1
|
Wang J, Yang Z, Chen C, Yao G, Wan X, Bao S, Ding J, Wang L, Jiang H. MPEK: a multitask deep learning framework based on pretrained language models for enzymatic reaction kinetic parameters prediction. Brief Bioinform 2024; 25:bbae387. [PMID: 39129365 PMCID: PMC11317537 DOI: 10.1093/bib/bbae387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/24/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024] Open
Abstract
Enzymatic reaction kinetics are central in analyzing enzymatic reaction mechanisms and target-enzyme optimization, and thus in biomanufacturing and other industries. The enzyme turnover number (kcat) and Michaelis constant (Km), key kinetic parameters for measuring enzyme catalytic efficiency, are crucial for analyzing enzymatic reaction mechanisms and the directed evolution of target enzymes. Experimental determination of kcat and Km is costly in terms of time, labor, and cost. To consider the intrinsic connection between kcat and Km and further improve the prediction performance, we propose a universal pretrained multitask deep learning model, MPEK, to predict these parameters simultaneously while considering pH, temperature, and organismal information. Through testing on the same kcat and Km test datasets, MPEK demonstrated superior prediction performance over the previous models. Specifically, MPEK achieved the Pearson coefficient of 0.808 for predicting kcat, improving ca. 14.6% and 7.6% compared to the DLKcat and UniKP models, and it achieved the Pearson coefficient of 0.777 for predicting Km, improving ca. 34.9% and 53.3% compared to the Kroll_model and UniKP models. More importantly, MPEK was able to reveal enzyme promiscuity and was sensitive to slight changes in the mutant enzyme sequence. In addition, in three case studies, it was shown that MPEK has the potential for assisted enzyme mining and directed evolution. To facilitate in silico evaluation of enzyme catalytic efficiency, we have established a web server implementing this model, which can be accessed at http://mathtc.nscc-tj.cn/mpek.
Collapse
Affiliation(s)
- Jingjing Wang
- State Key Laboratory of NBC Protection for Civilian, No. 37 South Central Street, Yangfang Town, Changping District, Beijing 102205, China
| | - Zhijiang Yang
- State Key Laboratory of NBC Protection for Civilian, No. 37 South Central Street, Yangfang Town, Changping District, Beijing 102205, China
| | - Chang Chen
- State Key Laboratory of NBC Protection for Civilian, No. 37 South Central Street, Yangfang Town, Changping District, Beijing 102205, China
| | - Ge Yao
- State Key Laboratory of NBC Protection for Civilian, No. 37 South Central Street, Yangfang Town, Changping District, Beijing 102205, China
| | - Xiukun Wan
- State Key Laboratory of NBC Protection for Civilian, No. 37 South Central Street, Yangfang Town, Changping District, Beijing 102205, China
| | - Shaoheng Bao
- State Key Laboratory of NBC Protection for Civilian, No. 37 South Central Street, Yangfang Town, Changping District, Beijing 102205, China
| | - Junjie Ding
- State Key Laboratory of NBC Protection for Civilian, No. 37 South Central Street, Yangfang Town, Changping District, Beijing 102205, China
| | - Liangliang Wang
- State Key Laboratory of NBC Protection for Civilian, No. 37 South Central Street, Yangfang Town, Changping District, Beijing 102205, China
| | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, No. 37 South Central Street, Yangfang Town, Changping District, Beijing 102205, China
| |
Collapse
|
2
|
Hinnu M, Putrinš M, Kogermann K, Kaldalu N, Tenson T. Fluorescent reporters give new insights into antibiotics-induced nonsense and frameshift mistranslation. Sci Rep 2024; 14:6883. [PMID: 38519558 PMCID: PMC10959953 DOI: 10.1038/s41598-024-57597-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/20/2024] [Indexed: 03/25/2024] Open
Abstract
We developed a reporter system based on simultaneous expression of two fluorescent proteins: GFP as a reporter of the capacity of protein synthesis and mutated mScarlet-I as a reporter of translational errors. Because of the unique stop codons or frameshift mutations introduced into the mScarlet-I gene, red fluorescence was produced only after a mistranslation event. These reporters allowed us to estimate mistranslation at a single cell level using either flow cytometry or fluorescence microscopy. We found that laboratory strains of Escherichia coli are more prone to mistranslation compared to the clinical isolates. As relevant for uropathogenic E. coli, growth in human urine elevated translational frameshifting compared to standard laboratory media, whereas different standard media had a small effect on translational fidelity. Antibiotic-induced mistranslation was studied by using amikacin (aminoglycoside family) and azithromycin (macrolide family). Bactericidal amikacin induced preferably stop-codon readthrough at a moderate level. Bacteriostatic azithromycin on the other hand induced both frameshifting and stop-codon readthrough at much higher level. Single cell analysis revealed that fluorescent reporter-protein signal can be lost due to leakage from a fraction of bacteria in the presence of antibiotics, demonstrating the complexity of the antimicrobial activity.
Collapse
Affiliation(s)
- Mariliis Hinnu
- Institute of Technology, University of Tartu, 50411, Tartu, Estonia.
| | - Marta Putrinš
- Institute of Technology, University of Tartu, 50411, Tartu, Estonia
- Institute of Pharmacy, University of Tartu, 50411, Tartu, Estonia
| | - Karin Kogermann
- Institute of Pharmacy, University of Tartu, 50411, Tartu, Estonia
| | - Niilo Kaldalu
- Institute of Technology, University of Tartu, 50411, Tartu, Estonia
| | - Tanel Tenson
- Institute of Technology, University of Tartu, 50411, Tartu, Estonia
| |
Collapse
|
3
|
Seely SM, Parajuli NP, De Tarafder A, Ge X, Sanyal S, Gagnon MG. Molecular basis of the pleiotropic effects by the antibiotic amikacin on the ribosome. Nat Commun 2023; 14:4666. [PMID: 37537169 PMCID: PMC10400623 DOI: 10.1038/s41467-023-40416-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023] Open
Abstract
Aminoglycosides are a class of antibiotics that bind to ribosomal RNA and exert pleiotropic effects on ribosome function. Amikacin, the semisynthetic derivative of kanamycin, is commonly used for treating severe infections with multidrug-resistant, aerobic Gram-negative bacteria. Amikacin carries the 4-amino-2-hydroxy butyrate (AHB) moiety at the N1 amino group of the central 2-deoxystreptamine (2-DOS) ring, which may confer amikacin a unique ribosome inhibition profile. Here we use in vitro fast kinetics combined with X-ray crystallography and cryo-EM to dissect the mechanisms of ribosome inhibition by amikacin and the parent compound, kanamycin. Amikacin interferes with tRNA translocation, release factor-mediated peptidyl-tRNA hydrolysis, and ribosome recycling, traits attributed to the additional interactions amikacin makes with the decoding center. The binding site in the large ribosomal subunit proximal to the 3'-end of tRNA in the peptidyl (P) site lays the groundwork for rational design of amikacin derivatives with improved antibacterial properties.
Collapse
Affiliation(s)
- Savannah M Seely
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Narayan P Parajuli
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden
| | - Arindam De Tarafder
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden
| | - Xueliang Ge
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden.
| | - Matthieu G Gagnon
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
4
|
Antibiotic thermorubin tethers ribosomal subunits and impedes A-site interactions to perturb protein synthesis in bacteria. Nat Commun 2023; 14:918. [PMID: 36806263 PMCID: PMC9938272 DOI: 10.1038/s41467-023-36528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
Thermorubin (THB) is a long-known broad-spectrum ribosome-targeting antibiotic, but the molecular mechanism of its action was unclear. Here, our precise fast-kinetics assays in a reconstituted Escherichia coli translation system and 1.96 Å resolution cryo-EM structure of THB-bound 70S ribosome with mRNA and initiator tRNA, independently suggest that THB binding at the intersubunit bridge B2a near decoding center of the ribosome interferes with the binding of A-site substrates aminoacyl-tRNAs and class-I release factors, thereby inhibiting elongation and termination steps of bacterial translation. Furthermore, THB acts as an anti-dissociation agent that tethers the ribosomal subunits and blocks ribosome recycling, subsequently reducing the pool of active ribosomes. Our results show that THB does not inhibit translation initiation as proposed earlier and provide a complete mechanism of how THB perturbs bacterial protein synthesis. This in-depth characterization will hopefully spur efforts toward the design of THB analogs with improved solubility and effectivity against multidrug-resistant bacteria.
Collapse
|
5
|
Laughlin ZT, Conn GL. Tuberactinomycin antibiotics: Biosynthesis, anti-mycobacterial action, and mechanisms of resistance. Front Microbiol 2022; 13:961921. [PMID: 36033858 PMCID: PMC9403184 DOI: 10.3389/fmicb.2022.961921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
The tuberactinomycins are a family of cyclic peptide ribosome-targeting antibiotics with a long history of use as essential second-line treatments for drug-resistant tuberculosis. Beginning with the identification of viomycin in the early 1950s, this mini-review briefly describes tuberactinomycin structures and biosynthesis, as well as their past and present application in the treatment of tuberculosis caused by infection with Mycobacterium tuberculosis. More recent studies are also discussed that have revealed details of tuberactinomycin action on the ribosome as well as resistance mechanisms that have emerged since their introduction into the clinic. Finally, future applications of these drugs are considered in the context of their recent removal from the World Health Organization's List of Essential Medicines.
Collapse
Affiliation(s)
- Zane T Laughlin
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States.,Graduate Program in Biochemistry, Cell and Developmental Biology (BCDB), Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, United States
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States.,Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA, United States
| |
Collapse
|
6
|
Detection of biosynthetic genes of microbially-synthesized secondary metabolites in a contaminated tropical agricultural soil. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Parajuli NP, Mandava CS, Pavlov MY, Sanyal S. Mechanistic insights into translation inhibition by aminoglycoside antibiotic arbekacin. Nucleic Acids Res 2021; 49:6880-6892. [PMID: 34125898 PMCID: PMC8266624 DOI: 10.1093/nar/gkab495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
How aminoglycoside antibiotics limit bacterial growth and viability is not clearly understood. Here we employ fast kinetics to reveal the molecular mechanism of action of a clinically used, new-generation, semisynthetic aminoglycoside Arbekacin (ABK), which is designed to avoid enzyme-mediated deactivation common to other aminoglycosides. Our results portray complete picture of ABK inhibition of bacterial translation with precise quantitative characterizations. We find that ABK inhibits different steps of translation in nanomolar to micromolar concentrations by imparting pleotropic effects. ABK binding stalls elongating ribosomes to a state, which is unfavorable for EF-G binding. This prolongs individual translocation step from ∼50 ms to at least 2 s; the mean time of translocation increases inversely with EF-G concentration. ABK also inhibits translation termination by obstructing RF1/RF2 binding to the ribosome. Furthermore, ABK decreases accuracy of mRNA decoding (UUC vs. CUC) by ∼80 000 fold, causing aberrant protein production. Importantly, translocation and termination events cannot be completely stopped even with high ABK concentration. Extrapolating our kinetic model of ABK action, we postulate that aminoglycosides impose bacteriostatic effect mainly by inhibiting translocation, while they become bactericidal in combination with decoding errors.
Collapse
Affiliation(s)
- Narayan Prasad Parajuli
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124 Uppsala, Sweden
| | - Chandra Sekhar Mandava
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124 Uppsala, Sweden
| | - Michael Y Pavlov
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124 Uppsala, Sweden
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124 Uppsala, Sweden
| |
Collapse
|
8
|
De Tarafder A, Parajuli NP, Majumdar S, Kaçar B, Sanyal S. Kinetic Analysis Suggests Evolution of Ribosome Specificity in Modern Elongation Factor-Tus from "Generalist" Ancestors. Mol Biol Evol 2021; 38:3436-3444. [PMID: 33871630 PMCID: PMC8321524 DOI: 10.1093/molbev/msab114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
It has been hypothesized that early enzymes are more promiscuous than their extant orthologs. Whether or not this hypothesis applies to the translation machinery, the oldest molecular machine of life, is not known. Efficient protein synthesis relies on a cascade of specific interactions between the ribosome and the translation factors. Here, using elongation factor-Tu (EF-Tu) as a model system, we have explored the evolution of ribosome specificity in translation factors. Employing presteady state fast kinetics using quench flow, we have quantitatively characterized the specificity of two sequence-reconstructed 1.3- to 3.3-Gy-old ancestral EF-Tus toward two unrelated bacterial ribosomes, mesophilic Escherichia coli and thermophilic Thermus thermophilus. Although the modern EF-Tus show clear preference for their respective ribosomes, the ancestral EF-Tus show similar specificity for diverse ribosomes. In addition, despite increase in the catalytic activity with temperature, the ribosome specificity of the thermophilic EF-Tus remains virtually unchanged. Our kinetic analysis thus suggests that EF-Tu proteins likely evolved from the catalytically promiscuous, “generalist” ancestors. Furthermore, compatibility of diverse ribosomes with the modern and ancestral EF-Tus suggests that the ribosomal core probably evolved before the diversification of the EF-Tus. This study thus provides important insights regarding the evolution of modern translation machinery.
Collapse
Affiliation(s)
- Arindam De Tarafder
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | | | - Soneya Majumdar
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Betül Kaçar
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA.,Lunar and Planetary Laboratory and Steward Observatory University of Arizona, Tucson, AZ, USA
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Rabe P, Beale JH, Butryn A, Aller P, Dirr A, Lang PA, Axford DN, Carr SB, Leissing TM, McDonough MA, Davy B, Ebrahim A, Orlans J, Storm SLS, Orville AM, Schofield CJ, Owen RL. Anaerobic fixed-target serial crystallography. IUCRJ 2020; 7:901-912. [PMID: 32939282 PMCID: PMC7467159 DOI: 10.1107/s2052252520010374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/27/2020] [Indexed: 05/04/2023]
Abstract
Cryogenic X-ray diffraction is a powerful tool for crystallographic studies on enzymes including oxygenases and oxidases. Amongst the benefits that cryo-conditions (usually employing a nitro-gen cryo-stream at 100 K) enable, is data collection of di-oxy-gen-sensitive samples. Although not strictly anaerobic, at low temperatures the vitreous ice conditions severely restrict O2 diffusion into and/or through the protein crystal. Cryo-conditions limit chemical reactivity, including reactions that require significant conformational changes. By contrast, data collection at room temperature imposes fewer restrictions on diffusion and reactivity; room-temperature serial methods are thus becoming common at synchrotrons and XFELs. However, maintaining an anaerobic environment for di-oxy-gen-dependent enzymes has not been explored for serial room-temperature data collection at synchrotron light sources. This work describes a methodology that employs an adaptation of the 'sheet-on-sheet' sample mount, which is suitable for the low-dose room-temperature data collection of anaerobic samples at synchrotron light sources. The method is characterized by easy sample preparation in an anaerobic glovebox, gentle handling of crystals, low sample consumption and preservation of a localized anaerobic environment over the timescale of the experiment (<5 min). The utility of the method is highlighted by studies with three X-ray-radiation-sensitive Fe(II)-containing model enzymes: the 2-oxoglutarate-dependent l-arginine hy-droxy-lase VioC and the DNA repair enzyme AlkB, as well as the oxidase isopenicillin N synthase (IPNS), which is involved in the biosynthesis of all penicillin and cephalosporin antibiotics.
Collapse
Affiliation(s)
- Patrick Rabe
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - John H. Beale
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Agata Butryn
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Pierre Aller
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Anna Dirr
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Pauline A. Lang
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Danny N. Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Stephen B. Carr
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot Oxfordshire OX11 0FA, United Kingdom
| | - Thomas M. Leissing
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Michael A. McDonough
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Bradley Davy
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Ali Ebrahim
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom
| | - Julien Orlans
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
- UMR0203, Biologie Fonctionnelle, Insectes et Interactions, Institut National des Sciences Appliquées de Lyon, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, University of Lyon, Villeurbanne F-69621, France
| | - Selina L. S. Storm
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Allen M. Orville
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Christopher J. Schofield
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Robin L. Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| |
Collapse
|