1
|
Chinta S, Pluta SR. Whisking and locomotion are jointly represented in superior colliculus neurons. PLoS Biol 2025; 23:e3003087. [PMID: 40193391 PMCID: PMC12005515 DOI: 10.1371/journal.pbio.3003087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/17/2025] [Accepted: 02/27/2025] [Indexed: 04/09/2025] Open
Abstract
Active sensation requires the brain to interpret external stimuli against an ongoing estimate of body position. While internal estimates of body position are often ascribed to the cerebral cortex, we examined the midbrain superior colliculus (SC), due to its close relationship with the sensory periphery as well as higher, motor-related brain regions. Using high-density electrophysiology and movement tracking, we discovered that the on-going kinematics of whisker motion and locomotion speed accurately predict the firing rate of mouse SC neurons. Neural activity was best predicted by movements occurring either in the past, present, or future, indicating that the SC population continuously estimates a trajectory of self-motion. A combined representation of slow and fast whisking features predicted absolute whisker angle at high temporal resolution. Sensory reafference played at least a partial role in shaping this feature tuning. Taken together, these data indicate that the SC contains a joint representation of whisking and locomotor features that is potentially useful in guiding complex orienting movements involving the face and limbs.
Collapse
Affiliation(s)
- Suma Chinta
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Scott R. Pluta
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
2
|
Chu YW, Chinta S, Keri HVS, Beri S, Pluta SR. Stimulus selection enhances value-modulated somatosensory processing in the superior colliculus. PLoS Biol 2025; 23:e3003057. [PMID: 40163544 DOI: 10.1371/journal.pbio.3003057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 04/08/2025] [Accepted: 02/07/2025] [Indexed: 04/02/2025] Open
Abstract
A fundamental trait of intelligent behavior is the ability to respond selectively to stimuli with higher value. Where along the neural hierarchy does somatosensory processing transition from a map of stimulus location to a map of stimulus value? To address this question, we recorded single-unit activity from populations of neurons in somatosensory cortex (S1) and midbrain superior colliculus (SC) in mice conditioned to respond to a positive-valued stimulus and withhold responses to an adjacent, negative-valued stimulus. The stimulus preference of the S1 population was equally weighted towards either stimulus, in line with a somatotopic map. Surprisingly, we discovered a large population of SC neurons that were disproportionately biased towards the positive stimulus. This disproportionate bias was largely driven by enhanced spike suppression for the negative stimulus. Removing the opportunity for mice to behaviorally select the positive stimulus reduced positive stimulus bias and spontaneous firing rates in SC but not S1, suggesting that neural selectivity was augmented by task readiness. Similarly, the spontaneous firing rates of SC but not S1 neurons predicted reaction times, suggesting that SC neurons played a persistent role in perceptual decision-making. Taken together, these data indicate that the somatotopic map in S1 is transformed into a value-based map in SC that encodes stimulus priority.
Collapse
Affiliation(s)
- Yun Wen Chu
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Suma Chinta
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Hayagreev V S Keri
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Shreya Beri
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Scott R Pluta
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
3
|
Saxena R, McNaughton BL. Bridging Neuroscience and AI: Environmental Enrichment as a model for forward knowledge transfer in continual learning. ARXIV 2025:arXiv:2405.07295v3. [PMID: 38947919 PMCID: PMC11213130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Continual learning (CL) refers to an agent's capability to learn from a continuous stream of data and transfer knowledge without forgetting old information. One crucial aspect of CL is forward transfer, i.e., improved and faster learning on a new task by leveraging information from prior knowledge. While this ability comes naturally to biological brains, it poses a significant challenge for artificial intelligence (AI). Here, we suggest that environmental enrichment (EE) can be used as a biological model for studying forward transfer, inspiring human-like AI development. EE refers to animal studies that enhance cognitive, social, motor, and sensory stimulation and is a model for what, in humans, is referred to as 'cognitive reserve'. Enriched animals show significant improvement in learning speed and performance on new tasks, typically exhibiting forward transfer. We explore anatomical, molecular, and neuronal changes post-EE and discuss how artificial neural networks (ANNs) can be used to predict neural computation changes after enriched experiences. Finally, we provide a synergistic way of combining neuroscience and AI research that paves the path toward developing AI capable of rapid and efficient new task learning.
Collapse
Affiliation(s)
- Rajat Saxena
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Bruce L McNaughton
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4 Canada
| |
Collapse
|
4
|
Wang HC, Feldman DE. Degraded tactile coding in the Cntnap2 mouse model of autism. Cell Rep 2024; 43:114612. [PMID: 39110592 PMCID: PMC11396660 DOI: 10.1016/j.celrep.2024.114612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Atypical sensory processing is common in autism, but how neural coding is disrupted in sensory cortex is unclear. We evaluate whisker touch coding in L2/3 of somatosensory cortex (S1) in Cntnap2-/- mice, which have reduced inhibition. This classically predicts excess pyramidal cell spiking, but this remains controversial, and other deficits may dominate. We find that c-fos expression is elevated in S1 of Cntnap2-/- mice under spontaneous activity conditions but is comparable to that of control mice after whisker stimulation, suggesting normal sensory-evoked spike rates. GCaMP8m imaging from L2/3 pyramidal cells shows no excess whisker responsiveness, but it does show multiple signs of degraded somatotopic coding. This includes broadened whisker-tuning curves, a blurred whisker map, and blunted whisker point representations. These disruptions are greater in noisy than in sparse sensory conditions. Tuning instability across days is also substantially elevated in Cntnap2-/-. Thus, Cntnap2-/- mice show no excess sensory-evoked activity, but a degraded and unstable tactile code in S1.
Collapse
Affiliation(s)
- Han Chin Wang
- Department of Molecular & Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniel E Feldman
- Department of Molecular & Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
5
|
Wang HC, Feldman DE. Degraded tactile coding in the Cntnap2 mouse model of autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560240. [PMID: 37808857 PMCID: PMC10557772 DOI: 10.1101/2023.09.29.560240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Atypical sensory processing in autism involves altered neural circuit function and neural coding in sensory cortex, but the nature of coding disruption is poorly understood. We characterized neural coding in L2/3 of whisker somatosensory cortex (S1) of Cntnap2-/- mice, an autism model with pronounced hypofunction of parvalbumin (PV) inhibitory circuits. We tested for both excess spiking, which is often hypothesized in autism models with reduced inhibition, and alterations in somatotopic coding, using c-fos immunostaining and 2-photon calcium imaging in awake mice. In Cntnap2-/- mice, c-fos-(+) neuron density was elevated in L2/3 of S1 under spontaneous activity conditions, but comparable to control mice after whisker stimulation, suggesting that sensory-evoked spiking was relatively normal. 2-photon GCaMP8m imaging in L2/3 pyramidal cells revealed no increase in whisker-evoked response magnitude, but instead showed multiple signs of degraded somatotopic coding. These included broadening of whisker tuning curves, blurring of the whisker map, and blunting of the point representation of each whisker. These altered properties were more pronounced in noisy than sparse sensory conditions. Tuning instability, assessed over 2-3 weeks of longitudinal imaging, was also significantly increased in Cntnap2-/- mice. Thus, Cntnap2-/- mice show no excess spiking, but a degraded and unstable tactile code in S1.
Collapse
Affiliation(s)
- Han Chin Wang
- Department of Molecular & Cell Biology, and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720, USA
| | - Daniel E. Feldman
- Department of Molecular & Cell Biology, and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
6
|
Jost-Mousseau T, Chalabi M, Shulz DE, Férézou I. Imaging the brain in action: a motorized optical rotary joint for wide field fibroscopy in freely moving animals. NEUROPHOTONICS 2023; 10:015009. [PMID: 36970016 PMCID: PMC10037343 DOI: 10.1117/1.nph.10.1.015009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
SIGNIFICANCE The study of neuronal processes governing behavior in awake behaving mice is constantly boosted by the development of technological strategies, such as miniaturized microscopes and closed-loop virtual reality systems. However, the former limits the quality of recorded signals due to constrains in size and weight and the latter suffers from the restriction of the movement repertoire of the animal, therefore, hardly reproducing the complexity of natural multisensory scenes. AIM Another strategy that takes advantage of both approaches consists of the use of a fiber-bundle interface to carry optical signals from a moving animal to a conventional imaging system. However, as the bundle is usually fixed below the optics, its torsion resulting from rotations of the animal inevitably constrains the behavior over long recordings. Our aim was to overcome this major limitation of fibroscopic imaging. APPROACH We developed a motorized optical rotary joint controlled by an inertial measurement unit at the animal's head. RESULTS We show its principle of operation, demonstrate its efficacy in a locomotion task, and propose several modes of operation for a wide range of experimental designs. CONCLUSIONS Combined with an optical rotary joint, fibroscopic approaches represent an outstanding tool to link neuronal activity with behavior in mice at the millisecond timescale.
Collapse
Affiliation(s)
- Timothé Jost-Mousseau
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Institut des Neurosciences Paris-Saclay (NeuroPSI), Saclay, France
| | - Max Chalabi
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Institut des Neurosciences Paris-Saclay (NeuroPSI), Saclay, France
| | - Daniel E. Shulz
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Institut des Neurosciences Paris-Saclay (NeuroPSI), Saclay, France
| | - Isabelle Férézou
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Institut des Neurosciences Paris-Saclay (NeuroPSI), Saclay, France
| |
Collapse
|
7
|
Tuning instability of non-columnar neurons in the salt-and-pepper whisker map in somatosensory cortex. Nat Commun 2022; 13:6611. [PMID: 36329010 PMCID: PMC9633707 DOI: 10.1038/s41467-022-34261-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Rodent sensory cortex contains salt-and-pepper maps of sensory features, whose structure is not fully known. Here we investigated the structure of the salt-and-pepper whisker somatotopic map among L2/3 pyramidal neurons in somatosensory cortex, in awake mice performing one-vs-all whisker discrimination. Neurons tuned for columnar (CW) and non-columnar (non-CW) whiskers were spatially intermixed, with co-tuned neurons forming local (20 µm) clusters. Whisker tuning was markedly unstable in expert mice, with 35-46% of pyramidal cells significantly shifting tuning over 5-18 days. Tuning instability was highly concentrated in non-CW tuned neurons, and thus was structured in the map. Instability of non-CW neurons was unchanged during chronic whisker paralysis and when mice discriminated individual whiskers, suggesting it is an inherent feature. Thus, L2/3 combines two distinct components: a stable columnar framework of CW-tuned cells that may promote spatial perceptual stability, plus an intermixed, non-columnar surround with highly unstable tuning.
Collapse
|
8
|
Manno FA, An Z, Kumar R, Su AJ, Liu J, Wu EX, He J, Feng Y, Lau C. Environmental enrichment leads to behavioral circadian shifts enhancing brain-wide functional connectivity between sensory cortices and eliciting increased hippocampal spiking. Neuroimage 2022; 252:119016. [DOI: 10.1016/j.neuroimage.2022.119016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/30/2021] [Accepted: 02/17/2022] [Indexed: 11/27/2022] Open
|
9
|
Experience-dependent plasticity in early stations of sensory processing in mature brains: effects of environmental enrichment on dendrite measures in trigeminal nuclei. Brain Struct Funct 2021; 227:865-879. [PMID: 34807302 PMCID: PMC8930882 DOI: 10.1007/s00429-021-02424-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 11/07/2021] [Indexed: 11/21/2022]
Abstract
Nervous systems respond with structural changes to environmental changes even in adulthood. In recent years, experience-dependent structural plasticity was shown not to be restricted to the cerebral cortex, as it also occurs at subcortical and even peripheral levels. We have previously shown that two populations of trigeminal nuclei neurons, trigeminothalamic barrelette neurons of the principal nucleus (Pr5), and intersubnuclear neurons in the caudal division of the spinal trigeminal nucleus (Sp5C) that project to Pr5 underwent morphometric and topological changes in their dendritic trees after a prolonged total or partial loss of afferent input from the vibrissae. Here we examined whether and what structural alterations could be elicited in the dendritic trees of the same cell populations in young adult rats after being exposed for 2 months to an enriched environment (EE), and how these changes evolved when animals were returned to standard housing for an additional 2 months. Neurons were retrogradely labeled with BDA delivered to, respectively, the ventral posteromedial thalamic nucleus or Pr5. Fully labeled cells were digitally reconstructed with Neurolucida and analyzed with NeuroExplorer. EE gave rise to increases in dendritic length, number of trees and branching nodes, spatial expansion of the trees, and dendritic spines, which were less pronounced in Sp5C than in Pr5 and differed between sides. In Pr5, these parameters returned, but only partially, to control values after EE withdrawal. These results underscore a ubiquity of experience-dependent changes that should not be overlooked when interpreting neuroplasticity and developing plasticity-based therapeutic strategies.
Collapse
|
10
|
Environmental Enrichment Sharpens Sensory Acuity by Enhancing Information Coding in Barrel Cortex and Premotor Cortex. eNeuro 2021; 8:ENEURO.0309-20.2021. [PMID: 33893166 PMCID: PMC8143018 DOI: 10.1523/eneuro.0309-20.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/20/2022] Open
Abstract
Environmental enrichment (EE) is beneficial to sensory functions. Thus, elucidating the neural mechanism underlying improvement of sensory stimulus discrimination is important for developing therapeutic strategies. We aim to advance the understanding of such neural mechanism. We found that tactile enrichment improved tactile stimulus feature discrimination. The neural correlate of such improvement was revealed by analyzing single-cell information coding in both the primary somatosensory cortex and the premotor cortex of awake behaving animals. Our results show that EE enhances the decision-information coding capacity of cells that are tuned to adjacent whiskers, and of premotor cortical cells.
Collapse
|
11
|
Miyamoto D, Marshall W, Tononi G, Cirelli C. Net decrease in spine-surface GluA1-containing AMPA receptors after post-learning sleep in the adult mouse cortex. Nat Commun 2021; 12:2881. [PMID: 34001888 PMCID: PMC8129120 DOI: 10.1038/s41467-021-23156-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/12/2021] [Indexed: 02/03/2023] Open
Abstract
The mechanisms by which sleep benefits learning and memory remain unclear. Sleep may further strengthen the synapses potentiated by learning or promote broad synaptic weakening while protecting the newly potentiated synapses. We tested these ideas by combining a motor task whose consolidation is sleep-dependent, a marker of synaptic AMPA receptor plasticity, and repeated two-photon imaging to track hundreds of spines in vivo with single spine resolution. In mouse motor cortex, sleep leads to an overall net decrease in spine-surface GluA1-containing AMPA receptors, both before and after learning. Molecular changes in single spines during post-learning sleep are correlated with changes in performance after sleep. The spines in which learning leads to the largest increase in GluA1 expression have a relative advantage after post-learning sleep compared to sleep deprivation, because sleep weakens all remaining spines. These results are obtained in adult mice, showing that sleep-dependent synaptic down-selection also benefits the mature brain.
Collapse
Affiliation(s)
- Daisuke Miyamoto
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
- University of Toyama, Toyama, Japan
| | - William Marshall
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Mathematics and Statistics, Brock University, St. Catharines, ON, Canada
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA.
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
12
|
Kim J, Erskine A, Cheung JA, Hires SA. Behavioral and Neural Bases of Tactile Shape Discrimination Learning in Head-Fixed Mice. Neuron 2020; 108:953-967.e8. [PMID: 33002411 DOI: 10.1016/j.neuron.2020.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/31/2020] [Accepted: 09/08/2020] [Indexed: 11/29/2022]
Abstract
Tactile shape recognition requires the perception of object surface angles. We investigate how neural representations of object angles are constructed from sensory input and how they reorganize across learning. Head-fixed mice learned to discriminate object angles by active exploration with one whisker. Calcium imaging of layers 2-4 of the barrel cortex revealed maps of object-angle tuning before and after learning. Three-dimensional whisker tracking demonstrated that the sensory input components that best discriminate angles (vertical bending and slide distance) also have the greatest influence on object-angle tuning. Despite the high turnover in active ensemble membership across learning, the population distribution of object-angle tuning preferences remained stable. Angle tuning sharpened, but only in neurons that preferred trained angles. This was correlated with a selective increase in the influence of the most task-relevant sensory component on object-angle tuning. These results show how discrimination training enhances stimulus selectivity in the primary somatosensory cortex while maintaining perceptual stability.
Collapse
Affiliation(s)
- Jinho Kim
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew Erskine
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jonathan Andrew Cheung
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Samuel Andrew Hires
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
13
|
Bowen Z, Winkowski DE, Kanold PO. Functional organization of mouse primary auditory cortex in adult C57BL/6 and F1 (CBAxC57) mice. Sci Rep 2020; 10:10905. [PMID: 32616766 PMCID: PMC7331716 DOI: 10.1038/s41598-020-67819-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/15/2020] [Indexed: 12/05/2022] Open
Abstract
The primary auditory cortex (A1) plays a key role for sound perception since it represents one of the first cortical processing stations for sounds. Recent studies have shown that on the cellular level the frequency organization of A1 is more heterogeneous than previously appreciated. However, many of these studies were performed in mice on the C57BL/6 background which develop high frequency hearing loss with age making them a less optimal choice for auditory research. In contrast, mice on the CBA background retain better hearing sensitivity in old age. Since potential strain differences could exist in A1 organization between strains, we performed comparative analysis of neuronal populations in A1 of adult (~ 10 weeks) C57BL/6 mice and F1 (CBAxC57) mice. We used in vivo 2-photon imaging of pyramidal neurons in cortical layers L4 and L2/3 of awake mouse primary auditory cortex (A1) to characterize the populations of neurons that were active to tonal stimuli. Pure tones recruited neurons of widely ranging frequency preference in both layers and strains with neurons in F1 (CBAxC57) mice exhibiting a wider range of frequency preference particularly to higher frequencies. Frequency selectivity was slightly higher in C57BL/6 mice while neurons in F1 (CBAxC57) mice showed a greater sound-level sensitivity. The spatial heterogeneity of frequency preference was present in both strains with F1 (CBAxC57) mice exhibiting higher tuning diversity across all measured length scales. Our results demonstrate that the tone evoked responses and frequency representation in A1 of adult C57BL/6 and F1 (CBAxC57) mice are largely similar.
Collapse
Affiliation(s)
- Zac Bowen
- Department of Biology, University of Maryland, 1116 Biosciences Res. Bldg., College Park, MD, 20742, USA
| | - Daniel E Winkowski
- Department of Biology, University of Maryland, 1116 Biosciences Res. Bldg., College Park, MD, 20742, USA
| | - Patrick O Kanold
- Department of Biology, University of Maryland, 1116 Biosciences Res. Bldg., College Park, MD, 20742, USA.
| |
Collapse
|
14
|
Cirelli C, Tononi G. Effects of sleep and waking on the synaptic ultrastructure. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190235. [PMID: 32248785 PMCID: PMC7209920 DOI: 10.1098/rstb.2019.0235] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We summarize here several studies performed in our laboratory, mainly using serial block-face scanning electron microscopy (SBEM), to assess how sleep, spontaneous waking and short sleep deprivation affect the size and number of synapses in the cerebral cortex and hippocampus. With SBEM, we reconstructed thousands of cortical and hippocampal excitatory, axospinous synapses and compared the distribution of their size after several hours of sleep relative to several hours of waking. Because stronger synapses are on average also bigger, the goal was to test a prediction of the synaptic homeostasis hypothesis, according to which overall synaptic strength increases during waking, owing to ongoing learning, and needs to be renormalized during sleep, to avoid saturation and to benefit memory consolidation and integration. Consistent with this hypothesis, we found that the size of the axon–spine interface (ASI), a morphological measure of synaptic strength, was on average smaller after sleep, but with interesting differences between primary cortex and the CA1 region of the hippocampus. In two-week-old mouse pups, the decline in ASI size after sleep was larger, and affected more cortical synapses, compared with one-month-old adolescent mice, suggesting that synaptic renormalization during sleep may be especially important during early development. This work is still in progress and other brain areas need to be tested after sleep, acute sleep loss and chronic sleep restriction. Still, the current results show that a few hours of sleep or waking lead to significant changes in synaptic morphology that can be linked to changes in synaptic efficacy. This article is part of the Theo Murphy meeting issue ‘Memory reactivation: replaying events past, present and future’.
Collapse
Affiliation(s)
- Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719, USA
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719, USA
| |
Collapse
|