1
|
James AM, Farnung L. Structural basis of human CHD1 nucleosome recruitment and pausing. Mol Cell 2025; 85:1938-1951.e6. [PMID: 40334658 DOI: 10.1016/j.molcel.2025.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/26/2025] [Accepted: 04/16/2025] [Indexed: 05/09/2025]
Abstract
Chromatin remodelers regulate gene expression and genome maintenance by controlling nucleosome positioning, but the structural basis for their regulated and directional activity remains poorly understood. Here, we present three cryoelectron microscopy (cryo-EM) structures of human chromodomain helicase DNA-binding protein 1 (CHD1) bound to nucleosomes that reveal previously unobserved recruitment and regulatory states. We identify a structural element, termed the "anchor element," that connects the CHD1 ATPase motor to the nucleosome entry-side acidic patch. The anchor element coordinates with other regulatory modules, including the gating element, which undergoes a conformational switch critical for remodeling. Our structures demonstrate how the DNA-binding region of CHD1 binds entry- and exit-side DNA during remodeling to achieve directional sliding. The observed structural elements are conserved across chromatin remodelers, suggesting a unified mechanism for nucleosome recognition and remodeling. Our findings show how chromatin remodelers couple nucleosome recruitment to regulated DNA translocation, providing a framework for understanding chromatin remodeler mechanisms beyond DNA translocation.
Collapse
Affiliation(s)
- Allison M James
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Lucas Farnung
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Chen JK, Liu T, Cai S, Ruan W, Ng CT, Shi J, Surana U, Gan L. Nanoscale analysis of human G1 and metaphase chromatin in situ. EMBO J 2025; 44:2658-2694. [PMID: 40097852 PMCID: PMC12048539 DOI: 10.1038/s44318-025-00407-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 02/11/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
The structure of chromatin at the nucleosome level inside cells is still incompletely understood. Here we present in situ electron cryotomography analyses of chromatin in both G1 and metaphase RPE-1 cells. G1 nucleosomes are concentrated in globular chromatin domains, and metaphase nucleosomes are concentrated in the chromatids. Classification analysis reveals that canonical mononucleosomes, and in some conditions ordered stacked dinucleosomes and mononucleosomes with a disordered gyre-proximal density, are abundant in both cell-cycle states. We do not detect class averages that have more than two stacked nucleosomes or side-by-side dinucleosomes, suggesting that groups of more than two nucleosomes are heterogeneous. Large multi-megadalton structures are abundant in G1 nucleoplasm, but not found in G1 chromatin domains and metaphase chromatin. The macromolecular phenotypes studied here represent a starting point for the comparative analysis of compaction in normal vs. unhealthy human cells, in other cell-cycle states, other organisms, and in vitro chromatin assemblies.
Collapse
Affiliation(s)
- Jon Ken Chen
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22903, USA
| | - Tingsheng Liu
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Shujun Cai
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Weimei Ruan
- Institute of Molecular and Cell Biology and Agency for Science Technology and Research, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Cai Tong Ng
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Jian Shi
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Uttam Surana
- Institute of Molecular and Cell Biology and Agency for Science Technology and Research, 61 Biopolis Drive, Singapore, 138673, Singapore
- Department of Pharmacology, National University of Singapore, Singapore, 117543, Singapore
| | - Lu Gan
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore.
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22903, USA.
| |
Collapse
|
3
|
Li S, Shu J, Rober JC, Macklem A, Espiritu D, Debnath T, Tian S, Tian D, Aristizabal MJ, Panchenko AR. Deciphering Allosteric Modulation of Cancer-Associated Histone Missense Mutations. J Mol Biol 2025:169180. [PMID: 40311745 DOI: 10.1016/j.jmb.2025.169180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/15/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025]
Abstract
Histone mutations have been implicated in various cancers, but their mechanistic effects on chromatin dynamics remain largely unexplored. In this study, we investigated allosteric modulation effects induced by 40 cancer-associated histone missense mutations. By combining computational approaches with experimental evidence, we assessed the allosteric and functional impact of these mutations. Our results reveal that the allosteric effects of histone mutations are position-specific, with mutations near the H3 and H4 histone N-terminal tails exhibiting the strongest long-range perturbations. Notably, we predicted seven mutations with significant allosteric effects, potentially altering nucleosome interactions. Experimental verification of H2BS64Y and H2BS64F mutations demonstrated that they disrupted normal histone function, altered H2BK120 ubiquitination levels and genome stability, findings suggestive of their potential carcinogenic effects. Collectively, these results show that allostery may serve as a critical mechanism underlying the oncogenic potential of some histone mutations, highlighting the need for further exploration of allosteric pathways in cancer epigenetics.
Collapse
Affiliation(s)
- Shuxiang Li
- Department of Pathology and Molecular Medicine, Queen's University, ON, Canada
| | - Jie Shu
- Biology Department, Queen's University, ON, Canada
| | - James C Rober
- Department of Biomedical and Molecular Sciences, Queen's University, ON, Canada
| | | | - Daniel Espiritu
- Department of Pathology and Molecular Medicine, Queen's University, ON, Canada
| | - Tanay Debnath
- Department of Pathology and Molecular Medicine, Queen's University, ON, Canada
| | - Samuel Tian
- School of Computing, Queen's University, ON, Canada
| | - Daniel Tian
- School of Computing, Queen's University, ON, Canada
| | - Maria J Aristizabal
- Biology Department, Queen's University, ON, Canada; Department of Biomedical and Molecular Sciences, Queen's University, ON, Canada.
| | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, Queen's University, ON, Canada; Department of Biomedical and Molecular Sciences, Queen's University, ON, Canada; School of Computing, Queen's University, ON, Canada; Ontario Institute of Cancer Research, Toronto, ON, Canada; Physics Department, Queen's University, ON, Canada.
| |
Collapse
|
4
|
Malik D, Deshmukh A, Bilokapic S, Halic M. Mechanisms of chromatin remodeling by the human Snf2-type ATPase SNF2H. Cell Res 2025:10.1038/s41422-025-01103-w. [PMID: 40175616 DOI: 10.1038/s41422-025-01103-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 03/11/2025] [Indexed: 04/04/2025] Open
Affiliation(s)
- Deepshikha Malik
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ashish Deshmukh
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Silvija Bilokapic
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mario Halic
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
5
|
Yang MG, Richter HJ, Wang S, McNally CP, Harris N, Dhillon S, Maresca M, de Wit E, Willenbring H, Maher J, Goodarzi H, Ramani V. Pervasive and programmed nucleosome distortion patterns on single mammalian chromatin fibers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633622. [PMID: 39896524 PMCID: PMC11785029 DOI: 10.1101/2025.01.17.633622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
We present a genome-scale method to map the single-molecule co-occupancy of structurally distinct nucleosomes, subnucleosomes, and other protein-DNA interactions via long-read high-resolution adenine methyltransferase footprinting. Iteratively Defined Lengths of Inaccessibility (IDLI) classifies nucleosomes on the basis of shared patterns of intranucleosomal accessibility, into: i.) minimally-accessible chromatosomes; ii.) octasomes with stereotyped DNA accessibility from superhelical locations (SHLs) ±1 through ±7; iii.) highly-accessible unwrapped nucleosomes; and iv.) subnucleosomal species, such as hexasomes, tetrasomes, and other short DNA protections. Applying IDLI to mouse embryonic stem cell (mESC) chromatin, we discover widespread nucleosomal distortion on individual mammalian chromatin fibers, with >85% of nucleosomes surveyed displaying degrees of intranucleosomally accessible DNA. We observe epigenomic-domain-specific patterns of distorted nucleosome co-occupancy and positioning, including at enhancers, promoters, and mouse satellite repeat sequences. Nucleosome distortion is programmed by the presence of bound transcription factors (TFs) at cognate motifs; occupied TF binding sites are differentially decorated by distorted nucleosomes compared to unbound sites, and degradation experiments establish direct roles for TFs in structuring binding-site proximal nucleosomes. Finally, we apply IDLI in the context of primary mouse hepatocytes, observing evidence for pervasive nucleosomal distortion in vivo. Further genetic experiments reveal a role for the hepatocyte master regulator FOXA2 in directly impacting nucleosome distortion at hepatocyte-specific regulatory elements in vivo. Our work suggests extreme-but regulated-plasticity in nucleosomal DNA accessibility at the single-molecule level. Further, our study offers an essential new framework to model transcription factor binding, nucleosome remodeling, and cell-type specific gene regulation across biological contexts.
Collapse
Affiliation(s)
- Marty G Yang
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158
| | - Hannah J Richter
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158
- these authors contributed equally
| | - Simai Wang
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158
- these authors contributed equally
| | - Colin P McNally
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158
| | - Nicole Harris
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158
| | - Simaron Dhillon
- Liver Center, University of California, San Francisco, San Francisco, CA 94143
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143
| | - Michela Maresca
- Division of Gene Regulation, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Elzo de Wit
- Division of Gene Regulation, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Holger Willenbring
- Liver Center, University of California, San Francisco, San Francisco, CA 94143
- Division of Transplant Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA, 94143
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, 94143
| | - Jacquelyn Maher
- Liver Center, University of California, San Francisco, San Francisco, CA 94143
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158
- Arc Institute, Palo Alto, CA 94304
| | - Vijay Ramani
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158
- lead contact
| |
Collapse
|
6
|
Malik D, Deshmukh A, Bilokapic S, Halic M. Mechanisms of chromatin remodeling by an Snf2-type ATPase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630910. [PMID: 39803580 PMCID: PMC11722347 DOI: 10.1101/2024.12.31.630910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Chromatin remodeling enzymes play a crucial role in the organization of chromatin, enabling both stability and plasticity of genome regulation. These enzymes use a Snf2-type ATPase motor to move nucleosomes, but how they translocate DNA around the histone octamer is unclear. Here we use cryo-EM to visualize the continuous motion of nucleosomal DNA induced by human chromatin remodeler SNF2H, an ISWI family member. Our work reveals conformational changes in SNF2H, DNA and histones during nucleosome sliding and provides the structural basis for DNA translocation. ATP hydrolysis induces conformational changes in SNF2H that pull the DNA tracking strand, distorting DNA and histones at SHL2. This is followed by SNF2H rotation on the nucleosome, which first pulls the DNA guide strand and creates one-base pair bulge at SHL2, and then releases the pulled DNA. Given the high conservation of the catalytic motors among ATP-dependent chromatin remodelers, the mechanisms we describe likely apply to other families.
Collapse
Affiliation(s)
- Deepshikha Malik
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Ashish Deshmukh
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Silvija Bilokapic
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Mario Halic
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| |
Collapse
|
7
|
Reid XJ, Zhong Y, Mackay JP. How does CHD4 slide nucleosomes? Biochem Soc Trans 2024; 52:1995-2008. [PMID: 39221830 PMCID: PMC11555702 DOI: 10.1042/bst20230070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Chromatin remodelling enzymes reposition nucleosomes throughout the genome to regulate the rate of transcription and other processes. These enzymes have been studied intensively since the 1990s, and yet the mechanism by which they operate has only very recently come into focus, following advances in cryoelectron microscopy and single-molecule biophysics. CHD4 is an essential and ubiquitous chromatin remodelling enzyme that until recently has received less attention than remodellers such as Snf2 and CHD1. Here we review what recent work in the field has taught us about how CHD4 reshapes the genome. Cryoelectron microscopy and single-molecule studies demonstrate that CHD4 shares a central remodelling mechanism with most other chromatin remodellers. At the same time, differences between CHD4 and other chromatin remodellers result from the actions of auxiliary domains that regulate remodeller activity by for example: (1) making differential interactions with nucleosomal epitopes such as the acidic patch and the N-terminal tail of histone H4, and (2) inducing the formation of distinct multi-protein remodelling complexes (e.g. NuRD vs ChAHP). Thus, although we have learned much about remodeller activity, there is still clearly much more waiting to be revealed.
Collapse
Affiliation(s)
- Xavier J. Reid
- School of Life and Environmental Sciences, University of Sydney, Darlington, NSW 2006, Australia
| | - Yichen Zhong
- School of Life and Environmental Sciences, University of Sydney, Darlington, NSW 2006, Australia
| | - Joel P. Mackay
- School of Life and Environmental Sciences, University of Sydney, Darlington, NSW 2006, Australia
| |
Collapse
|
8
|
Park G, Patel AB, Wu C, Louder RK. Structures of H2A.Z-associated human chromatin remodelers SRCAP and TIP60 reveal divergent mechanisms of chromatin engagement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605802. [PMID: 39131301 PMCID: PMC11312561 DOI: 10.1101/2024.07.30.605802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
H2A.Z is a conserved histone variant that is localized to specific genomic regions where it plays important roles in transcription, DNA repair, and replication. Central to the biochemistry of human H2A.Z are the SRCAP and TIP60 chromatin remodelers, homologs of yeast SWR1 which catalyzes ATP-dependent H2A.Z exchange. Here, we use cryo-electron microscopy to resolve six structural states of the native SRCAP complex, uncovering conformational intermediates interpreted as a stepwise path to full nucleosome engagement. We also resolve the structure of the native TIP60 complex which consists of a structured core from which flexibly tethered chromatin binding domains emerge. Despite the shared subunit composition, the core of TIP60 displays divergent architectures from SRCAP that structurally disfavor nucleosome engagement, suggesting a distinct biochemical function.
Collapse
Affiliation(s)
- Giho Park
- Biochemistry, Cellular and Molecular Graduate Program, Johns Hopkins School of Medicine; Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine; Baltimore, MD 21205, USA
| | - Avinash B. Patel
- Department of Biophysics, Johns Hopkins University; Baltimore, MD 21218, USA
| | - Carl Wu
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine; Baltimore, MD 21205, USA
- Department of Biology, Johns Hopkins University; Baltimore, MD 21218, USA
| | - Robert K. Louder
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine; Baltimore, MD 21205, USA
- Department of Biology, Johns Hopkins University; Baltimore, MD 21218, USA
| |
Collapse
|
9
|
James AM, Schmid EW, Walter JC, Farnung L. In silico screening identifies SHPRH as a novel nucleosome acidic patch interactor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600687. [PMID: 38979307 PMCID: PMC11230416 DOI: 10.1101/2024.06.26.600687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Nucleosomes are the fundamental unit of eukaryotic chromatin. Diverse factors interact with nucleosomes to modulate chromatin architecture and facilitate DNA repair, replication, transcription, and other cellular processes. An important platform for chromatin binding is the H2A-H2B acidic patch. Here, we used AlphaFold-Multimer to screen over 7000 human proteins for nucleosomal acidic patch binding and identify 41 potential acidic patch binders. We determined the cryo-EM structure of one hit, SHPRH, with the nucleosome at 2.8 Å. The structure confirms the predicted acidic patch interaction, reveals that the SHPRH ATPase engages a different nucleosomal DNA location than other SF2-type ATPases, and clarifies the roles of SHPRH's domains in nucleosome recognition. Our results illustrate the use of in silico screening as a high throughput method to identify specific interaction types and expands the set of potential acidic patch binding factors. All the screening data is freely available at https://predictomes.org/view/acidicpatch.
Collapse
|
10
|
Zhang J, Zhao H, Zou B, Li H, Dong S, Guan J, Wang C, Li W, Liu Y, Chen Y, Rasheed N, He J. Cryo-EM structure and functional analysis of the chromatin remodeler RSF. Acta Crystallogr F Struct Biol Commun 2024; 80:125-134. [PMID: 38818823 PMCID: PMC11189100 DOI: 10.1107/s2053230x24004655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024] Open
Abstract
The RSF complex belongs to the ISWI chromatin-remodeling family and is composed of two subunits: RSF1 (remodeling and spacing factor 1) and SNF2h (sucrose nonfermenting protein 2 homolog). The RSF complex participates in nucleosome spacing and assembly, and subsequently promotes nucleosome maturation. Although SNF2h has been extensively studied in the last few years, the structural and functional properties of the remodeler RSF1 still remain vague. Here, a cryo-EM structure of the RSF-nucleosome complex is reported. The 3D model shows a two-lobe architecture of RSF, and the structure of the RSF-nucleosome (flanked with linker DNA) complex shows that the RSF complex moves the DNA away from the histone octamer surface at the DNA-entry point. Additionally, a nucleosome-sliding assay and a restriction-enzyme accessibility assay show that the RSF1 subunit may cause changes in the chromatin-remodeling properties of SNF2h. As a `nucleosome ruler', the results of an RSF-dinucleosome binding affinity test led to the proposal that the critical distance that RSF `measures' between two nucleosomes is about 24 base pairs.
Collapse
Affiliation(s)
- Jiale Zhang
- CAS Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine GIBH–HKU Guangdong–Hong Kong Stem Cell and Regenerative Medicine Research Centre GIBH–CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouGuangdongPeople’s Republic of China
- University of Chinese Academy of SciencesBeijingPeople’s Republic of China
| | - Heyu Zhao
- CAS Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine GIBH–HKU Guangdong–Hong Kong Stem Cell and Regenerative Medicine Research Centre GIBH–CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouGuangdongPeople’s Republic of China
- University of Chinese Academy of SciencesBeijingPeople’s Republic of China
| | - Binqian Zou
- CAS Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine GIBH–HKU Guangdong–Hong Kong Stem Cell and Regenerative Medicine Research Centre GIBH–CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouGuangdongPeople’s Republic of China
| | - Huadong Li
- Faculty of Health Sciences, University of Macau, Macau SAR, People’s Republic of China
| | - Shuqi Dong
- CAS Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine GIBH–HKU Guangdong–Hong Kong Stem Cell and Regenerative Medicine Research Centre GIBH–CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouGuangdongPeople’s Republic of China
- University of Chinese Academy of SciencesBeijingPeople’s Republic of China
| | - Jiali Guan
- CAS Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine GIBH–HKU Guangdong–Hong Kong Stem Cell and Regenerative Medicine Research Centre GIBH–CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouGuangdongPeople’s Republic of China
- University of Chinese Academy of SciencesBeijingPeople’s Republic of China
| | - Chi Wang
- School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhuiPeople’s Republic of China
| | - Weijie Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, People’s Republic of China
| | - Yutong Liu
- CAS Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine GIBH–HKU Guangdong–Hong Kong Stem Cell and Regenerative Medicine Research Centre GIBH–CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouGuangdongPeople’s Republic of China
| | - Yingying Chen
- CAS Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine GIBH–HKU Guangdong–Hong Kong Stem Cell and Regenerative Medicine Research Centre GIBH–CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouGuangdongPeople’s Republic of China
| | - Nadia Rasheed
- CAS Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine GIBH–HKU Guangdong–Hong Kong Stem Cell and Regenerative Medicine Research Centre GIBH–CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouGuangdongPeople’s Republic of China
| | - Jun He
- CAS Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine GIBH–HKU Guangdong–Hong Kong Stem Cell and Regenerative Medicine Research Centre GIBH–CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouGuangdongPeople’s Republic of China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongPeople’s Republic of China
- State Key Laboratory of Respiratory Disease CAS Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health, Chinese Academy of ScienceGuangzhouGuangdongPeople’s Republic of China
| |
Collapse
|
11
|
Eustermann S, Patel AB, Hopfner KP, He Y, Korber P. Energy-driven genome regulation by ATP-dependent chromatin remodellers. Nat Rev Mol Cell Biol 2024; 25:309-332. [PMID: 38081975 DOI: 10.1038/s41580-023-00683-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 03/28/2024]
Abstract
The packaging of DNA into chromatin in eukaryotes regulates gene transcription, DNA replication and DNA repair. ATP-dependent chromatin remodelling enzymes (re)arrange nucleosomes at the first level of chromatin organization. Their Snf2-type motor ATPases alter histone-DNA interactions through a common DNA translocation mechanism. Whether remodeller activities mainly catalyse nucleosome dynamics or accurately co-determine nucleosome organization remained unclear. In this Review, we discuss the emerging mechanisms of chromatin remodelling: dynamic remodeller architectures and their interactions, the inner workings of the ATPase cycle, allosteric regulation and pathological dysregulation. Recent mechanistic insights argue for a decisive role of remodellers in the energy-driven self-organization of chromatin, which enables both stability and plasticity of genome regulation - for example, during development and stress. Different remodellers, such as members of the SWI/SNF, ISWI, CHD and INO80 families, process (epi)genetic information through specific mechanisms into distinct functional outputs. Combinatorial assembly of remodellers and their interplay with histone modifications, histone variants, DNA sequence or DNA-bound transcription factors regulate nucleosome mobilization or eviction or histone exchange. Such input-output relationships determine specific nucleosome positions and compositions with distinct DNA accessibilities and mediate differential genome regulation. Finally, remodeller genes are often mutated in diseases characterized by genome dysregulation, notably in cancer, and we discuss their physiological relevance.
Collapse
Affiliation(s)
- Sebastian Eustermann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Avinash B Patel
- Department of Molecular Biosciences, Robert H. Lurie Comprehensive Cancer Center, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Karl-Peter Hopfner
- Gene Center and Department of Biochemistry, Faculty of Chemistry and Pharmacy, LMU Munich, Munich, Germany
| | - Yuan He
- Department of Molecular Biosciences, Robert H. Lurie Comprehensive Cancer Center, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
| | - Philipp Korber
- Biomedical Center (BMC), Molecular Biology, Faculty of Medicine, LMU Munich, Martinsried, Germany.
| |
Collapse
|
12
|
Chio US, Palovcak E, Smith AAA, Autzen H, Muñoz EN, Yu Z, Wang F, Agard DA, Armache JP, Narlikar GJ, Cheng Y. Functionalized graphene-oxide grids enable high-resolution cryo-EM structures of the SNF2h-nucleosome complex without crosslinking. Nat Commun 2024; 15:2225. [PMID: 38472177 PMCID: PMC10933330 DOI: 10.1038/s41467-024-46178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Single-particle cryo-EM is widely used to determine enzyme-nucleosome complex structures. However, cryo-EM sample preparation remains challenging and inconsistent due to complex denaturation at the air-water interface (AWI). Here, to address this issue, we develop graphene-oxide-coated EM grids functionalized with either single-stranded DNA (ssDNA) or thiol-poly(acrylic acid-co-styrene) (TAASTY) co-polymer. These grids protect complexes between the chromatin remodeler SNF2h and nucleosomes from the AWI and facilitate collection of high-quality micrographs of intact SNF2h-nucleosome complexes in the absence of crosslinking. The data yields maps ranging from 2.3 to 3 Å in resolution. 3D variability analysis reveals nucleotide-state linked conformational changes in SNF2h bound to a nucleosome. In addition, the analysis provides structural evidence for asymmetric coordination between two SNF2h protomers acting on the same nucleosome. We envision these grids will enable similar detailed structural analyses for other enzyme-nucleosome complexes and possibly other protein-nucleic acid complexes in general.
Collapse
Affiliation(s)
- Un Seng Chio
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Eugene Palovcak
- Biophysics Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Anton A A Smith
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, USA
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Henriette Autzen
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Linderstrom-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, København, Denmark
| | - Elise N Muñoz
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Zanlin Yu
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Feng Wang
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - David A Agard
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Jean-Paul Armache
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
| | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
13
|
Weinzapfel EN, Fedder-Semmes KN, Sun ZW, Keogh MC. Beyond the tail: the consequence of context in histone post-translational modification and chromatin research. Biochem J 2024; 481:219-244. [PMID: 38353483 PMCID: PMC10903488 DOI: 10.1042/bcj20230342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
The role of histone post-translational modifications (PTMs) in chromatin structure and genome function has been the subject of intense debate for more than 60 years. Though complex, the discourse can be summarized in two distinct - and deceptively simple - questions: What is the function of histone PTMs? And how should they be studied? Decades of research show these queries are intricately linked and far from straightforward. Here we provide a historical perspective, highlighting how the arrival of new technologies shaped discovery and insight. Despite their limitations, the tools available at each period had a profound impact on chromatin research, and provided essential clues that advanced our understanding of histone PTM function. Finally, we discuss recent advances in the application of defined nucleosome substrates, the study of multivalent chromatin interactions, and new technologies driving the next era of histone PTM research.
Collapse
|
14
|
Bacic L, Gaullier G, Mohapatra J, Mao G, Brackmann K, Panfilov M, Liszczak G, Sabantsev A, Deindl S. Asymmetric nucleosome PARylation at DNA breaks mediates directional nucleosome sliding by ALC1. Nat Commun 2024; 15:1000. [PMID: 38307862 PMCID: PMC10837151 DOI: 10.1038/s41467-024-45237-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 01/16/2024] [Indexed: 02/04/2024] Open
Abstract
The chromatin remodeler ALC1 is activated by DNA damage-induced poly(ADP-ribose) deposited by PARP1/PARP2 and their co-factor HPF1. ALC1 has emerged as a cancer drug target, but how it is recruited to ADP-ribosylated nucleosomes to affect their positioning near DNA breaks is unknown. Here we find that PARP1/HPF1 preferentially initiates ADP-ribosylation on the histone H2B tail closest to the DNA break. To dissect the consequences of such asymmetry, we generate nucleosomes with a defined ADP-ribosylated H2B tail on one side only. The cryo-electron microscopy structure of ALC1 bound to such an asymmetric nucleosome indicates preferential engagement on one side. Using single-molecule FRET, we demonstrate that this asymmetric recruitment gives rise to directed sliding away from the DNA linker closest to the ADP-ribosylation site. Our data suggest a mechanism by which ALC1 slides nucleosomes away from a DNA break to render it more accessible to repair factors.
Collapse
Affiliation(s)
- Luka Bacic
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
| | - Guillaume Gaullier
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
- Department of Chemistry - Ångström, Uppsala University, 75120, Uppsala, Sweden
| | - Jugal Mohapatra
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Guanzhong Mao
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
| | - Klaus Brackmann
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
| | - Mikhail Panfilov
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
| | - Glen Liszczak
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Anton Sabantsev
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden.
| | - Sebastian Deindl
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden.
| |
Collapse
|
15
|
Li L, Chen K, Sia Y, Hu P, Ye Y, Chen Z. Structure of the ISW1a complex bound to the dinucleosome. Nat Struct Mol Biol 2024; 31:266-274. [PMID: 38177688 DOI: 10.1038/s41594-023-01174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/03/2023] [Indexed: 01/06/2024]
Abstract
Nucleosomes are basic repeating units of chromatin and form regularly spaced arrays in cells. Chromatin remodelers alter the positions of nucleosomes and are vital in regulating chromatin organization and gene expression. Here we report the cryo-EM structure of chromatin remodeler ISW1a complex from Saccharomyces cerevisiae bound to the dinucleosome. Each subunit of the complex recognizes a different nucleosome. The motor subunit binds to the mobile nucleosome and recognizes the acidic patch through two arginine residues, while the DNA-binding module interacts with the entry DNA at the nucleosome edge. This nucleosome-binding mode provides the structural basis for linker DNA sensing of the motor. Notably, the Ioc3 subunit recognizes the disk face of the adjacent nucleosome through interacting with the H4 tail, the acidic patch and the nucleosomal DNA, which plays a role in the spacing activity in vitro and in nucleosome organization and cell fitness in vivo. Together, these findings support the nucleosome spacing activity of ISW1a and add a new mode of nucleosome remodeling in the context of a chromatin environment.
Collapse
Affiliation(s)
- Lifei Li
- MOE Key Laboratory of Protein Science, Tsinghua University, Beijing, P.R. China
- School of Life Science, Tsinghua University, Beijing, P.R. China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, P.R. China
- Beijing Frontier Research Center for Biological Structure, Beijing, P.R. China
| | - Kangjing Chen
- MOE Key Laboratory of Protein Science, Tsinghua University, Beijing, P.R. China
- School of Life Science, Tsinghua University, Beijing, P.R. China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, P.R. China
- Beijing Frontier Research Center for Biological Structure, Beijing, P.R. China
| | - Youyang Sia
- MOE Key Laboratory of Protein Science, Tsinghua University, Beijing, P.R. China
- School of Life Science, Tsinghua University, Beijing, P.R. China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, P.R. China
- Beijing Frontier Research Center for Biological Structure, Beijing, P.R. China
| | - Pengjing Hu
- MOE Key Laboratory of Protein Science, Tsinghua University, Beijing, P.R. China
- School of Life Science, Tsinghua University, Beijing, P.R. China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, P.R. China
- Beijing Frontier Research Center for Biological Structure, Beijing, P.R. China
| | - Youpi Ye
- MOE Key Laboratory of Protein Science, Tsinghua University, Beijing, P.R. China
- School of Life Science, Tsinghua University, Beijing, P.R. China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, P.R. China
- Beijing Frontier Research Center for Biological Structure, Beijing, P.R. China
| | - Zhucheng Chen
- MOE Key Laboratory of Protein Science, Tsinghua University, Beijing, P.R. China.
- School of Life Science, Tsinghua University, Beijing, P.R. China.
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, P.R. China.
- Beijing Frontier Research Center for Biological Structure, Beijing, P.R. China.
| |
Collapse
|
16
|
Bartholomew B, Shukla S, Ngubo M, Paul S, Persinger J, Brahma S. New insights into the mechanism and DNA-sequence specificity of INO80 chromatin remodeling. RESEARCH SQUARE 2023:rs.3.rs-3443329. [PMID: 37961512 PMCID: PMC10635376 DOI: 10.21203/rs.3.rs-3443329/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The INO80 complex stood out in a large family of ATP-dependent chromatin remodelers because of its ATPase domain binding and translocating on DNA at the edge of nucleosomes, rather than at two helical turns from the center of DNA that is wrapped around nucleosomes. This unique property of INO80 was thought to account for its singular role in nucleosome placement at gene promoters in a DNA-sequence dependent manner that is crucial for transcription regulation. Now, we uncover INO80 functions differently than previously thought with its ATPase domain translocating on DNA close to the center of nucleosomes, like other remodelers. Our discovery also reveals the physical properties of the first ~36 bp of DNA on the entry side of nucleosomes is the main determinant for the DNA specificity of INO80 rather than the properties of the extranucleosomal DNA. The DNA sequence sensitive step of INO80 is after DNA is displaced from the histone octamer on the entry side of nucleosomes and 20 bp of DNA are moved out the exit side. We find the ATPase domain and Arp5 subunit of INO80 are likely involved in INO80's DNA specificity and the mechanism of INO80 remodeling is substantially different than originally proposed.
Collapse
|
17
|
Oleinikov PD, Fedulova AS, Armeev GA, Motorin NA, Singh-Palchevskaia L, Sivkina AL, Feskin PG, Glukhov GS, Afonin DA, Komarova GA, Kirpichnikov MP, Studitsky VM, Feofanov AV, Shaytan AK. Interactions of Nucleosomes with Acidic Patch-Binding Peptides: A Combined Structural Bioinformatics, Molecular Modeling, Fluorescence Polarization, and Single-Molecule FRET Study. Int J Mol Sci 2023; 24:15194. [PMID: 37894874 PMCID: PMC10606924 DOI: 10.3390/ijms242015194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
In eukaryotic organisms, genomic DNA associates with histone proteins to form nucleosomes. Nucleosomes provide a basis for genome compaction, epigenetic markup, and mediate interactions of nuclear proteins with their target DNA loci. A negatively charged (acidic) patch located on the H2A-H2B histone dimer is a characteristic feature of the nucleosomal surface. The acidic patch is a common site in the attachment of various chromatin proteins, including viral ones. Acidic patch-binding peptides present perspective compounds that can be used to modulate chromatin functioning by disrupting interactions of nucleosomes with natural proteins or alternatively targeting artificial moieties to the nucleosomes, which may be beneficial for the development of new therapeutics. In this work, we used several computational and experimental techniques to improve our understanding of how peptides may bind to the acidic patch and what are the consequences of their binding. Through extensive analysis of the PDB database, histone sequence analysis, and molecular dynamic simulations, we elucidated common binding patterns and key interactions that stabilize peptide-nucleosome complexes. Through MD simulations and FRET measurements, we characterized changes in nucleosome dynamics conferred by peptide binding. Using fluorescence polarization and gel electrophoresis, we evaluated the affinity and specificity of the LANA1-22 peptide to DNA and nucleosomes. Taken together, our study provides new insights into the different patterns of intermolecular interactions that can be employed by natural and designed peptides to bind to nucleosomes, and the effects of peptide binding on nucleosome dynamics and stability.
Collapse
Affiliation(s)
- Pavel D. Oleinikov
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | | | - Grigoriy A. Armeev
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Nikita A. Motorin
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | | | - Anastasiia L. Sivkina
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Laboratory of Structural-Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Pavel G. Feskin
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Grigory S. Glukhov
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Biology, MSU-BIT Shenzhen University, Shenzhen 518172, China
| | - Dmitry A. Afonin
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Galina A. Komarova
- Department of Physics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Mikhail P. Kirpichnikov
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Vasily M. Studitsky
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Alexey V. Feofanov
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alexey K. Shaytan
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
18
|
Abdulhay NJ, Hsieh LJ, McNally CP, Ostrowski MS, Moore CM, Ketavarapu M, Kasinathan S, Nanda AS, Wu K, Chio US, Zhou Z, Goodarzi H, Narlikar GJ, Ramani V. Nucleosome density shapes kilobase-scale regulation by a mammalian chromatin remodeler. Nat Struct Mol Biol 2023; 30:1571-1581. [PMID: 37696956 PMCID: PMC10584690 DOI: 10.1038/s41594-023-01093-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/09/2023] [Indexed: 09/13/2023]
Abstract
Nearly all essential nuclear processes act on DNA packaged into arrays of nucleosomes. However, our understanding of how these processes (for example, DNA replication, RNA transcription, chromatin extrusion and nucleosome remodeling) occur on individual chromatin arrays remains unresolved. Here, to address this deficit, we present SAMOSA-ChAAT: a massively multiplex single-molecule footprinting approach to map the primary structure of individual, reconstituted chromatin templates subject to virtually any chromatin-associated reaction. We apply this method to distinguish between competing models for chromatin remodeling by the essential imitation switch (ISWI) ATPase SNF2h: nucleosome-density-dependent spacing versus fixed-linker-length nucleosome clamping. First, we perform in vivo single-molecule nucleosome footprinting in murine embryonic stem cells, to discover that ISWI-catalyzed nucleosome spacing correlates with the underlying nucleosome density of specific epigenomic domains. To establish causality, we apply SAMOSA-ChAAT to quantify the activities of ISWI ATPase SNF2h and its parent complex ACF on reconstituted nucleosomal arrays of varying nucleosome density, at single-molecule resolution. We demonstrate that ISWI remodelers operate as density-dependent, length-sensing nucleosome sliders, whose ability to program DNA accessibility is dictated by single-molecule nucleosome density. We propose that the long-observed, context-specific regulatory effects of ISWI complexes can be explained in part by the sensing of nucleosome density within epigenomic domains. More generally, our approach promises molecule-precise views of the essential processes that shape nuclear physiology.
Collapse
Affiliation(s)
- Nour J Abdulhay
- Gladstone Institute for Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Laura J Hsieh
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Colin P McNally
- Gladstone Institute for Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Megan S Ostrowski
- Gladstone Institute for Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Camille M Moore
- Gladstone Institute for Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Tetrad Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | | | - Sivakanthan Kasinathan
- Department of Pediatrics, Lucille Packard Children's Hospital, Stanford University, Palo Alto, CA, USA
| | - Arjun S Nanda
- Gladstone Institute for Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Ke Wu
- Gladstone Institute for Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Un Seng Chio
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Ziling Zhou
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, San Francisco, CA, USA
| | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
| | - Vijay Ramani
- Gladstone Institute for Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
- Bakar Computational Health Sciences Institute, San Francisco, CA, USA.
| |
Collapse
|
19
|
Lee SC, Adams DW, Ipsaro JJ, Cahn J, Lynn J, Kim HS, Berube B, Major V, Calarco JP, LeBlanc C, Bhattacharjee S, Ramu U, Grimanelli D, Jacob Y, Voigt P, Joshua-Tor L, Martienssen RA. Chromatin remodeling of histone H3 variants by DDM1 underlies epigenetic inheritance of DNA methylation. Cell 2023; 186:4100-4116.e15. [PMID: 37643610 PMCID: PMC10529913 DOI: 10.1016/j.cell.2023.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/19/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023]
Abstract
Nucleosomes block access to DNA methyltransferase, unless they are remodeled by DECREASE in DNA METHYLATION 1 (DDM1LSH/HELLS), a Snf2-like master regulator of epigenetic inheritance. We show that DDM1 promotes replacement of histone variant H3.3 by H3.1. In ddm1 mutants, DNA methylation is partly restored by loss of the H3.3 chaperone HIRA, while the H3.1 chaperone CAF-1 becomes essential. The single-particle cryo-EM structure at 3.2 Å of DDM1 with a variant nucleosome reveals engagement with histone H3.3 near residues required for assembly and with the unmodified H4 tail. An N-terminal autoinhibitory domain inhibits activity, while a disulfide bond in the helicase domain supports activity. DDM1 co-localizes with H3.1 and H3.3 during the cell cycle, and with the DNA methyltransferase MET1Dnmt1, but is blocked by H4K16 acetylation. The male germline H3.3 variant MGH3/HTR10 is resistant to remodeling by DDM1 and acts as a placeholder nucleosome in sperm cells for epigenetic inheritance.
Collapse
Affiliation(s)
- Seung Cho Lee
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Dexter W Adams
- W. M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor, NY 11724, USA; Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jonathan J Ipsaro
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; W. M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor, NY 11724, USA
| | - Jonathan Cahn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Jason Lynn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Hyun-Soo Kim
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Benjamin Berube
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; Cold Spring Harbor Laboratory School of Biological Sciences, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - Viktoria Major
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Joseph P Calarco
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; Cold Spring Harbor Laboratory School of Biological Sciences, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - Chantal LeBlanc
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Sonali Bhattacharjee
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Umamaheswari Ramu
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Daniel Grimanelli
- Institut de Recherche pour le Développement, 911Avenue Agropolis, 34394 Montpelier, France
| | - Yannick Jacob
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Philipp Voigt
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Leemor Joshua-Tor
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; W. M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor, NY 11724, USA.
| | - Robert A Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
20
|
Lee SC, Adams DW, Ipsaro JJ, Cahn J, Lynn J, Kim HS, Berube B, Major V, Calarco JP, LeBlanc C, Bhattacharjee S, Ramu U, Grimanelli D, Jacob Y, Voigt P, Joshua-Tor L, Martienssen RA. Chromatin remodeling of histone H3 variants underlies epigenetic inheritance of DNA methylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.11.548598. [PMID: 37503143 PMCID: PMC10369972 DOI: 10.1101/2023.07.11.548598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Epigenetic inheritance refers to the faithful replication of DNA methylation and histone modification independent of DNA sequence. Nucleosomes block access to DNA methyltransferases, unless they are remodeled by DECREASE IN DNA METHYLATION1 (DDM1 Lsh/HELLS ), a Snf2-like master regulator of epigenetic inheritance. We show that DDM1 activity results in replacement of the transcriptional histone variant H3.3 for the replicative variant H3.1 during the cell cycle. In ddm1 mutants, DNA methylation can be restored by loss of the H3.3 chaperone HIRA, while the H3.1 chaperone CAF-1 becomes essential. The single-particle cryo-EM structure at 3.2 Å of DDM1 with a variant nucleosome reveals direct engagement at SHL2 with histone H3.3 at or near variant residues required for assembly, as well as with the deacetylated H4 tail. An N-terminal autoinhibitory domain binds H2A variants to allow remodeling, while a disulfide bond in the helicase domain is essential for activity in vivo and in vitro . We show that differential remodeling of H3 and H2A variants in vitro reflects preferential deposition in vivo . DDM1 co-localizes with H3.1 and H3.3 during the cell cycle, and with the DNA methyltransferase MET1 Dnmt1 . DDM1 localization to the chromosome is blocked by H4K16 acetylation, which accumulates at DDM1 targets in ddm1 mutants, as does the sperm cell specific H3.3 variant MGH3 in pollen, which acts as a placeholder nucleosome in the germline and contributes to epigenetic inheritance.
Collapse
Affiliation(s)
- Seung Cho Lee
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Dexter W. Adams
- W. M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute; Cold Spring Harbor, NY 11724, USA
- Graduate Program in Genetics, Stony Brook University; Stony Brook, NY 11794, USA
| | - Jonathan J. Ipsaro
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
- W. M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute; Cold Spring Harbor, NY 11724, USA
| | - Jonathan Cahn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Jason Lynn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Hyun-Soo Kim
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Benjamin Berube
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
- Cold Spring Harbor Laboratory School of Biological Sciences; 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - Viktoria Major
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh; Edinburgh EH9 3BF, United Kingdom
| | - Joseph P. Calarco
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
- Cold Spring Harbor Laboratory School of Biological Sciences; 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - Chantal LeBlanc
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
- Present address: Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University; 260 Whitney Ave., New Haven, CT, 06511, USA
| | - Sonali Bhattacharjee
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Umamaheswari Ramu
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Daniel Grimanelli
- Institut de Recherche pour le Développement; 911 Avenue Agropolis, 34394 Montpellier, France
| | - Yannick Jacob
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
- Present address: Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University; 260 Whitney Ave., New Haven, CT, 06511, USA
| | - Philipp Voigt
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh; Edinburgh EH9 3BF, United Kingdom
- Present address: Epigenetics Programme, Babraham Institute; Cambridge CB22 3AT, United Kingdom
| | - Leemor Joshua-Tor
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
- W. M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute; Cold Spring Harbor, NY 11724, USA
| | - Robert A. Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
21
|
Wu H, Muñoz EN, Hsieh LJ, Chio US, Gourdet MA, Narlikar GJ, Cheng Y. Reorientation of INO80 on hexasomes reveals basis for mechanistic versatility. Science 2023; 381:319-324. [PMID: 37384669 PMCID: PMC10480058 DOI: 10.1126/science.adf4197] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 06/17/2023] [Indexed: 07/01/2023]
Abstract
Unlike other chromatin remodelers, INO80 preferentially mobilizes hexasomes, which can form during transcription. Why INO80 prefers hexasomes over nucleosomes remains unclear. Here, we report structures of Saccharomyces cerevisiae INO80 bound to a hexasome or a nucleosome. INO80 binds the two substrates in substantially different orientations. On a hexasome, INO80 places its ATPase subunit, Ino80, at superhelical location -2 (SHL -2), in contrast to SHL -6 and SHL -7, as previously seen on nucleosomes. Our results suggest that INO80 action on hexasomes resembles action by other remodelers on nucleosomes such that Ino80 is maximally active near SHL -2. The SHL -2 position also plays a critical role for nucleosome remodeling by INO80. Overall, the mechanistic adaptations used by INO80 for preferential hexasome sliding imply that subnucleosomal particles play considerable regulatory roles.
Collapse
Affiliation(s)
- Hao Wu
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Elise N. Muñoz
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
- Tetrad Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Laura J. Hsieh
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Un Seng Chio
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Muryam A. Gourdet
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
- Tetrad Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Geeta J. Narlikar
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
22
|
Chio US, Palovcak E, Autzen AAA, Autzen HE, Muñoz EN, Yu Z, Wang F, Agard DA, Armache JP, Narlikar GJ, Cheng Y. Functionalized graphene-oxide grids enable high-resolution cryo-EM structures of the SNF2h-nucleosome complex without crosslinking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.20.545796. [PMID: 37546986 PMCID: PMC10402172 DOI: 10.1101/2023.06.20.545796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Single-particle cryo-EM is widely used to determine enzyme-nucleosome complex structures. However, cryo-EM sample preparation remains challenging and inconsistent due to complex denaturation at the air-water interface (AWI). To address this issue, we developed graphene-oxide-coated EM grids functionalized with either single-stranded DNA (ssDNA) or thiol-poly(acrylic acid-co-styrene) (TAASTY) co-polymer. These grids protect complexes between the chromatin remodeler SNF2h and nucleosomes from the AWI and facilitated collection of high-quality micrographs of intact SNF2h-nucleosome complexes in the absence of crosslinking. The data yields maps ranging from 2.3 to 3 Å in resolution. 3D variability analysis reveals nucleotide-state linked conformational changes in SNF2h bound to a nucleosome. In addition, the analysis provides structural evidence for asymmetric coordination between two SNF2h protomers acting on the same nucleosome. We envision these grids will enable similar detailed structural analyses for other enzyme-nucleosome complexes and possibly other protein-nucleic acid complexes in general.
Collapse
Affiliation(s)
- Un Seng Chio
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Eugene Palovcak
- Biophysics Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Anton A. A. Autzen
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, USA
- Current: Department of Health Technology, Technical University of Denmark
| | - Henriette E. Autzen
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Linderstrom-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Denmark
| | - Elise N. Muñoz
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Zanlin Yu
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Feng Wang
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - David A. Agard
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Jean-Paul Armache
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Geeta J. Narlikar
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
23
|
Abstract
Nearly three-fourths of all eukaryotic DNA is occupied by nucleosomes, protein-DNA complexes comprising octameric histone core proteins and ∼150 base pairs of DNA. In addition to acting as a DNA compaction vehicle, the dynamics of nucleosomes regulate the DNA site accessibility for the nonhistone proteins, thereby controlling regulatory processes involved in determining the cell identity and cell fate. Here, we propose an analytical framework to analyze the role of nucleosome dynamics on the target search process of transcription factors through a simple discrete-state stochastic description of the search process. By considering the experimentally determined kinetic rates associated with protein and nucleosome dynamics as the only inputs, we estimate the target search time of a protein via first-passage probability calculations separately during nucleosome breathing and sliding dynamics. Although both the nucleosome dynamics permit transient access to the DNA sites that are otherwise occluded by the histone proteins, our result suggests substantial differences between the protein search mechanism on a nucleosome performing breathing and sliding dynamics. Furthermore, we identify the molecular factors that influence the search efficiency and demonstrate how these factors together portray a highly dynamic landscape of gene regulation. Our analytical results are validated using extensive Monte Carlo simulations.
Collapse
Affiliation(s)
- Sujeet Kumar Mishra
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Arnab Bhattacherjee
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
24
|
Klein DC, Troy K, Tripplehorn SA, Hainer SJ. The esBAF and ISWI nucleosome remodeling complexes influence occupancy of overlapping dinucleosomes and fragile nucleosomes in murine embryonic stem cells. BMC Genomics 2023; 24:201. [PMID: 37055726 PMCID: PMC10103515 DOI: 10.1186/s12864-023-09287-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Nucleosome remodeling factors regulate the occupancy and positioning of nucleosomes genome-wide through ATP-driven DNA translocation. While many nucleosomes are consistently well-positioned, some nucleosomes and alternative nucleosome structures are more sensitive to nuclease digestion or are transitory. Fragile nucleosomes are nucleosome structures that are sensitive to nuclease digestion and may be composed of either six or eight histone proteins, making these either hexasomes or octasomes. Overlapping dinucleosomes are composed of two merged nucleosomes, lacking one H2A:H2B dimer, creating a 14-mer wrapped by ~ 250 bp of DNA. In vitro studies of nucleosome remodeling suggest that the collision of adjacent nucleosomes by sliding stimulates formation of overlapping dinucleosomes. RESULTS To better understand how nucleosome remodeling factors regulate alternative nucleosome structures, we depleted murine embryonic stem cells of the transcripts encoding remodeler ATPases BRG1 or SNF2H, then performed MNase-seq. We used high- and low-MNase digestion to assess the effects of nucleosome remodeling factors on nuclease-sensitive or "fragile" nucleosome occupancy. In parallel we gel-extracted MNase-digested fragments to enrich for overlapping dinucleosomes. We recapitulate prior identification of fragile nucleosomes and overlapping dinucleosomes near transcription start sites, and identify enrichment of these features around gene-distal DNaseI hypersensitive sites, CTCF binding sites, and pluripotency factor binding sites. We find that BRG1 stimulates occupancy of fragile nucleosomes but restricts occupancy of overlapping dinucleosomes. CONCLUSIONS Overlapping dinucleosomes and fragile nucleosomes are prevalent within the ES cell genome, occurring at hotspots of gene regulation beyond their characterized existence at promoters. Although neither structure is fully dependent on either nucleosome remodeling factor, both fragile nucleosomes and overlapping dinucleosomes are affected by knockdown of BRG1, suggesting a role for the complex in creating or removing these structures.
Collapse
Affiliation(s)
- David C Klein
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Kris Troy
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Quantitative and Systems Biology, University of California, 95343, Merced, Merced, CA, USA
| | - Sarah A Tripplehorn
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Sarah J Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
25
|
Are extraordinary nucleosome structures more ordinary than we thought? Chromosoma 2023:10.1007/s00412-023-00791-w. [PMID: 36917245 DOI: 10.1007/s00412-023-00791-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023]
Abstract
The nucleosome is a DNA-protein assembly that is the basic unit of chromatin. A nucleosome can adopt various structures. In the canonical nucleosome structure, 145-147 bp of DNA is wrapped around a histone heterooctamer. The strong histone-DNA interactions cause the DNA to be inaccessible for nuclear processes such as transcription. Therefore, the canonical nucleosome structure has to be altered into different, non-canonical structures to increase DNA accessibility. While it is recognised that non-canonical structures do exist, these structures are not well understood. In this review, we discuss both the evidence for various non-canonical nucleosome structures in the nucleus and the factors that are believed to induce these structures. The wide range of non-canonical structures is likely to regulate the amount of accessible DNA, and thus have important nuclear functions.
Collapse
|
26
|
Muñoz S, Jones A, Bouchoux C, Gilmore T, Patel H, Uhlmann F. Functional crosstalk between the cohesin loader and chromatin remodelers. Nat Commun 2022; 13:7698. [PMID: 36509793 PMCID: PMC9744909 DOI: 10.1038/s41467-022-35444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
The cohesin complex participates in many structural and functional aspects of genome organization. Cohesin recruitment onto chromosomes requires nucleosome-free DNA and the Scc2-Scc4 cohesin loader complex that catalyzes topological cohesin loading. Additionally, the cohesin loader facilitates promoter nucleosome clearance in a yet unknown way, and it recognizes chromatin receptors such as the RSC chromatin remodeler. Here, we explore the cohesin loader-RSC interaction. Amongst multi-pronged contacts by Scc2 and Scc4, we find that Scc4 contacts a conserved patch on the RSC ATPase motor module. The cohesin loader directly stimulates in vitro nucleosome sliding by RSC, providing an explanation how it facilitates promoter nucleosome clearance. Furthermore, we observe cohesin loader interactions with a wide range of chromatin remodelers. Our results provide mechanistic insight into how the cohesin loader recognizes, as well as influences, the chromatin landscape, with implications for our understanding of human developmental disorders including Cornelia de Lange and Coffin-Siris syndromes.
Collapse
Affiliation(s)
- Sofía Muñoz
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK.
- Cell Cycle Control and the Maintenance of Genomic Stability Laboratory, Cancer Research Center (CIC), University of Salamanca, Salamanca, Spain.
| | - Andrew Jones
- Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Céline Bouchoux
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| | - Tegan Gilmore
- Bioinformatics & Biostatistics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Harshil Patel
- Bioinformatics & Biostatistics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
27
|
Zhong Y, Moghaddas Sani H, Paudel BP, Low JKK, Silva APG, Mueller S, Deshpande C, Panjikar S, Reid XJ, Bedward MJ, van Oijen AM, Mackay JP. The role of auxiliary domains in modulating CHD4 activity suggests mechanistic commonality between enzyme families. Nat Commun 2022; 13:7524. [PMID: 36473839 PMCID: PMC9726900 DOI: 10.1038/s41467-022-35002-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
CHD4 is an essential, widely conserved ATP-dependent translocase that is also a broad tumour dependency. In common with other SF2-family chromatin remodelling enzymes, it alters chromatin accessibility by repositioning histone octamers. Besides the helicase and adjacent tandem chromodomains and PHD domains, CHD4 features 1000 residues of N- and C-terminal sequence with unknown structure and function. We demonstrate that these regions regulate CHD4 activity through different mechanisms. An N-terminal intrinsically disordered region (IDR) promotes remodelling integrity in a manner that depends on the composition but not sequence of the IDR. The C-terminal region harbours an auto-inhibitory region that contacts the helicase domain. Auto-inhibition is relieved by a previously unrecognized C-terminal SANT-SLIDE domain split by ~150 residues of disordered sequence, most likely by binding of this domain to substrate DNA. Our data shed light on CHD4 regulation and reveal strong mechanistic commonality between CHD family members, as well as with ISWI-family remodellers.
Collapse
Affiliation(s)
- Yichen Zhong
- grid.1013.30000 0004 1936 834XSchool of Life and Environmental Sciences, University of Sydney, The University of Sydney, NSW 2006 Australia
| | - Hakimeh Moghaddas Sani
- grid.1013.30000 0004 1936 834XSchool of Life and Environmental Sciences, University of Sydney, The University of Sydney, NSW 2006 Australia
| | - Bishnu P. Paudel
- grid.1007.60000 0004 0486 528XMolecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia ,grid.510958.0Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia
| | - Jason K. K. Low
- grid.1013.30000 0004 1936 834XSchool of Life and Environmental Sciences, University of Sydney, The University of Sydney, NSW 2006 Australia
| | - Ana P. G. Silva
- grid.1013.30000 0004 1936 834XSchool of Life and Environmental Sciences, University of Sydney, The University of Sydney, NSW 2006 Australia
| | - Stefan Mueller
- grid.1007.60000 0004 0486 528XMolecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia ,grid.510958.0Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia
| | - Chandrika Deshpande
- grid.1013.30000 0004 1936 834XSchool of Life and Environmental Sciences, University of Sydney, The University of Sydney, NSW 2006 Australia
| | - Santosh Panjikar
- grid.248753.f0000 0004 0562 0567Australian Synchrotron, Clayton, VIC 3168 Australia ,grid.1002.30000 0004 1936 7857Department of Molecular Biology and Biochemistry, Monash University, Clayton, VIC 3800 Australia
| | - Xavier J. Reid
- grid.1013.30000 0004 1936 834XSchool of Life and Environmental Sciences, University of Sydney, The University of Sydney, NSW 2006 Australia
| | - Max J. Bedward
- grid.1013.30000 0004 1936 834XSchool of Life and Environmental Sciences, University of Sydney, The University of Sydney, NSW 2006 Australia
| | - Antoine M. van Oijen
- grid.1007.60000 0004 0486 528XMolecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia ,grid.510958.0Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia
| | - Joel P. Mackay
- grid.1013.30000 0004 1936 834XSchool of Life and Environmental Sciences, University of Sydney, The University of Sydney, NSW 2006 Australia
| |
Collapse
|
28
|
Takizawa Y, Kurumizaka H. Chromatin structure meets cryo-EM: Dynamic building blocks of the functional architecture. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194851. [PMID: 35952957 DOI: 10.1016/j.bbagrm.2022.194851] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Chromatin is a dynamic molecular complex composed of DNA and proteins that package the DNA in the nucleus of eukaryotic cells. The basic structural unit of chromatin is the nucleosome core particle, composed of ~150 base pairs of genomic DNA wrapped around a histone octamer containing two copies each of four histones, H2A, H2B, H3, and H4. Individual nucleosome core particles are connected by short linker DNAs, forming a nucleosome array known as a beads-on-a-string fiber. Higher-order structures of chromatin are closely linked to nuclear events such as replication, transcription, recombination, and repair. Recently, a variety of chromatin structures have been determined by single-particle cryo-electron microscopy (cryo-EM) and cryo-electron tomography (cryo-ET), and their structural details have provided clues about the chromatin architecture functions in the cell. In this review, we highlight recent cryo-EM structural studies of a fundamental chromatin unit to clarify the functions of chromatin.
Collapse
Affiliation(s)
- Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
29
|
H2A-H2B Histone Dimer Plasticity and Its Functional Implications. Cells 2022; 11:cells11182837. [PMID: 36139412 PMCID: PMC9496766 DOI: 10.3390/cells11182837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 12/04/2022] Open
Abstract
The protein core of the nucleosome is composed of an H3-H4 histone tetramer and two H2A-H2B histone dimers. The tetramer organizes the central 60 DNA bp, while H2A-H2B dimers lock the flanking DNA segments. Being positioned at the sides of the nucleosome, H2A-H2B dimers stabilize the overall structure of the nucleosome and modulate its dynamics, such as DNA unwrapping, sliding, etc. Such modulation at the epigenetic level is achieved through post-translational modifications and the incorporation of histone variants. However, the detailed connection between the sequence of H2A-H2B histones and their structure, dynamics and implications for nucleosome functioning remains elusive. In this work, we present a detailed study of H2A-H2B dimer dynamics in the free form and in the context of nucleosomes via atomistic molecular dynamics simulations (based on X. laevis histones). We supplement simulation results by comparative analysis of information in the structural databases. Particularly, we describe a major dynamical mode corresponding to the bending movement of the longest H2A and H2B α-helices. This overall bending dynamics of the H2A-H2B dimer were found to be modulated by its interactions with DNA, H3-H4 tetramer, the presence of DNA twist-defects with nucleosomal DNA and the amino acid sequence of histones. Taken together, our results shed new light on the dynamical mechanisms of nucleosome functioning, such as nucleosome sliding, DNA-unwrapping and their epigenetic modulation.
Collapse
|
30
|
Johnson SL, Narlikar GJ. ATP hydrolysis coordinates the activities of two motors in a dimeric chromatin remodeling enzyme. J Mol Biol 2022; 434:167653. [PMID: 35659534 DOI: 10.1016/j.jmb.2022.167653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022]
Abstract
ATP-dependent chromatin remodelers are essential enzymes that restructure eukaryotic genomes to enable all DNA-based processes. The diversity and complexity of these processes are matched by the complexity of the enzymes that carry them out, making remodelers a challenging class of molecular motors to study by conventional methods. Here we use a single molecule biophysical assay to overcome some of these challenges, enabling a detailed mechanistic dissection of a paradigmatic remodeler reaction, that of sliding a nucleosome towards the longer DNA linker. We focus on how two motors of a dimeric remodeler coordinate to accomplish such directional sliding. We find that ATP hydrolysis by both motors promotes coordination, suggesting a role for ATP in resolving the competition for directional commitment. Furthermore, we show an artificially constitutive dimer is no more or less coordinated, but is more processive, suggesting a cell could modulate a remodeler's oligomeric state to modulate local chromatin dynamics.
Collapse
Affiliation(s)
- Stephanie L Johnson
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA. https://twitter.com/StephL_Johnson
| | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
31
|
Elathram N, Ackermann BE, Debelouchina GT. DNP-enhanced solid-state NMR spectroscopy of chromatin polymers. JOURNAL OF MAGNETIC RESONANCE OPEN 2022; 10-11:100057. [PMID: 35707629 PMCID: PMC9191766 DOI: 10.1016/j.jmro.2022.100057] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chromatin is a DNA-protein polymer that represents the functional form of the genome. The main building block of chromatin is the nucleosome, a structure that contains 147 base pairs of DNA and two copies each of the histone proteins H2A, H2B, H3 and H4. Previous work has shown that magic angle spinning (MAS) NMR spectroscopy can capture the nucleosome at high resolution although studies have been challenging due to low sensitivity, the presence of dynamic and rigid components, and the complex interaction networks of nucleosomes within the chromatin polymer. Here, we use dynamic nuclear polarization (DNP) to enhance the sensitivity of MAS NMR experiments of nucleosome arrays at 100 K and show that well-resolved 13C-13C MAS NMR correlations can be obtained much more efficiently. We evaluate the effect of temperature on the chemical shifts and linewidths in the spectra and demonstrate that changes are relatively minimal and clustered in regions of histone-DNA or histone-histone contacts. We also compare samples prepared with and without DNA and show that the low temperature 13C-13C correlations exhibit sufficient resolution to detect chemical shift changes and line broadening for residues that form the DNA-histone interface. On the other hand, we show that the measurement of DNP-enhanced 15N-13C histone-histone interactions within the nucleosome core is complicated by the natural 13C abundance network in the sample. Nevertheless, the enhanced sensitivity afforded by DNP can be used to detect long-range correlations between histone residues and DNA. Overall, our experiments demonstrate that DNP-enhanced MAS NMR spectroscopy of chromatin samples yields spectra with high resolution and sensitivity and can be used to capture functionally relevant protein-DNA interactions that have implications for gene regulation and genome organization.
Collapse
Affiliation(s)
| | | | - Galia T. Debelouchina
- Corresponding author: Galia Debelouchina, University of California, San Diego, Natural Sciences Building 4322, 9500 Gilman Dr., La Jolla, CA 92093, 858-534-3038,
| |
Collapse
|
32
|
Trujillo JT, Long J, Aboelnour E, Ogas J, Wisecaver JH. CHD chromatin remodeling protein diversification yields novel clades and domains absent in classic model organisms. Genome Biol Evol 2022; 14:6582301. [PMID: 35524943 PMCID: PMC9113485 DOI: 10.1093/gbe/evac066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2022] [Indexed: 11/20/2022] Open
Abstract
Chromatin remodelers play a fundamental role in the assembly of chromatin, regulation of transcription, and DNA repair. Biochemical and functional characterizations of the CHD family of chromatin remodelers from a variety of model organisms have shown that these remodelers participate in a wide range of activities. However, because the evolutionary history of CHD homologs is unclear, it is difficult to predict which of these activities are broadly conserved and which have evolved more recently in individual eukaryotic lineages. Here, we performed a comprehensive phylogenetic analysis of 8,042 CHD homologs from 1,894 species to create a model for the evolution of this family across eukaryotes with a particular focus on the timing of duplications that gave rise to the diverse copies observed in plants, animals, and fungi. Our analysis confirms that the three major subfamilies of CHD remodelers originated in the eukaryotic last common ancestor, and subsequent losses occurred independently in different lineages. Improved taxon sampling identified several subfamilies of CHD remodelers in plants that were absent or highly divergent in the model plant Arabidopsis thaliana. Whereas the timing of CHD subfamily expansions in vertebrates corresponds to whole genome duplication events, the mechanisms underlying CHD diversification in land plants appear more complicated. Analysis of protein domains reveals that CHD remodeler diversification has been accompanied by distinct transitions in domain architecture, contributing to the functional differences observed between these remodelers. This study demonstrates the importance of proper taxon sampling when studying ancient evolutionary events to prevent misinterpretation of subsequent lineage-specific changes and provides an evolutionary framework for functional and comparative analysis of this critical chromatin remodeler family across eukaryotes.
Collapse
Affiliation(s)
- Joshua T Trujillo
- Center for Plant Biology and Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Jiaxin Long
- Center for Plant Biology and Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Erin Aboelnour
- Center for Plant Biology and Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA.,Helmholtz Pioneer Campus, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Joseph Ogas
- Center for Plant Biology and Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Jennifer H Wisecaver
- Center for Plant Biology and Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
33
|
Acidic patch histone mutations and their effects on nucleosome remodeling. Biochem Soc Trans 2022; 50:907-919. [PMID: 35356970 DOI: 10.1042/bst20210773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022]
Abstract
Structural and biochemical studies have identified a histone surface on each side of the nucleosome disk termed 'the nucleosome acidic patch' that acts as a regulatory hub for the function of numerous nuclear proteins, including ATP-dependent chromatin complexes (remodelers). Four major remodeler subfamilies, SWI/SNF, ISWI, CHD, and INO80, have distinct modes of interaction with one or both nucleosome acidic patches, contributing to their specific remodeling outcomes. Genome-wide sequencing analyses of various human cancers have uncovered high-frequency mutations in histone coding genes, including some that map to the acidic patch. How cancer-related acidic patch histone mutations affect nucleosome remodeling is mainly unknown. Recent advances in in vitro chromatin reconstitution have enabled access to physiologically relevant nucleosomes, including asymmetric nucleosomes that possess both wild-type and acidic patch mutant histone copies. Biochemical investigation of these substrates revealed unexpected remodeling outcomes with far-reaching implications for alteration of chromatin structure. This review summarizes recent findings of how different remodeler families interpret wild-type and mutant acidic patches for their remodeling functions and discusses models for remodeler-mediated changes in chromatin landscapes as a consequence of acidic patch mutations.
Collapse
|
34
|
Lukasak B, Thompson RE, Mitchener MM, Feng VJ, Bagert JD, Muir TW. A Genetically Encoded Approach for Breaking Chromatin Symmetry. ACS CENTRAL SCIENCE 2022; 8:176-183. [PMID: 35233450 PMCID: PMC8875426 DOI: 10.1021/acscentsci.1c01332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 05/03/2023]
Abstract
Nucleosomes frequently exist as asymmetric species in native chromatin contexts. Current methods for the traceless generation of these heterotypic chromatin substrates are inefficient and/or difficult to implement. Here, we report an application of the SpyCatcher/SpyTag system as a convenient route to assemble desymmetrized nucleoprotein complexes. This genetically encoded covalent tethering system serves as an internal chaperone, maintained through the assembly process, affording traceless asymmetric nucleosomes following proteolytic removal of the tethers. The strategy allows for generation of nucleosomes containing asymmetric modifications on single or multiple histones, thereby providing facile access to a range of substrates. Herein, we use such constructs to interrogate how nucleosome desymmetrization caused by the incorporation of cancer-associated histone mutations alters chromatin remodeling processes. We also establish that our system provides access to asymmetric dinucleosomes, which allowed us to query the geometric/symmetry constraints of the unmodified histone H3 tail in stimulating the activity of the histone lysine demethylase, KDM5B. By providing a streamlined approach to generate these sophisticated substrates, our method expands the chemical biology toolbox available for interrogating the consequences of asymmetry on chromatin structure and function.
Collapse
|
35
|
Nodelman IM, Das S, Faustino AM, Fried SD, Bowman GD, Armache JP. Nucleosome recognition and DNA distortion by the Chd1 remodeler in a nucleotide-free state. Nat Struct Mol Biol 2022; 29:121-129. [PMID: 35173352 DOI: 10.1038/s41594-021-00719-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022]
Abstract
Chromatin remodelers are ATP-dependent enzymes that reorganize nucleosomes within all eukaryotic genomes. Here we report a complex of the Chd1 remodeler bound to a nucleosome in a nucleotide-free state, determined by cryo-EM to 2.3 Å resolution. The remodeler stimulates the nucleosome to absorb an additional nucleotide on each strand at two different locations: on the tracking strand within the ATPase binding site and on the guide strand one helical turn from the ATPase motor. Remarkably, the additional nucleotide on the tracking strand is associated with a local transformation toward an A-form geometry, explaining how sequential ratcheting of each DNA strand occurs. The structure also reveals a histone-binding motif, ChEx, which can block opposing remodelers on the nucleosome and may allow Chd1 to participate in histone reorganization during transcription.
Collapse
Affiliation(s)
- Ilana M Nodelman
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Sayan Das
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | | | - Stephen D Fried
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA.,Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Gregory D Bowman
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA.
| | - Jean-Paul Armache
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
36
|
Arimura Y, Shih RM, Froom R, Funabiki H. Structural features of nucleosomes in interphase and metaphase chromosomes. Mol Cell 2021; 81:4377-4397.e12. [PMID: 34478647 PMCID: PMC8571072 DOI: 10.1016/j.molcel.2021.08.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/17/2022]
Abstract
Structural heterogeneity of nucleosomes in functional chromosomes is unknown. Here, we devise the template-, reference- and selection-free (TRSF) cryo-EM pipeline to simultaneously reconstruct cryo-EM structures of protein complexes from interphase or metaphase chromosomes. The reconstructed interphase and metaphase nucleosome structures are on average indistinguishable from canonical nucleosome structures, despite DNA sequence heterogeneity, cell-cycle-specific posttranslational modifications, and interacting proteins. Nucleosome structures determined by a decoy-classifying method and structure variability analyses reveal the nucleosome structural variations in linker DNA, histone tails, and nucleosome core particle configurations, suggesting that the opening of linker DNA, which is correlated with H2A C-terminal tail positioning, is suppressed in chromosomes. High-resolution (3.4-3.5 Å) nucleosome structures indicate DNA-sequence-independent stabilization of superhelical locations ±0-1 and ±3.5-4.5. The linker histone H1.8 preferentially binds to metaphase chromatin, from which chromatosome cryo-EM structures with H1.8 at the on-dyad position are reconstituted. This study presents the structural characteristics of nucleosomes in chromosomes.
Collapse
Affiliation(s)
- Yasuhiro Arimura
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA.
| | - Rochelle M Shih
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Ruby Froom
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
37
|
Li Y, Gong H, Wang P, Zhu Y, Peng H, Cui Y, Li H, Liu J, Wang Z. The emerging role of ISWI chromatin remodeling complexes in cancer. J Exp Clin Cancer Res 2021; 40:346. [PMID: 34736517 PMCID: PMC8567610 DOI: 10.1186/s13046-021-02151-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022] Open
Abstract
Disordered chromatin remodeling regulation has emerged as an essential driving factor for cancers. Imitation switch (ISWI) family are evolutionarily conserved ATP-dependent chromatin remodeling complexes, which are essential for cellular survival and function through multiple genetic and epigenetic mechanisms. Omics sequencing and a growing number of basic and clinical studies found that ISWI family members displayed widespread gene expression and genetic status abnormalities in human cancer. Their aberrant expression is closely linked to patient outcome and drug response. Functional or componential alteration in ISWI-containing complexes is critical for tumor initiation and development. Furthermore, ISWI-non-coding RNA regulatory networks and some non-coding RNAs derived from exons of ISWI member genes play important roles in tumor progression. Therefore, unveiling the transcriptional regulation mechanism underlying ISWI family sparked a booming interest in finding ISWI-based therapies in cancer. This review aims at describing the current state-of-the-art in the role of ISWI subunits and complexes in tumorigenesis, tumor progression, immunity and drug response, and presenting deep insight into the physiological and pathological implications of the ISWI transcription machinery in cancers.
Collapse
Affiliation(s)
- Yanan Li
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Han Gong
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Pan Wang
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Yu Zhu
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Hongling Peng
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yajuan Cui
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Heng Li
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jing Liu
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Zi Wang
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
38
|
Abstract
Chromatin is highly dynamic, undergoing continuous global changes in its structure and type of histone and DNA modifications governed by processes such as transcription, repair, replication, and recombination. Members of the chromodomain helicase DNA-binding (CHD) family of enzymes are ATP-dependent chromatin remodelers that are intimately involved in the regulation of chromatin dynamics, altering nucleosomal structure and DNA accessibility. Genetic studies in yeast, fruit flies, zebrafish, and mice underscore essential roles of CHD enzymes in regulating cellular fate and identity, as well as proper embryonic development. With the advent of next-generation sequencing, evidence is emerging that these enzymes are subjected to frequent DNA copy number alterations or mutations and show aberrant expression in malignancies and other human diseases. As such, they might prove to be valuable biomarkers or targets for therapeutic intervention.
Collapse
Affiliation(s)
- Andrej Alendar
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066CX, The Netherlands
| | - Anton Berns
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066CX, The Netherlands
| |
Collapse
|
39
|
Bacic L, Gaullier G, Sabantsev A, Lehmann LC, Brackmann K, Dimakou D, Halic M, Hewitt G, Boulton SJ, Deindl S. Structure and dynamics of the chromatin remodeler ALC1 bound to a PARylated nucleosome. eLife 2021; 10:e71420. [PMID: 34486521 PMCID: PMC8463071 DOI: 10.7554/elife.71420] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/05/2021] [Indexed: 12/21/2022] Open
Abstract
The chromatin remodeler ALC1 is recruited to and activated by DNA damage-induced poly(ADP-ribose) (PAR) chains deposited by PARP1/PARP2/HPF1 upon detection of DNA lesions. ALC1 has emerged as a candidate drug target for cancer therapy as its loss confers synthetic lethality in homologous recombination-deficient cells. However, structure-based drug design and molecular analysis of ALC1 have been hindered by the requirement for PARylation and the highly heterogeneous nature of this post-translational modification. Here, we reconstituted an ALC1 and PARylated nucleosome complex modified in vitro using PARP2 and HPF1. This complex was amenable to cryo-EM structure determination without cross-linking, which enabled visualization of several intermediate states of ALC1 from the recognition of the PARylated nucleosome to the tight binding and activation of the remodeler. Functional biochemical assays with PARylated nucleosomes highlight the importance of nucleosomal epitopes for productive remodeling and suggest that ALC1 preferentially slides nucleosomes away from DNA breaks.
Collapse
Affiliation(s)
- Luka Bacic
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| | - Guillaume Gaullier
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| | - Anton Sabantsev
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| | - Laura C Lehmann
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| | - Klaus Brackmann
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| | - Despoina Dimakou
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| | - Mario Halic
- Department of Structural Biology, St Jude Children's Research HospitalMemphisUnited States
| | | | | | - Sebastian Deindl
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| |
Collapse
|
40
|
Morgunova E, Taipale J. Structural insights into the interaction between transcription factors and the nucleosome. Curr Opin Struct Biol 2021; 71:171-179. [PMID: 34364091 DOI: 10.1016/j.sbi.2021.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 01/26/2023]
Abstract
In eukaryotic cells, DNA interacts with two main types of binding proteins: transcription factors and histones. Histones form the core of nucleosomes and display weak sequence preference owing to differences in bendability of different DNA sequences. By contrast, the affinity of transcription factors is highly dependent on DNA sequence - all sequences are bound with moderate affinity, but only few specific sequences are bound more tightly via molecular recognition of the DNA bases. Transcription factors can interact with nucleosomes directly by recognizing nucleosome-associated DNA and also indirectly by recruiting histone-modifying enzymes and nucleosome remodelers. These interactions result in sequence-dependent formation of a pattern of open and closed chromatin, where specific positions are occupied by transcription factors, histone-modifying enzymes, and modified histones. These patterns are then recognized by large DNA-associated macromolecular complexes such as cohesin and RNA polymerase II, which are involved in regulation of higher-order chromatin structure and transcription, respectively. Here, we review recent work that has provided structural and mechanistic insight into the interactions between all these classes of DNA-associated proteins.
Collapse
Affiliation(s)
- Ekaterina Morgunova
- Karolinska Institute, Department of Medical Biochemistry and Biophysics, Stockholm, Sweden
| | | |
Collapse
|
41
|
Gamarra N, Narlikar GJ. Collaboration through chromatin: motors of transcription and chromatin structure. J Mol Biol 2021; 433:166876. [PMID: 33556407 PMCID: PMC8989640 DOI: 10.1016/j.jmb.2021.166876] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 01/09/2023]
Abstract
Packaging of the eukaryotic genome into chromatin places fundamental physical constraints on transcription. Clarifying how transcription operates within these constraints is essential to understand how eukaryotic gene expression programs are established and maintained. Here we review what is known about the mechanisms of transcription on chromatin templates. Current models indicate that transcription through chromatin is accomplished by the combination of an inherent nucleosome disrupting activity of RNA polymerase and the action of ATP-dependent chromatin remodeling motors. Collaboration between these two types of molecular motors is proposed to occur at all stages of transcription through diverse mechanisms. Further investigation of how these two motors combine their basic activities is essential to clarify the interdependent relationship between genome structure and transcription.
Collapse
Affiliation(s)
- Nathan Gamarra
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States; TETRAD Graduate Program, University of California, San Francisco, San Francisco, United States
| | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.
| |
Collapse
|
42
|
Gamarra N, Narlikar GJ. Histone dynamics play a critical role in SNF2h-mediated nucleosome sliding. Nat Struct Mol Biol 2021; 28:548-551. [PMID: 34226739 PMCID: PMC9040563 DOI: 10.1038/s41594-021-00620-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Nathan Gamarra
- Department of Biochemistry and Biophysics, University of
California, San Francisco, San Francisco, United States,TETRAD Graduate Program, University of California, San
Francisco, San Francisco, United States
| | - Geeta J. Narlikar
- Department of Biochemistry and Biophysics, University of
California, San Francisco, San Francisco, United States,Corresponding author:
| |
Collapse
|
43
|
Reply to: Histone dynamics play a critical role in SNF2h-mediated nucleosome sliding. Nat Struct Mol Biol 2021; 28:552-553. [PMID: 34226740 DOI: 10.1038/s41594-021-00621-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
|
44
|
McGinty RK, Tan S. Principles of nucleosome recognition by chromatin factors and enzymes. Curr Opin Struct Biol 2021; 71:16-26. [PMID: 34198054 DOI: 10.1016/j.sbi.2021.05.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022]
Abstract
The recent torrent of structures of chromatin complexes determined by cryoelectron microscopy provides an opportunity to discern general principles for how chromatin factors and enzymes interact with their nucleosome substrate. We find that many chromatin proteins use a strikingly similar arginine anchor and variant arginine interactions to bind to the nucleosome acidic patch. We also observe that many chromatin proteins target the H3 and H2B histone fold α1-loop1 elbows and the H2B C-terminal helix on the nucleosomal histone face. These interactions with the histones can be complemented with interactions with and distortions of nucleosomal DNA.
Collapse
Affiliation(s)
- Robert K McGinty
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Song Tan
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
45
|
Cai G, Yang Q, Sun W. RSF1 in cancer: interactions and functions. Cancer Cell Int 2021; 21:315. [PMID: 34147108 PMCID: PMC8214769 DOI: 10.1186/s12935-021-02012-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/10/2021] [Indexed: 12/25/2022] Open
Abstract
RSF1, remodelling and spacing factor 1, is an important interphase centromere protein and is overexpressed in many types of cancers and correlated with poor overall survival. RSF1 has functions mainly in maintaining chromosome stability, facilitating DNA repair, maintaining the protein homeostasis of RSF1 and suppressing the transcription of some oncogenes when RSF1 protein is expressed at an optimal level; however, RSF1 overexpression facilitates drug resistance and cell cycle checkpoint inhibition to prompt cancer proliferation and survival. The RSF1 expression level and gene background are crucial for RSF1 functions, which may explain why RSF1 has different functions in different cancer types. This review summarizes the functional domains of RSF1, the overexpression status of RSF1 and SNF2H in cancer based on the TCGA and GTEX databases, the cancer-related functions of RSF1 in interacting with H2Aub, HDAC1, CENP-A, PLK1, ATM, CENP-S, SNF2H, HBX, BubR1, cyclin E1, CBP and NF-κB and the potential clinical value of RSF1, which will lay a theoretical foundation for the structural biology study of RSF1 and application of RSF1 inhibitors, truncated RSF1 proteins and SNF2H inhibitors in the treatment of RSF1-overexpressing tumours.
Collapse
Affiliation(s)
- Guiyang Cai
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Wei Sun
- Department of Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, School of Life Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
46
|
Michael AK, Thomä NH. Reading the chromatinized genome. Cell 2021; 184:3599-3611. [PMID: 34146479 DOI: 10.1016/j.cell.2021.05.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
Eukaryotic DNA-binding proteins operate in the context of chromatin, where nucleosomes are the elementary building blocks. Nucleosomal DNA is wrapped around a histone core, thereby rendering a large fraction of the DNA surface inaccessible to DNA-binding proteins. Nevertheless, first responders in DNA repair and sequence-specific transcription factors bind DNA target sites obstructed by chromatin. While early studies examined protein binding to histone-free DNA, it is only now beginning to emerge how DNA sequences are interrogated on nucleosomes. These readout strategies range from the release of nucleosomal DNA from histones, to rotational/translation register shifts of the DNA motif, and nucleosome-specific DNA binding modes that differ from those observed on naked DNA. Since DNA motif engagement on nucleosomes strongly depends on position and orientation, we argue that motif location and nucleosome positioning co-determine protein access to DNA in transcription and DNA repair.
Collapse
Affiliation(s)
- Alicia K Michael
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.
| |
Collapse
|
47
|
Autoinhibitory elements of the Chd1 remodeler block initiation of twist defects by destabilizing the ATPase motor on the nucleosome. Proc Natl Acad Sci U S A 2021; 118:2014498118. [PMID: 33468676 DOI: 10.1073/pnas.2014498118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chromatin remodelers are ATP (adenosine triphosphate)-powered motors that reposition nucleosomes throughout eukaryotic chromosomes. Remodelers possess autoinhibitory elements that control the direction of nucleosome sliding, but underlying mechanisms of inhibition have been unclear. Here, we show that autoinhibitory elements of the yeast Chd1 remodeler block nucleosome sliding by preventing initiation of twist defects. We show that two autoinhibitory elements-the chromodomains and bridge-reinforce each other to block sliding when the DNA-binding domain is not bound to entry-side DNA. Our data support a model where the chromodomains and bridge target nucleotide-free and ADP-bound states of the ATPase motor, favoring a partially disengaged state of the ATPase motor on the nucleosome. By bypassing distortions of nucleosomal DNA prior to ATP binding, we propose that autoinhibitory elements uncouple the ATP binding/hydrolysis cycle from DNA translocation around the histone core.
Collapse
|
48
|
Clapier CR. Sophisticated Conversations between Chromatin and Chromatin Remodelers, and Dissonances in Cancer. Int J Mol Sci 2021; 22:5578. [PMID: 34070411 PMCID: PMC8197500 DOI: 10.3390/ijms22115578] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 01/13/2023] Open
Abstract
The establishment and maintenance of genome packaging into chromatin contribute to define specific cellular identity and function. Dynamic regulation of chromatin organization and nucleosome positioning are critical to all DNA transactions-in particular, the regulation of gene expression-and involve the cooperative action of sequence-specific DNA-binding factors, histone modifying enzymes, and remodelers. Remodelers are molecular machines that generate various chromatin landscapes, adjust nucleosome positioning, and alter DNA accessibility by using ATP binding and hydrolysis to perform DNA translocation, which is highly regulated through sophisticated structural and functional conversations with nucleosomes. In this review, I first present the functional and structural diversity of remodelers, while emphasizing the basic mechanism of DNA translocation, the common regulatory aspects, and the hand-in-hand progressive increase in complexity of the regulatory conversations between remodelers and nucleosomes that accompanies the increase in challenges of remodeling processes. Next, I examine how, through nucleosome positioning, remodelers guide the regulation of gene expression. Finally, I explore various aspects of how alterations/mutations in remodelers introduce dissonance into the conversations between remodelers and nucleosomes, modify chromatin organization, and contribute to oncogenesis.
Collapse
Affiliation(s)
- Cedric R Clapier
- Department of Oncological Sciences & Howard Hughes Medical Institute, Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| |
Collapse
|
49
|
Li D, Wang Q, Gong NN, Kurolap A, Feldman HB, Boy N, Brugger M, Grand K, McWalter K, Guillen Sacoto MJ, Wakeling E, Hurst J, March ME, Bhoj EJ, Nowaczyk MJM, Gonzaga-Jauregui C, Mathew M, Dava-Wala A, Siemon A, Bartholomew D, Huang Y, Lee H, Martinez-Agosto JA, Schwaibold EMC, Brunet T, Choukair D, Pais LS, White SM, Christodoulou J, Brown D, Lindstrom K, Grebe T, Tiosano D, Kayser MS, Tan TY, Deardorff MA, Song Y, Hakonarson H. Pathogenic variants in SMARCA5, a chromatin remodeler, cause a range of syndromic neurodevelopmental features. SCIENCE ADVANCES 2021; 7:eabf2066. [PMID: 33980485 PMCID: PMC8115915 DOI: 10.1126/sciadv.abf2066] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/23/2021] [Indexed: 05/17/2023]
Abstract
Intellectual disability encompasses a wide spectrum of neurodevelopmental disorders, with many linked genetic loci. However, the underlying molecular mechanism for more than 50% of the patients remains elusive. We describe pathogenic variants in SMARCA5, encoding the ATPase motor of the ISWI chromatin remodeler, as a cause of a previously unidentified neurodevelopmental disorder, identifying 12 individuals with de novo or dominantly segregating rare heterozygous variants. Accompanying phenotypes include mild developmental delay, frequent postnatal short stature and microcephaly, and recurrent dysmorphic features. Loss of function of the SMARCA5 Drosophila ortholog Iswi led to smaller body size, reduced sensory dendrite complexity, and tiling defects in larvae. In adult flies, Iswi neural knockdown caused decreased brain size, aberrant mushroom body morphology, and abnormal locomotor function. Iswi loss of function was rescued by wild-type but not mutant SMARCA5. Our results demonstrate that SMARCA5 pathogenic variants cause a neurodevelopmental syndrome with mild facial dysmorphia.
Collapse
Affiliation(s)
- Dong Li
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Qin Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Naihua N Gong
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Alina Kurolap
- The Genetics Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Hagit Baris Feldman
- The Genetics Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nikolas Boy
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Melanie Brugger
- Institute of Human Genetics, Technical University Munich, Munich, Germany
- Institute of Human Genetics, University Hospital LMU Munich, Goethestr. 29, Munich, Germany
| | - Katheryn Grand
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | | - Emma Wakeling
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Jane Hurst
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Michael E March
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elizabeth J Bhoj
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Małgorzata J M Nowaczyk
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Mariam Mathew
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Ashita Dava-Wala
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Amy Siemon
- Department of Pediatrics and Clinical Genetics, Nationwide Children's Hospital, Columbus, OH, USA
| | - Dennis Bartholomew
- Department of Pediatrics and Clinical Genetics, Nationwide Children's Hospital, Columbus, OH, USA
| | - Yue Huang
- Department of Human Genetics; Division of Medical Genetics, Department of Pediatrics; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Hane Lee
- Department of Pathology and Laboratory Medicine; Department of Human Genetics; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Julian A Martinez-Agosto
- Department of Human Genetics; Division of Medical Genetics, Department of Pediatrics; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Eva M C Schwaibold
- Department of Pathology and Laboratory Medicine; Department of Human Genetics; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Theresa Brunet
- Institute of Human Genetics, Technical University Munich, Munich, Germany
| | - Daniela Choukair
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics, University Hospital Heidelberg, Heidelberg, Germany
| | - Lynn S Pais
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - John Christodoulou
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Dana Brown
- Division of Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Kristin Lindstrom
- Division of Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Theresa Grebe
- Division of Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, AZ, USA
- College of Medicine, University of Arizona, Phoenix, 475 N. 5th Street, Phoenix, AZ, USA
| | - Dov Tiosano
- Pediatric Endocrinology Unit, Ruth Rappaport Children's Hospital, Rambam Healthcare Campus, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Matthew S Kayser
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Matthew A Deardorff
- Departments of Pathology and Pediatrics, Children's Hospital Los Angeles, and University of Southern California, Los Angeles, CA, USA
| | - Yuanquan Song
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
50
|
Histone dynamics mediate DNA unwrapping and sliding in nucleosomes. Nat Commun 2021; 12:2387. [PMID: 33888707 PMCID: PMC8062685 DOI: 10.1038/s41467-021-22636-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Nucleosomes are elementary building blocks of chromatin in eukaryotes. They tightly wrap ∼147 DNA base pairs around an octamer of histone proteins. How nucleosome structural dynamics affect genome functioning is not completely clear. Here we report all-atom molecular dynamics simulations of nucleosome core particles at a timescale of 15 microseconds. At this timescale, functional modes of nucleosome dynamics such as spontaneous nucleosomal DNA breathing, unwrapping, twisting, and sliding were observed. We identified atomistic mechanisms of these processes by analyzing the accompanying structural rearrangements of the histone octamer and histone-DNA contacts. Octamer dynamics and plasticity were found to enable DNA unwrapping and sliding. Through multi-scale modeling, we showed that nucleosomal DNA dynamics contribute to significant conformational variability of the chromatin fiber at the supranucleosomal level. Our study further supports mechanistic coupling between fine details of histone dynamics and chromatin functioning, provides a framework for understanding the effects of various chromatin modifications.
Collapse
|