1
|
Ren J, Lv L, Tao X, Zhai X, Chen X, Yu H, Zhao X, Kong X, Yu Z, Dong D, Liu J. The role of CBL family ubiquitin ligases in cancer progression and therapeutic strategies. Front Pharmacol 2024; 15:1432545. [PMID: 39130630 PMCID: PMC11310040 DOI: 10.3389/fphar.2024.1432545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
The CBL (Casitas B-lineage lymphoma) family, as a class of ubiquitin ligases, can regulate signal transduction and activate receptor tyrosine kinases through various tyrosine kinase-dependent pathways. There are three members of the family: c-CBL, CBL-b, and CBL-c. Numerous studies have demonstrated the important role of CBL in various cellular pathways, particularly those involved in the occurrence and progression of cancer, hematopoietic development, and regulation of T cell receptors. Therefore, the purpose of this review is to comprehensively summarize the function and regulatory role of CBL family proteins in different human tumors, as well as the progress of drug research targeting CBL family, so as to provide a broader clinical measurement strategy for the treatment of tumors.
Collapse
Affiliation(s)
- Jiaqi Ren
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Linlin Lv
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xufeng Tao
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaohan Zhai
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xuyang Chen
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hao Yu
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Xinya Zhao
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Xin Kong
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Zhan Yu
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Deshi Dong
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
L’Estrange-Stranieri E, Gottschalk TA, Wright MD, Hibbs ML. The dualistic role of Lyn tyrosine kinase in immune cell signaling: implications for systemic lupus erythematosus. Front Immunol 2024; 15:1395427. [PMID: 39007135 PMCID: PMC11239442 DOI: 10.3389/fimmu.2024.1395427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Systemic lupus erythematosus (SLE, lupus) is a debilitating, multisystem autoimmune disease that can affect any organ in the body. The disease is characterized by circulating autoantibodies that accumulate in organs and tissues, which triggers an inflammatory response that can cause permanent damage leading to significant morbidity and mortality. Lyn, a member of the Src family of non-receptor protein tyrosine kinases, is highly implicated in SLE as remarkably both mice lacking Lyn or expressing a gain-of-function mutation in Lyn develop spontaneous lupus-like disease due to altered signaling in B lymphocytes and myeloid cells, suggesting its expression or activation state plays a critical role in maintaining tolerance. The past 30 years of research has begun to elucidate the role of Lyn in a duplicitous signaling network of activating and inhibitory immunoreceptors and related targets, including interactions with the interferon regulatory factor family in the toll-like receptor pathway. Gain-of-function mutations in Lyn have now been identified in human cases and like mouse models, cause severe systemic autoinflammation. Studies of Lyn in SLE patients have presented mixed findings, which may reflect the heterogeneity of disease processes in SLE, with impairment or enhancement in Lyn function affecting subsets of SLE patients that may be a means of stratification. In this review, we present an overview of the phosphorylation and protein-binding targets of Lyn in B lymphocytes and myeloid cells, highlighting the structural domains of the protein that are involved in its function, and provide an update on studies of Lyn in SLE patients.
Collapse
Affiliation(s)
- Elan L’Estrange-Stranieri
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Timothy A. Gottschalk
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Mark D. Wright
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Margaret L. Hibbs
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Kenkpen AK, Storey JJ, Olson ER, Guden TE, Card TT, Jensen AS, Ahrens JL, Hellmann Whitaker RA. Developing Connections Between LINC00298 RNA and Alzheimer's Disease Through Mapping Its Interactome and Through Biochemical Characterization. J Alzheimers Dis 2023; 95:641-661. [PMID: 37574728 DOI: 10.3233/jad-230057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
BACKGROUND Long non-coding RNAs are ubiquitous throughout the human system, yet many of their biological functions remain unknown. LINC00298 RNA, a long intergenic non-coding RNA, has been shown to have preferential expression in the central nervous system where it contributes to neuronal differentiation and development. Furthermore, previous research has indicated that LINC00298 RNA is known to be a genetic risk factor for the development of Alzheimer's disease. OBJECTIVE To biochemically characterize LINC00298 RNA and to elucidate its biological function within hippocampal neuronal cells, thereby providing a greater understanding of its role in Alzheimer's disease pathogenesis. METHODS LINC00298 RNA was in vitro transcribed and then subjected to structural analysis using circular dichroism, and UV-Vis spectroscopy. Additionally, affinity column chromatography was used to capture LINC00298 RNA's protein binding partners from hippocampal neuronal cells, which were then identified using liquid chromatography and mass spectrometry (LC/MS). RESULTS LINC00298 RNA is comprised of stem-loop secondary structural elements, with a cylindrical tertiary structure that has highly dynamic regions, which result in high positional entropy. LC/MS identified 24 proteins within the interactome of LINC00298 RNA. CONCLUSION Through analysis of LINC00298 RNA's 24 protein binding partners, it was determined that LINC00298 RNA may play significant roles in neuronal development, proliferation, and cellular organization. Furthermore, analysis of LINC00298 RNA's interactome indicated that LINC00298 RNA is capable of intracellular motility with dual localization in the nucleus and the cytosol. This biochemical characterization of LINC00298 RNA has shed light on its role in Alzheimer's disease pathogenesis.
Collapse
Affiliation(s)
- Angel K Kenkpen
- Department of Chemistry, Bemidji State University, Bemidji, MN, USA
| | - Joshua J Storey
- Department of Chemistry, Bemidji State University, Bemidji, MN, USA
| | - Emma R Olson
- Department of Chemistry, Bemidji State University, Bemidji, MN, USA
| | - Ty E Guden
- Department of Chemistry, Bemidji State University, Bemidji, MN, USA
| | - Tate T Card
- Department of Chemistry, Bemidji State University, Bemidji, MN, USA
| | - Ashley S Jensen
- Department of Chemistry, Bemidji State University, Bemidji, MN, USA
| | - Jordyn L Ahrens
- Department of Chemistry, Bemidji State University, Bemidji, MN, USA
| | | |
Collapse
|
4
|
Tawaratsumida K, Redecke V, Wu R, Kuriakose J, Bouchard JJ, Mittag T, Lohman BK, Mishra A, High AA, Häcker H. A phospho-tyrosine-based signaling module using SPOP, CSK, and LYN controls TLR-induced IRF activity. SCIENCE ADVANCES 2022; 8:eabq0084. [PMID: 35857476 PMCID: PMC9269885 DOI: 10.1126/sciadv.abq0084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Toll-like receptors (TLRs) recognize pathogen- and host-derived factors and control immune responses via the adaptor protein MyD88 and members of the interferon regulatory transcription factor (IRF) family. IRFs orchestrate key effector functions, including cytokine release, cell differentiation, and, under certain circumstances, inflammation pathology. Here, we show that IRF activity is generically controlled by the Src kinase family member LYN, which phosphorylates all TLR-induced IRFs at a conserved tyrosine residue, resulting in K48-linked polyubiquitination and proteasomal degradation of IRFs. We further show that LYN activity is controlled by the upstream kinase C-terminal Src kinase (CSK), whose activity, in turn, is controlled by the adaptor protein SPOP, which serves as molecular bridge to recruit CSK into the TLR signaling complex and to activate CSK catalytic activity. Consistently, deletion of SPOP or CSK results in increased LYN activity, LYN-directed IRF degradation, and inhibition of IRF transcriptional activity. Together, the data reveal a key regulatory mechanism for IRF family members controlling TLR biology.
Collapse
Affiliation(s)
- Kazuki Tawaratsumida
- Laboratory of Innate Immunity and Signal Transduction, Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Vanessa Redecke
- Laboratory of Innate Immunity and Signal Transduction, Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Ruiqiong Wu
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jeeba Kuriakose
- Children’s GMP, LLC., St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jill J. Bouchard
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Brian K. Lohman
- Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Ashutosh Mishra
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Anthony A. High
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Hans Häcker
- Laboratory of Innate Immunity and Signal Transduction, Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
5
|
Brian BF, Sauer ML, Greene JT, Senevirathne SE, Lindstedt AJ, Funk OL, Ruis BL, Ramirez LA, Auger JL, Swanson WL, Nunez MG, Moriarity BS, Lowell CA, Binstadt BA, Freedman TS. A dominant function of LynB kinase in preventing autoimmunity. SCIENCE ADVANCES 2022; 8:eabj5227. [PMID: 35452291 PMCID: PMC9032976 DOI: 10.1126/sciadv.abj5227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Here, we report that the LynB splice variant of the Src-family kinase Lyn exerts a dominant immunosuppressive function in vivo, whereas the LynA isoform is uniquely required to restrain autoimmunity in female mice. We used CRISPR-Cas9 gene editing to constrain lyn splicing and expression, generating single-isoform LynA knockout (LynAKO) or LynBKO mice. Autoimmune disease in total LynKO mice is characterized by production of antinuclear antibodies, glomerulonephritis, impaired B cell development, and overabundance of activated B cells and proinflammatory myeloid cells. Expression of LynA or LynB alone uncoupled the developmental phenotype from the autoimmune disease: B cell transitional populations were restored, but myeloid cells and differentiated B cells were dysregulated. These changes were isoform-specific, sexually dimorphic, and distinct from the complete LynKO. Despite the apparent differences in disease etiology and penetrance, loss of either LynA or LynB had the potential to induce severe autoimmune disease with parallels to human systemic lupus erythematosus (SLE).
Collapse
Affiliation(s)
- Ben F. Brian
- Graduate Program in Molecular Pharmacology and Therapeutics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Monica L. Sauer
- Graduate Program in Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joseph T. Greene
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - S. Erandika Senevirathne
- Graduate Program in Molecular Pharmacology and Therapeutics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anders J. Lindstedt
- Graduate Program in Microbiology, Immunology, and Cancer Biology, University of Minnesota, Minneapolis, MN 55455, USA
- Medical Scientist Training Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Olivia L. Funk
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brian L. Ruis
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Luis A. Ramirez
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jennifer L. Auger
- Department of Pediatrics, Division of Rheumatology, Allergy and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Whitney L. Swanson
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Myra G. Nunez
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Branden S. Moriarity
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Clifford A. Lowell
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bryce A. Binstadt
- Department of Pediatrics, Division of Rheumatology, Allergy and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tanya S. Freedman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Autoimmune Diseases Research, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Brian BF, Sjaastad FV, Freedman TS. SH3-domain mutations selectively disrupt Csk homodimerization or PTPN22 binding. Sci Rep 2022; 12:5875. [PMID: 35393453 PMCID: PMC8989918 DOI: 10.1038/s41598-022-09589-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/25/2022] [Indexed: 12/16/2022] Open
Abstract
The kinase Csk is the primary negative regulator of the Src-family kinases (SFKs, e.g., Lck, Fyn, Lyn, Hck, Fgr, Blk, Yes), phosphorylating a tyrosine on the SFK C-terminal tail that mediates autoinhibition. Csk also binds phosphatases, including PTPN12 (PTP-PEST) and immune-cell PTPN22 (LYP/Pep), which dephosphorylate the SFK activation loop to promote autoinhibition. Csk-binding proteins (e.g., CBP/PAG1) oligomerize within membrane microdomains, and high local concentration promotes Csk function. Purified Csk homodimerizes in solution through an interface that overlaps the phosphatase binding footprint. Here we demonstrate that Csk can homodimerize in Jurkat T cells, in competition with PTPN22 binding. We designed SH3-domain mutations in Csk that selectively impair homodimerization (H21I) or PTPN22 binding (K43D) and verified their kinase activity in solution. Disruption of either interaction in cells, however, decreased the negative-regulatory function of Csk. Csk W47A, a substitution previously reported to block PTPN22 binding, had a secondary effect of impairing homodimerization. Csk H21I and K43D will be useful tools for dissecting the protein-specific drivers of autoimmunity mediated by the human polymorphism PTPN22 R620W, which impairs interaction with Csk and with the E3 ubiquitin ligase TRAF3. Future investigations of Csk homodimer activity and phosphatase interactions may reveal new facets of SFK regulation in hematopoietic and non-hematopoietic cells.
Collapse
Affiliation(s)
- Ben F Brian
- Graduate Program in Molecular Pharmacology and Therapeutics, University of Minnesota, Minneapolis, MN, 55455, USA.,Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94170, USA
| | - Frances V Sjaastad
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.,Department of Cardiac Rhythm Management, Medtronic, Mounds View, MN, 55112, USA
| | - Tanya S Freedman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA. .,Center for Immunology, University of Minnesota, Minneapolis, MN, 55455, USA. .,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA. .,Center for Autoimmune Diseases Research, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
7
|
Getahun A. Role of inhibitory signaling in peripheral B cell tolerance*. Immunol Rev 2022; 307:27-42. [PMID: 35128676 PMCID: PMC8986582 DOI: 10.1111/imr.13070] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/16/2022]
Abstract
At least 20% of B cells in the periphery expresses an antigen receptor with a degree of self-reactivity. If activated, these autoreactive B cells pose a risk as they can contribute to the development of autoimmune diseases. To prevent their activation, both B cell-intrinsic and extrinsic tolerance mechanisms are in place in healthy individuals. In this review article, I will focus on B cell-intrinsic mechanisms that prevent the activation of autoreactive B cells in the periphery. I will discuss how inhibitory signaling circuits are established in autoreactive B cells, focusing on the Lyn-SHIP-1-SHP-1 axis, how they contribute to peripheral immune tolerance, and how disruptions of these circuits can contribute to the development of autoimmunity.
Collapse
Affiliation(s)
- Andrew Getahun
- Department of Immunology and Microbiology University of Colorado SOM Aurora Colorado USA
- Department of Immunology and Genomic Medicine National Jewish Health Denver Colorado USA
| |
Collapse
|
8
|
Acute Csk inhibition hinders B cell activation by constraining the PI3 kinase pathway. Proc Natl Acad Sci U S A 2021; 118:2108957118. [PMID: 34675079 PMCID: PMC8639343 DOI: 10.1073/pnas.2108957118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 12/30/2022] Open
Abstract
B lymphocytes recognize pathogenic antigens and become activated via their B cell receptors (BCR). This BCR-dependent activation is controlled by Src-family kinases (SFKs). It is unclear how B cells tolerate the fluctuations of SFK activities and maintain unresponsiveness in the absence of foreign antigens. Using a chemical-genetic system, we acutely inhibited C-terminal Src kinase to enhance the SFK activity in mouse B cells. Surprisingly, we observed marked inhibition of BCR-downstream signaling due to associated impairment of the phosphatidylinositol-trisphosphate pathway. These results reveal the critical importance of maintaining a proper amount of SFK activity in quiescent B cells for appropriate BCR-dependent responses, which may be critical for naïve B cell unresponsiveness to self-antigens to maintain peripheral tolerance. T cell antigen receptor (TCR) and B cell antigen receptor (BCR) signaling are initiated and tightly regulated by Src-family kinases (SFKs). SFKs positively regulate TCR signaling in naïve T cells but have both positive and negative regulatory roles in BCR signaling in naïve B cells. The proper regulation of their activities depends on the opposing actions of receptor tyrosine phosphatases CD45 and CD148 and the cytoplasmic tyrosine kinase C-terminal Src kinase Csk. Csk is a major negative regulator of SFKs. Using a PP1-analog-sensitive Csk (CskAS) system, we have previously shown that inhibition of CskAS increases SFK activity, leading to augmentation of responses to weak TCR stimuli in T cells. However, the effects of Csk inhibition in B cells were not known. In this study, we surprisingly found that inhibition of CskAS led to marked inhibition of BCR-stimulated cytoplasmic free calcium increase and Erk activation despite increased SFK activation in B cells, contrasting the effects observed in T cells. Further investigation revealed that acute CskAS inhibition suppressed BCR-mediated phosphatidylinositol 3,4,5-trisphosphate (PIP3) production in B cells. Restoring PIP3 levels in B cells by CD19 cross-linking or SHIP1 deficiency eliminated the negative regulatory effect of CskAS inhibition. This reveals the critical role of Csk in maintaining an appropriate level of SFK activity and regulating PIP3 amounts as a means of compensating for SFK fluctuations to prevent inappropriate B cell activation. This regulatory mechanism controlling PIP3 amounts may also contribute to B cell anergy and self-tolerance.
Collapse
|
9
|
Greene JT, Brian BF, Senevirathne SE, Freedman TS. Regulation of myeloid-cell activation. Curr Opin Immunol 2021; 73:34-42. [PMID: 34601225 DOI: 10.1016/j.coi.2021.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022]
Abstract
Myeloid cells (macrophages, monocytes, dendritic cells, and granulocytes) survey the body for signs of infection and damage and regulate tissue homeostasis, organogenesis, and immunity. They express receptors that initiate the inflammatory response, send signals that alter the vascular and cytokine milieu, and oversee the recruitment, differentiation, and activation of other myeloid and adaptive immune cells. Their activation must therefore be tightly regulated, optimized for maximal innate-immune protection with a minimum of collateral tissue damage or disorganization. In this review we discuss what it means for myeloid cells to become activated, with emphasis on the receptors and signaling molecules important for the recognition of pathogen-associated and damage-associated molecular patterns. We also outline how these signals are regulated by the steric properties of proteins, by adhesive and cytoskeletal interactions, and by negative feedback to keep inflammation in check and support healthy tissue development and homeostasis. Throughout the text we highlight recent publications and reviews and direct readers therein for a comprehensive bibliography.
Collapse
Affiliation(s)
- Joseph T Greene
- Department of Pharmacology, Center for Immunology, Masonic Cancer Center, and Center for Autoimmune Diseases Research, University of Minnesota, Minneapolis, MN, 55455, United States
| | - Ben F Brian
- Department of Pharmacology, Center for Immunology, Masonic Cancer Center, and Center for Autoimmune Diseases Research, University of Minnesota, Minneapolis, MN, 55455, United States
| | - S Erandika Senevirathne
- Department of Pharmacology, Center for Immunology, Masonic Cancer Center, and Center for Autoimmune Diseases Research, University of Minnesota, Minneapolis, MN, 55455, United States
| | - Tanya S Freedman
- Department of Pharmacology, Center for Immunology, Masonic Cancer Center, and Center for Autoimmune Diseases Research, University of Minnesota, Minneapolis, MN, 55455, United States.
| |
Collapse
|
10
|
Abstract
Effective regulation of immune-cell activation is critical for ensuring that the immune response, and inflammation generated for the purpose of pathogen elimination, are limited in space and time to minimize tissue damage. Autoimmune disease can occur when immunoreceptor signaling is dysregulated, leading to unrestrained inflammation and organ damage. Conversely, tumors can coopt the tissue healing and immunosuppressive functions of hematopoietic cells to promote metastasis and evade therapy. The Src-family kinase Lyn is an essential regulator of immunoreceptor signaling, initiating both proinflammatory and suppressive signaling pathways in myeloid immune cells (eg, neutrophils, dendritic cells, monocytes, macrophages) and in B lymphocytes. Defects in Lyn signaling are implicated in autoimmune disease, but mechanisms by which Lyn, expressed along with a battery of other Src-family kinases, may uniquely direct both positive and negative signaling remain incompletely defined. This review describes our current understanding of the activating and inhibitory contributions of Lyn to immunoreceptor signaling and how these processes contribute to myeloid and B-cell function. We also highlight recent work suggesting that the 2 proteins generated by alternative splicing of lyn, LynA and LynB, differentially regulate both immune and cancer-cell signaling. These principles may also extend to other Lyn-expressing cells, such as neuronal and endocrine cells. Unraveling the common and cell-specific aspects of Lyn function could lead to new approaches to therapeutically target dysregulated pathways in pathologies ranging from autoimmune and neurogenerative disease to cancer.
Collapse
Affiliation(s)
- Ben F Brian
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
- Current Affiliation: Current affiliation for B.F.B.: Division of Immunology & Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Tanya S Freedman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Autoimmune Diseases Research, University of Minnesota, Minneapolis, MN, USA
- Correspondence: Tanya S. Freedman, PhD, University of Minnesota Twin Cities Campus: University of Minnesota, 6-120 Jackson Hall, 321 Church St. S.E., Minneapolis, MN 55455, USA. E-mail:
| |
Collapse
|
11
|
Brian BF, Guerrero CR, Freedman TS. Immunopharmacology and Quantitative Analysis of Tyrosine Kinase Signaling. ACTA ACUST UNITED AC 2021; 130:e104. [PMID: 32931655 PMCID: PMC7583487 DOI: 10.1002/cpim.104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this article we describe the use of pharmacological and genetic tools coupled with immunoblotting (Western blotting) and targeted mass spectrometry to quantify immune signaling and cell activation mediated by tyrosine kinases. Transfer of the ATP γ phosphate to a protein tyrosine residue activates signaling cascades regulating the differentiation, survival, and effector functions of all cells, with unique roles in immune antigen receptor, polarization, and other signaling pathways. Defining the substrates and scaffolding interactions of tyrosine kinases is critical for revealing and therapeutically manipulating mechanisms of immune regulation. Quantitative analysis of the amplitude and kinetics of these effects is becoming ever more accessible experimentally and increasingly important for predicting complex downstream effects of therapeutics and for building computational models. Secondarily, quantitative analysis is increasingly expected by reviewers and journal editors, and statistical analysis of biological replicates can bolster claims of experimental rigor and reproducibility. Here we outline methods for perturbing tyrosine kinase activity in cells and quantifying protein phosphorylation in lysates and immunoprecipitates. The immunoblotting techniques are a guide to probing the dynamics of protein abundance, protein–protein interactions, and changes in post‐translational modification. Immunoprecipitated protein complexes can also be subjected to targeted mass spectrometry to probe novel sites of modification and multiply modified or understudied proteins that cannot be resolved by immunoblotting. Together, these protocols form a framework for identifying the unique contributions of tyrosine kinases to cell activation and elucidating the mechanisms governing immune cell regulation in health and disease. © 2020 The Authors. Basic Protocol 1: Quantifying protein phosphorylation via immunoblotting and near‐infrared imaging Alternate Protocol: Visualizing immunoblots using chemiluminescence Basic Protocol 2: Enriching target proteins and isolation of protein complexes by immunoprecipitation Support Protocol: Covalent conjugation of antibodies to functionalized beads Basic Protocol 3: Quantifying proteins and post‐translational modifications by targeted mass spectrometry
Collapse
Affiliation(s)
- Ben F Brian
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Candace R Guerrero
- College of Biological Sciences Center for Mass Spectrometry and Proteomics, University of Minnesota, Minneapolis, Minnesota
| | - Tanya S Freedman
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota.,Center for Immunology, Masonic Cancer Center, Center for Autoimmune Diseases Research, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
12
|
A soluble truncated tau species related to cognitive dysfunction is elevated in the brain of cognitively impaired human individuals. Sci Rep 2020; 10:3869. [PMID: 32123248 PMCID: PMC7052165 DOI: 10.1038/s41598-020-60777-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/12/2020] [Indexed: 11/13/2022] Open
Abstract
Neurofibrillary tangles are a pathological hallmark of Alzheimer’s disease, and their levels correlate with the severity of cognitive dysfunction in humans. However, experimental evidence suggests that soluble tau species cause cognitive deficits and memory impairment. Our recent study suggests that caspase-2 (Casp2)-catalyzed tau cleavage at aspartate 314 mediates synaptic dysfunction and memory impairment in mouse and cellular models of neurodegenerative disorders. Δtau314, the C-terminally-truncated cleavage products, are soluble and present in human brain. In addition, levels of Δtau314 proteins are elevated in the brain of the cognitively impaired individuals compared to the cognitively normal individuals, indicating a possible role for Δtau314 proteins in cognitive deterioration. Here we show that (1) Δtau314 proteins are present in the inferior temporal gyrus of human brains; (2) Δtau314 proteins are generated from all six tau splicing isoforms, (3) levels of both Casp2 and Δtau314 proteins are elevated in cognitively impaired individuals compared to cognitively normal individuals, and (4) levels of Δtau314 proteins show a modest predictive value for dementia. These findings advance our understanding of the characteristics of Δtau314 proteins and their relevance to cognitive dysfunction and shed light on the contribution of Casp2-mediated Δtau314 production to cognitive deterioration.
Collapse
|
13
|
Brian BF, Jolicoeur AS, Guerrero CR, Nunez MG, Sychev ZE, Hegre SA, Sætrom P, Habib N, Drake JM, Schwertfeger KL, Freedman TS. Unique-region phosphorylation targets LynA for rapid degradation, tuning its expression and signaling in myeloid cells. eLife 2019; 8:e46043. [PMID: 31282857 PMCID: PMC6660195 DOI: 10.7554/elife.46043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/06/2019] [Indexed: 12/23/2022] Open
Abstract
The activity of Src-family kinases (SFKs), which phosphorylate immunoreceptor tyrosine-based activation motifs (ITAMs), is a critical factor regulating myeloid-cell activation. We reported previously that the SFK LynA is uniquely susceptible to rapid ubiquitin-mediated degradation in macrophages, functioning as a rheostat regulating signaling (Freedman et al., 2015). We now report the mechanism by which LynA is preferentially targeted for degradation and how cell specificity is built into the LynA rheostat. Using genetic, biochemical, and quantitative phosphopeptide analyses, we found that the E3 ubiquitin ligase c-Cbl preferentially targets LynA via a phosphorylated tyrosine (Y32) in its unique region. This distinct mode of c-Cbl recognition depresses steady-state expression of LynA in macrophages derived from mice. Mast cells, however, express little c-Cbl and have correspondingly high LynA. Upon activation, mast-cell LynA is not rapidly degraded, and SFK-mediated signaling is amplified relative to macrophages. Cell-specific c-Cbl expression thus builds cell specificity into the LynA checkpoint.
Collapse
Affiliation(s)
- Ben F Brian
- Department of PharmacologyUniversity of MinnesotaMinneapolisUnited States
| | | | - Candace R Guerrero
- College of Biological Sciences Center for Mass Spectrometry and ProteomicsUniversity of MinnesotaMinneapolisUnited States
| | - Myra G Nunez
- Department of PharmacologyUniversity of MinnesotaMinneapolisUnited States
| | - Zoi E Sychev
- Department of PharmacologyUniversity of MinnesotaMinneapolisUnited States
| | - Siv A Hegre
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Pål Sætrom
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
- Department of Computer ScienceNorwegian University of Science and TechnologyTrondheimNorway
| | - Nagy Habib
- Department of Surgery and CancerHammersmith Hospital, Imperial College LondonLondonUnited Kingdom
| | - Justin M Drake
- Department of PharmacologyUniversity of MinnesotaMinneapolisUnited States
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisUnited States
- Department of UrologyUniversity of MinnesotaMinneapolisUnited States
| | - Kathryn L Schwertfeger
- Department of PharmacologyUniversity of MinnesotaMinneapolisUnited States
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisUnited States
- Center for ImmunologyUniversity of MinnesotaMinneapolisUnited States
- Department of Laboratory Medicine and PathologyUniversity of MinnesotaMinneapolisUnited States
| | - Tanya S Freedman
- Department of PharmacologyUniversity of MinnesotaMinneapolisUnited States
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisUnited States
- Center for ImmunologyUniversity of MinnesotaMinneapolisUnited States
- Center for Autoimmune Diseases ResearchUniversity of MinnesotaMinneapolisUnited States
| |
Collapse
|