become bona fide neurotransmitter-gated ion channels, activated by the smallest neurotransmitter possible: protons. Here we review how protons are thought to drive the conformational changes associated with ASIC activation and desensitization. In particular, we weigh the evidence for and against the so-called 'acidic pocket' being a vital proton sensor and discuss the emerging role of the β11-12 linker as a desensitization switch or 'molecular clutch'. We also examine how proton-induced conformational changes pose unique challenges to classical molecular dynamics simulations, as well as some possible solutions. Given the emergence of new methodologies and structures, the coming years will probably see many advances in the study of acid-sensing ion channels.
Collapse
Affiliation(s)
- Matthew L Rook
- Graduate Program in Cellular and Molecular Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Maria Musgaard
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 75 Laurier Ave E, Ottawa, ON, K1N 6N5, Canada
| | - David M MacLean
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| |
Collapse
|
22
|
Rook ML, Williamson A, Lueck JD, Musgaard M, Maclean DM. β11-12 linker isomerization governs acid-sensing ion channel desensitization and recovery. eLife 2020; 9:51111. [PMID: 32031522 PMCID: PMC7041949 DOI: 10.7554/elife.51111] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 02/06/2020] [Indexed: 02/02/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are neuronal sodium-selective channels activated by reductions in extracellular pH. Structures of the three presumptive functional states, high-pH resting, low-pH desensitized, and toxin-stabilized open, have all been solved for chicken ASIC1. These structures, along with prior functional data, suggest that the isomerization or flipping of the β11–12 linker in the extracellular, ligand-binding domain is an integral component of the desensitization process. To test this, we combined fast perfusion electrophysiology, molecular dynamics simulations and state-dependent non-canonical amino acid cross-linking. We find that both desensitization and recovery can be accelerated by orders of magnitude by mutating resides in this linker or the surrounding region. Furthermore, desensitization can be suppressed by trapping the linker in the resting state, indicating that isomerization of the β11–12 linker is not merely a consequence of, but a necessity for the desensitization process in ASICs.
Collapse
Affiliation(s)
- Matthew L Rook
- Graduate Program in Cellular and Molecular Pharmacology and Physiology, Rochester, United States
| | - Abby Williamson
- Biomedical Engineering Program, University of Rochester, New York, United States
| | - John D Lueck
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, United States
| | - Maria Musgaard
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - David M Maclean
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, United States
| |
Collapse
|