1
|
Elsheikh A, Driggers CM, Truong HH, Yang Z, Allen J, Henriksen NM, Walczewska-Szewc K, Shyng SL. AI-based discovery and cryoEM structural elucidation of a K ATP channel pharmacochaperone. eLife 2025; 13:RP103159. [PMID: 40135739 PMCID: PMC11942174 DOI: 10.7554/elife.103159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025] Open
Abstract
Pancreatic KATP channel trafficking defects underlie congenital hyperinsulinism (CHI) cases unresponsive to the KATP channel opener diazoxide, the mainstay medical therapy for CHI. Current clinically used KATP channel inhibitors have been shown to act as pharmacochaperones and restore surface expression of trafficking mutants; however, their therapeutic utility for KATP trafficking-impaired CHI is hindered by high affinity binding, which limits functional recovery of rescued channels. Recent structural studies of KATP channels employing cryo-electron microscopy (cryoEM) have revealed a promiscuous pocket where several known KATP pharmacochaperones bind. The structural knowledge provides a framework for discovering KATP channel pharmacochaperones with desired reversible inhibitory effects to permit functional recovery of rescued channels. Using an AI-based virtual screening technology AtomNet followed by functional validation, we identified a novel compound, termed Aekatperone, which exhibits chaperoning effects on KATP channel trafficking mutations. Aekatperone reversibly inhibits KATP channel activity with a half-maximal inhibitory concentration (IC50) ~9 μM. Mutant channels rescued to the cell surface by Aekatperone showed functional recovery upon washout of the compound. CryoEM structure of KATP bound to Aekatperone revealed distinct binding features compared to known high affinity inhibitor pharmacochaperones. Our findings unveil a KATP pharmacochaperone enabling functional recovery of rescued channels as a promising therapeutic for CHI caused by KATP trafficking defects.
Collapse
Affiliation(s)
- Assmaa Elsheikh
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science UniversityPortlandUnited States
- Department of Medical Biochemistry, College of Medicine, Tanta UniversityTantaEgypt
| | - Camden M Driggers
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science UniversityPortlandUnited States
| | | | - Zhongying Yang
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science UniversityPortlandUnited States
| | - John Allen
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science UniversityPortlandUnited States
| | | | - Katarzyna Walczewska-Szewc
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in ToruńToruńPoland
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science UniversityPortlandUnited States
| |
Collapse
|
2
|
ElSheikh A, Driggers CM, Truong HH, Yang Z, Allen J, Henriksen N, Walczewska-Szewc K, Shyng SL. AI-Based Discovery and CryoEM Structural Elucidation of a K ATP Channel Pharmacochaperone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.05.611490. [PMID: 39282384 PMCID: PMC11398524 DOI: 10.1101/2024.09.05.611490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Pancreatic KATP channel trafficking defects underlie congenital hyperinsulinism (CHI) cases unresponsive to the KATP channel opener diazoxide, the mainstay medical therapy for CHI. Current clinically used KATP channel inhibitors have been shown to act as pharmacochaperones and restore surface expression of trafficking mutants; however, their therapeutic utility for KATP trafficking impaired CHI is hindered by high-affinity binding, which limits functional recovery of rescued channels. Recent structural studies of KATP channels employing cryo-electron microscopy (cryoEM) have revealed a promiscuous pocket where several known KATP pharmacochaperones bind. The structural knowledge provides a framework for discovering KATP channel pharmacochaperones with desired reversible inhibitory effects to permit functional recovery of rescued channels. Using an AI-based virtual screening technology AtomNet® followed by functional validation, we identified a novel compound, termed Aekatperone, which exhibits chaperoning effects on KATP channel trafficking mutations. Aekatperone reversibly inhibits KATP channel activity with a half-maximal inhibitory concentration (IC50) ~ 9 μM. Mutant channels rescued to the cell surface by Aekatperone showed functional recovery upon washout of the compound. CryoEM structure of KATP bound to Aekatperone revealed distinct binding features compared to known high affinity inhibitor pharmacochaperones. Our findings unveil a KATP pharmacochaperone enabling functional recovery of rescued channels as a promising therapeutic for CHI caused by KATP trafficking defects.
Collapse
Affiliation(s)
- Assmaa ElSheikh
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Medical Biochemistry, College of Medicine, Tanta University, Tanta, Egypt
| | - Camden M. Driggers
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ha H. Truong
- Atomwise Inc., 250 Sutter St., Suite 650, San Francisco, CA, USA
| | - Zhongying Yang
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - John Allen
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Niel Henriksen
- Atomwise Inc., 250 Sutter St., Suite 650, San Francisco, CA, USA
| | - Katarzyna Walczewska-Szewc
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudziądzka 5, 87-100 Toruń, Poland
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
3
|
Berner B, Daoutsali G, Melén E, Remper N, Weszelovszká E, Rothnie A, Hedfalk K. Successful strategies for expression and purification of ABC transporters. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184401. [PMID: 39537006 DOI: 10.1016/j.bbamem.2024.184401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ATP-binding cassette (ABC) transporters are proteins responsible for active transport of various compounds, from small ions to macromolecules, across membranes. Proteins from this superfamily also pump drugs out of the cell resulting in multidrug resistance. Based on the cellular functions of ABC-transporters they are commonly associated with diseases like cancer and cystic fibrosis. To understand the molecular mechanism of this critical family of integral membrane proteins, structural characterization is a powerful tool which in turn requires successful recombinant production of stable and functional protein in good yields. In this review we have used high resolution structures of ABC transporters as a measure of successful protein production and summarized strategies for prokaryotic and eukaryotic proteins, respectively. In general, Escherichia coli is the most frequently used host for production of prokaryotic ABC transporters while human embryonic kidney 293 (HEK293) cells are the preferred host system for eukaryotic proteins. Independent of origin, at least two-steps of purification were required after solubilization in the most used detergent DDM. The purification tag was frequently cleaved off before structural characterization using cryogenic electron microscopy, or crystallization and X-ray analysis for prokaryotic proteins.
Collapse
Affiliation(s)
- Bea Berner
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Georgia Daoutsali
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Emilia Melén
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Natália Remper
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Emma Weszelovszká
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Alice Rothnie
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - Kristina Hedfalk
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden.
| |
Collapse
|
4
|
Patton BL, Zhu P, ElSheikh A, Driggers CM, Shyng SL. Dynamic duo: Kir6 and SUR in K ATP channel structure and function. Channels (Austin) 2024; 18:2327708. [PMID: 38489043 PMCID: PMC10950283 DOI: 10.1080/19336950.2024.2327708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/14/2024] [Indexed: 03/17/2024] Open
Abstract
KATP channels are ligand-gated potassium channels that couple cellular energetics with membrane potential to regulate cell activity. Each channel is an eight subunit complex comprising four central pore-forming Kir6 inward rectifier potassium channel subunits surrounded by four regulatory subunits known as the sulfonylurea receptor, SUR, which confer homeostatic metabolic control of KATP gating. SUR is an ATP binding cassette (ABC) protein family homolog that lacks membrane transport activity but is essential for KATP expression and function. For more than four decades, understanding the structure-function relationship of Kir6 and SUR has remained a central objective of clinical significance. Here, we review progress in correlating the wealth of functional data in the literature with recent KATP cryoEM structures.
Collapse
Affiliation(s)
- Bruce L. Patton
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Phillip Zhu
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Assmaa ElSheikh
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, USA
- Department of Medical Biochemistry, Tanta University, Tanta, Egypt
| | - Camden M. Driggers
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
5
|
Vedovato N, Salguero MV, Greeley SAW, Yu CH, Philipson LH, Ashcroft FM. A loss-of-function mutation in KCNJ11 causing sulfonylurea-sensitive diabetes in early adult life. Diabetologia 2024; 67:940-951. [PMID: 38366195 PMCID: PMC10954967 DOI: 10.1007/s00125-024-06103-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/28/2023] [Indexed: 02/18/2024]
Abstract
AIMS/HYPOTHESIS The ATP-sensitive potassium (KATP) channel couples beta cell electrical activity to glucose-stimulated insulin secretion. Loss-of-function mutations in either the pore-forming (inwardly rectifying potassium channel 6.2 [Kir6.2], encoded by KCNJ11) or regulatory (sulfonylurea receptor 1, encoded by ABCC8) subunits result in congenital hyperinsulinism, whereas gain-of-function mutations cause neonatal diabetes. Here, we report a novel loss-of-function mutation (Ser118Leu) in the pore helix of Kir6.2 paradoxically associated with sulfonylurea-sensitive diabetes that presents in early adult life. METHODS A 31-year-old woman was diagnosed with mild hyperglycaemia during an employee screen. After three pregnancies, during which she was diagnosed with gestational diabetes, the patient continued to show elevated blood glucose and was treated with glibenclamide (known as glyburide in the USA and Canada) and metformin. Genetic testing identified a heterozygous mutation (S118L) in the KCNJ11 gene. Neither parent was known to have diabetes. We investigated the functional properties and membrane trafficking of mutant and wild-type KATP channels in Xenopus oocytes and in HEK-293T cells, using patch-clamp, two-electrode voltage-clamp and surface expression assays. RESULTS Functional analysis showed no changes in the ATP sensitivity or metabolic regulation of the mutant channel. However, the Kir6.2-S118L mutation impaired surface expression of the KATP channel by 40%, categorising this as a loss-of-function mutation. CONCLUSIONS/INTERPRETATION Our data support the increasing evidence that individuals with mild loss-of-function KATP channel mutations may develop insulin deficiency in early adulthood and even frank diabetes in middle age. In this case, the patient may have had hyperinsulinism that escaped detection in early life. Our results support the importance of functional analysis of KATP channel mutations in cases of atypical diabetes.
Collapse
Affiliation(s)
- Natascia Vedovato
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, UK
| | - Maria V Salguero
- Departments of Medicine and Pediatrics, Section of Endocrinology Diabetes and Metabolism, University of Chicago, Chicago, IL, USA
| | - Siri Atma W Greeley
- Departments of Medicine and Pediatrics, Section of Endocrinology Diabetes and Metabolism, University of Chicago, Chicago, IL, USA
| | - Christine H Yu
- Division of Endocrinology, Department of Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Louis H Philipson
- Departments of Medicine and Pediatrics, Section of Endocrinology Diabetes and Metabolism, University of Chicago, Chicago, IL, USA
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, UK.
| |
Collapse
|
6
|
Driggers CM, Kuo YY, Zhu P, ElSheikh A, Shyng SL. Structure of an open K ATP channel reveals tandem PIP 2 binding sites mediating the Kir6.2 and SUR1 regulatory interface. Nat Commun 2024; 15:2502. [PMID: 38509107 PMCID: PMC10954709 DOI: 10.1038/s41467-024-46751-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
ATP-sensitive potassium (KATP) channels, composed of four pore-lining Kir6.2 subunits and four regulatory sulfonylurea receptor 1 (SUR1) subunits, control insulin secretion in pancreatic β-cells. KATP channel opening is stimulated by PIP2 and inhibited by ATP. Mutations that increase channel opening by PIP2 reduce ATP inhibition and cause neonatal diabetes. Although considerable evidence has implicated a role for PIP2 in KATP channel function, previously solved open-channel structures have lacked bound PIP2, and mechanisms by which PIP2 regulates KATP channels remain unresolved. Here, we report the cryoEM structure of a KATP channel harboring the neonatal diabetes mutation Kir6.2-Q52R, in the open conformation, bound to amphipathic molecules consistent with natural C18:0/C20:4 long-chain PI(4,5)P2 at two adjacent binding sites between SUR1 and Kir6.2. The canonical PIP2 binding site is conserved among PIP2-gated Kir channels. The non-canonical PIP2 binding site forms at the interface of Kir6.2 and SUR1. Functional studies demonstrate both binding sites determine channel activity. Kir6.2 pore opening is associated with a twist of the Kir6.2 cytoplasmic domain and a rotation of the N-terminal transmembrane domain of SUR1, which widens the inhibitory ATP binding pocket to disfavor ATP binding. The open conformation is particularly stabilized by the Kir6.2-Q52R residue through cation-π bonding with SUR1-W51. Together, these results uncover the cooperation between SUR1 and Kir6.2 in PIP2 binding and gating, explain the antagonistic regulation of KATP channels by PIP2 and ATP, and provide a putative mechanism by which Kir6.2-Q52R stabilizes an open channel to cause neonatal diabetes.
Collapse
Affiliation(s)
- Camden M Driggers
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA.
| | - Yi-Ying Kuo
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Phillip Zhu
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Assmaa ElSheikh
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Medical Biochemistry, Tanta University, Tanta, Egypt
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
7
|
Hou T, Chen L. Sulfonylurea receptor 2 (SUR2), intricate sensors for intracellular Mg-nucleotides. Bioessays 2024; 46:e2300151. [PMID: 38227376 DOI: 10.1002/bies.202300151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024]
Abstract
SUR2, similar to SUR1, is a regulatory subunit of the ATP-sensitive potassium channel (KATP), which plays a key role in numerous important physiological processes and is implicated in various diseases. Recent structural studies have revealed that, like SUR1, SUR2 can undergo ligand-dependent dynamic conformational changes, transitioning between an inhibitory inward-facing conformation and an activating occluded conformation. In addition, SUR2 possesses a unique inhibitory Regulatory helix (R helix) that is absent in SUR1. The binding of the activating Mg-ADP to NBD2 of SUR2 competes with the inhibitory Mg-ATP, thereby promoting the release of the R helix and initiating the activation process. Moreover, the signal generated by Mg-ADP binding to NBD2 might be directly transmitted to the TMD of SUR2, prior to NBD dimerization. Furthermore, the C-terminal 42 residues (C42) of SUR2 might allosterically regulate the kinetics of Mg-nucleotide binding on NBD2. These distinctive properties render SUR2 intricate sensors for intracellular Mg-nucleotides.
Collapse
Affiliation(s)
- Tianyi Hou
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, Beijing, China
| | - Lei Chen
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, Beijing, China
- National Biomedical Imaging Center, Peking University, Beijing, Beijing, China
| |
Collapse
|
8
|
Kong DW, Du LD, Liu RZ, Yuan TY, Wang SB, Wang YH, Lu Y, Fang LH, Du GH. Baicalein attenuates rotenone-induced SH-SY5Y cell apoptosis through binding to SUR1 and activating ATP-sensitive potassium channels. Acta Pharmacol Sin 2024; 45:480-489. [PMID: 37993535 PMCID: PMC10834402 DOI: 10.1038/s41401-023-01187-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Dopaminergic neurons in the substantia nigra (SN) expressing SUR1/Kir6.2 type ATP-sensitive potassium channels (K-ATP) are more vulnerable to rotenone or metabolic stress, which may be an important reason for the selective degeneration of neurons in Parkinson's disease (PD). Baicalein has shown neuroprotective effects in PD animal models. In this study, we investigated the effect of baicalein on K-ATP channels and the underlying mechanisms in rotenone-induced apoptosis of SH-SY5Y cells. K-ATP currents were recorded from SH-SY5Y cells using whole-cell voltage-clamp recording. Drugs dissolved in the external solution at the final concentration were directly pipetted onto the cells. We showed that rotenone and baicalein opened K-ATP channels and increased the current amplitudes with EC50 values of 0.438 μM and 6.159 μM, respectively. K-ATP channel blockers glibenclamide (50 μM) or 5-hydroxydecanoate (5-HD, 250 μM) attenuated the protective effects of baicalein in reducing reactive oxygen species (ROS) content and increasing mitochondrial membrane potential and ATP levels in rotenone-injured SH-SY5Y cells, suggesting that baicalein protected against the apoptosis of SH-SY5Y cells by regulating the effect of rotenone on opening K-ATP channels. Administration of baicalein (150, 300 mg·kg-1·d-1, i.g.) significantly inhibited rotenone-induced overexpression of SUR1 in SN and striatum of rats. We conducted surface plasmon resonance assay and molecular docking, and found that baicalein had a higher affinity with SUR1 protein (KD = 10.39 μM) than glibenclamide (KD = 24.32 μM), thus reducing the sensitivity of K-ATP channels to rotenone. Knockdown of SUR1 subunit reduced rotenone-induced apoptosis and damage of SH-SY5Y cells, confirming that SUR1 was an important target for slowing dopaminergic neuronal degeneration in PD. Taken together, we demonstrate for the first time that baicalein attenuates rotenone-induced SH-SY5Y cell apoptosis through binding to SUR1 and activating K-ATP channels.
Collapse
Affiliation(s)
- De-Wen Kong
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Li-da Du
- Shandong Soteria Pharmaceutical Co Ltd., Jinan, 250022, China
| | - Run-Zhe Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Tian-Yi Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shou-Bao Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yue-Hua Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yang Lu
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lian-Hua Fang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Guan-Hua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
9
|
Yang Y, Chen L. Functional dissection of KATP channel structures reveals the importance of a conserved interface. Structure 2024; 32:168-176.e2. [PMID: 38101402 DOI: 10.1016/j.str.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023]
Abstract
ATP-sensitive potassium channels (KATP) are inhibited by ATP but activated by Mg-ADP, coupling the intracellular ATP/ADP ratio to the potassium conductance of the plasma membrane. Although there has been progress in determining the structure of KATP, the functional significance of the domain-domain interface in the gating properties of KATP channels remains incompletely understood. In this study, we define the structure of KATP as two modules: KATPcore and SURABC. Based on this model, we identified two functionally important interfaces between these two modules, namely interface I and interface II. Further structure-guided mutagenesis experiments indicate that destabilizing interface II by deleting ECL3 on the SUR1 subunit impairs KNtp-independent Mg-ADP activation, demonstrating the essential role of intramolecular interactions between KATPcore and SURABC in Mg-ADP activation. Additionally, interface II is functionally conserved between SUR1 and SUR2, and the hydrophobic residue F351 on ECL3 of SUR1 is crucial for maintaining the stability of this interface.
Collapse
Affiliation(s)
- Yaxiong Yang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Lei Chen
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China.
| |
Collapse
|
10
|
Driggers CM, Kuo YY, Zhu P, ElSheikh A, Shyng SL. Structure of an open K ATP channel reveals tandem PIP 2 binding sites mediating the Kir6.2 and SUR1 regulatory interface. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.01.551546. [PMID: 37577494 PMCID: PMC10418277 DOI: 10.1101/2023.08.01.551546] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
ATP-sensitive potassium (K ATP ) channels, composed of four pore-lining Kir6.2 subunits and four regulatory sulfonylurea receptor 1 (SUR1) subunits, control insulin secretion in pancreatic β-cells. K ATP channel opening is stimulated by PIP 2 and inhibited by ATP. Mutations that increase channel opening by PIP 2 reduce ATP inhibition and cause neonatal diabetes. Although considerable evidence has indicated PIP 2 in K ATP channel function, previously solved open-channel structures have lacked bound PIP 2 , and mechanisms by which PIP 2 regulates K ATP channels remain unresolved. Here, we report the cryoEM structure of a K ATP channel harboring the neonatal diabetes mutation Kir6.2-Q52R, bound to natural C18:0/C20:4 long-chain PIP 2 in an open conformation. The structure reveals two adjacent PIP 2 molecules between SUR1 and Kir6.2. The first PIP 2 binding site is conserved among PIP 2 -gated Kir channels. The second site forms uniquely in K ATP at the interface of Kir6.2 and SUR1. Functional studies demonstrate both binding sites determine channel activity. Kir6.2 pore opening is associated with a twist of the Kir6.2 cytoplasmic domain and a rotation of the N-terminal transmembrane domain of SUR1, which widens the inhibitory ATP binding pocket to disfavor ATP binding. The open conformation is particularly stabilized by the Kir6.2-Q52R residue through cation-π bonding with SUR1-W51. Together, these results uncover the cooperation between SUR1 and Kir6.2 in PIP 2 binding and gating, explain the antagonistic regulation of K ATP channels by PIP 2 and ATP, and provide the mechanism by which Kir6.2-Q52R stabilizes an open channel to cause neonatal diabetes.
Collapse
|
11
|
Miao Z, Li J, Zeng S, Lv Y, Jia S, Ding D, Li W, Liu Q. Endoplasmic Reticulum-Targeting AIE Photosensitizers to Boost Immunogenic Cell Death for Immunotherapy of Bladder Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2024; 16:245-260. [PMID: 38113527 DOI: 10.1021/acsami.3c14068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Bladder cancer is characterized by high rates of recurrence and multifocality. Immunogenic cell death (ICD) of cancer cells has emerged as a promising strategy to improve the immunogenicity of tumor cells for enhanced cancer immunotherapy. Although photosensitizer-based photodynamic therapy (PDT) has been validated as capable of inducing ICD in cancer cells, the photosensitizers with a sufficient ICD induction ability are still rare, and there have been few reports on the development of advanced photosensitizers to strongly evoke the ICD of bladder cancer cells for eliciting potent antitumor immune responses and eradicating bladder carcinoma in situ. In this work, we have synthesized a new kind of endoplasmic reticulum (ER)-targeting aggregation-induced emission (AIE) photosensitizer (named DPASCP-Tos), which could effectively anchor to the cellular ER and trigger focused reactive oxygen species (ROS) production within the ER, thereby boosting ICD in bladder cancer cells. Furthermore, we have demonstrated that bladder cancer cells killed by ER-targeted PDT could serve as a therapeutic cancer vaccine to elicit a strong antitumor immunity. Prophylactic vaccination of the bladder cancer cells killed by DPASCP-Tos under light irradiation promoted the maturation of dendritic cells (DCs) and the expansion of tumor antigen-specific CD8+ T cells in vivo and protected mice from subsequent in situ bladder tumor rechallenge and extended animal survival. In summary, the ER-targeted AIEgens developed here significantly amplified the ICD of bladder cells through focused ROS-based ER oxidative stress and transformed bladder cancer cells into the therapeutic vaccine to enhance immunogenicity against orthotopic bladder cancer, providing valuable insights for bladder carcinoma treatment.
Collapse
Affiliation(s)
- Zhizhao Miao
- Tianjin First Central Hospital, Nankai University, Tianjin 300071, China
| | - Jisen Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Sheng Zeng
- Department of Urology, Tianjin First Central Hospital, Tianjin 300384, China
| | - Yonghui Lv
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shaorui Jia
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wen Li
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Qian Liu
- Tianjin First Central Hospital, Nankai University, Tianjin 300071, China
| |
Collapse
|
12
|
ElSheikh A, Driggers CM, Shyng SL. Non-radioactive Rb + Efflux Assay for Screening K ATP Channel Modulators. Methods Mol Biol 2024; 2796:191-210. [PMID: 38856903 DOI: 10.1007/978-1-0716-3818-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
ATP-sensitive potassium (KATP) channels function as metabolic sensors that link cell membrane excitability to the cellular energy status by controlling potassium ion (K+) flow across the cell membrane according to intracellular ATP and ADP concentrations. As such, KATP channels influence a broad spectrum of physiological processes, including insulin secretion and cardiovascular functions. KATP channels are hetero-octamers, consisting of four inward rectifier potassium channel subunits, Kir6.1 or Kir6.2, and four sulfonylurea receptors (SURs), SUR1, SUR2A, or SUR2B. Different Kir6 and SUR isoforms assemble into KATP channel subtypes with distinct tissue distributions and physiological functions. Mutations in the genes encoding KATP channel subunits underlie various human diseases. Targeted treatment for these diseases requires subtype-specific KATP channel modulators. Rubidium ions (Rb+) also pass through KATP channels, and Rb+ efflux assays can be used to assess KATP channel function and activity. Flame atomic absorption spectroscopy (Flame-AAS) combined with microsampling can measure Rb+ in small volume, which provides an efficient tool to screen for compounds that alter KATP channel activity in Rb+ efflux assays. In this chapter, we describe a detailed protocol for Rb+ efflux assays designed to identify new KATP channel modulators with potential therapeutic utilities.
Collapse
Affiliation(s)
- Assmaa ElSheikh
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, USA.
- Department of Medical Biochemistry, Tanta University, Tanta, Egypt.
| | - Camden M Driggers
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
13
|
Singh KD, Chetia D, Gogoi N, Gogoi B, Rudrapal M. In Vivo and in Silico Based Evaluation of Antidiabetic Potential of an Isolated Flavonoid from Allium hookeri in Type 2 Diabetic Rat Model. Chem Biodivers 2024; 21:e202301299. [PMID: 38047518 DOI: 10.1002/cbdv.202301299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/19/2023] [Indexed: 12/05/2023]
Abstract
Allium hookeri (F: Liliaceae), an indigenous plant of Manipur, India, is traditionally used to treat various diseases and disorders like diabetes, hypertension, and stomach ache. In our previous study, the methanol extract of the plant showed significant antidiabetic potential in rats. In the present study, we evaluated the antidiabetic potential of a flavonoid compound named MEA isolated from the methanolic leaf extract of A. Hookeri in rats. Additionally, we assessed the compound's mode of action through the molecular docking study. The MEA reduced the blood glucose level from 317±12.8 to 99.4±6.67 mg/dl after 21 days of treatment. Besides, MEA also restored the body weights and other biochemical parameters including lipid profile significantly compared to the diabetic group (p<0.001). The histoarchitecture of the pancreatic tissues of the MEA treated group was also improved compared to the diabetic group. In the docking study, the compound showed good binding affinity in the active binding site of the two structures of pancreatic beta-cell SUR1 (Sulfonylurea Receptor 1) subunit with CDocker energy -31.556 kcal/mol and -39.703 kcal/mol, respectively. The compound MEA was found to be drug-like with non-carcinogenic, non-mutagenic and non-irritant properties. These findings indicate the antidiabetic potential of MEA, which might act by modulating the pancreatic beta-cell SUR1 subunit present in the KATP channel. Hence, the MEA would be a promising lead molecule to develop new antidiabetic drug candidates of the future.
Collapse
Affiliation(s)
| | - Dipak Chetia
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Neelutpal Gogoi
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Bhaskarjyoti Gogoi
- Department of Biotechnology, Royal School of Bio-Sciences, Royal Global University, Guwahati, 781035, India
| | - Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Guntur, 522213, Andhra Pradesh, India
| |
Collapse
|
14
|
Kitamura S, Murao N, Yokota S, Shimizu M, Ono T, Seino Y, Suzuki A, Maejima Y, Shimomura K. Effect of fenofibrate and selective PPARα modulator (SPPARMα), pemafibrate on KATP channel activity and insulin secretion. BMC Res Notes 2023; 16:202. [PMID: 37697384 PMCID: PMC10494450 DOI: 10.1186/s13104-023-06489-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023] Open
Abstract
OBJECTIVE Insulin secretion is regulated by ATP-sensitive potassium (KATP) channels in pancreatic beta-cells. Peroxisome proliferator-activated receptors (PPAR) α ligands are clinically used to treat dyslipidemia. A PPARα ligand, fenofibrate, and PPARγ ligands troglitazone and 15-deoxy-∆12,14-prostaglandin J2 are known to close KATP channels and induce insulin secretion. The recently developed PPARα ligand, pemafibrate, became a new entry for treating dyslipidemia. Because pemafibrate is reported to improve glucose intolerance in mice treated with a high fat diet and a novel selective PPARα modulator, it may affect KATP channels or insulin secretion. RESULTS The effect of fenofibrate (100 µM) and pemafibrate (100 µM) on insulin secretion from MIN6 cells was measured by using batch incubation for 10 and 60 min in low (2 mM) and high (10 mM) glucose conditions. The application of fenofibrate for 10 min significantly increased insulin secretion in low glucose conditions. Pemafibrate failed to increase insulin secretion in all of the conditions experimented in this study. The KATP channel activity was measured by using whole-cell patch clamp technique. Although fenofibrate (100 µM) reduced the KATP channel current, the same concentration of pemafibrate had no effect. Both fenofibrate and pemafibrate had no effect on insulin mRNA expression.
Collapse
Affiliation(s)
- Shigeki Kitamura
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295 Japan
- Department of Plastic and Reconstructive Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Naoya Murao
- Department of Endocrinology, Diabetes and Metabolism, Fujita Health University, Toyoake, Japan
| | - Shoko Yokota
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295 Japan
| | - Masaru Shimizu
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295 Japan
- Department of Neurology, Matsumura General Hospital, Iwaki, Japan
| | - Tomoyuki Ono
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295 Japan
| | - Yusuke Seino
- Department of Endocrinology, Diabetes and Metabolism, Fujita Health University, Toyoake, Japan
| | - Atsushi Suzuki
- Department of Endocrinology, Diabetes and Metabolism, Fujita Health University, Toyoake, Japan
| | - Yuko Maejima
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295 Japan
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295 Japan
| |
Collapse
|
15
|
Wang J, Li X, Wang F, Cheng M, Mao Y, Fang S, Wang L, Zhou C, Hou W, Chen Y. Placing steroid hormones within the human ABCC3 transporter reveals a compatible amphiphilic substrate-binding pocket. EMBO J 2023; 42:e113415. [PMID: 37485728 PMCID: PMC10476276 DOI: 10.15252/embj.2022113415] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
The human ABC transporter ABCC3 (also known as MRP3) transports a wide spectrum of substrates, including endogenous metabolites and exogenous drugs. Accordingly, it participates in multiple physiological processes and is involved in diverse human diseases such as intrahepatic cholestasis of pregnancy, which is caused by the intracellular accumulation of bile acids and estrogens. Here, we report three cryogenic electron microscopy structures of ABCC3: in the apo-form and in complexed forms bound to either the conjugated sex hormones β-estradiol 17-(β-D-glucuronide) and dehydroepiandrosterone sulfate. For both hormones, the steroid nuclei that superimpose against each other occupy the hydrophobic center of the transport cavity, whereas the two conjugation groups are separated and fixed by the hydrophilic patches in two transmembrane domains. Structural analysis combined with site-directed mutagenesis and ATPase activity assays revealed that ABCC3 possesses an amphiphilic substrate-binding pocket able to hold either conjugated hormone in an asymmetric pattern. These data build on consensus features of the substrate-binding pocket of MRPs and provide a structural platform for the rational design of inhibitors.
Collapse
Affiliation(s)
- Jie Wang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Xu Li
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Fang‐Fang Wang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Meng‐Ting Cheng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Yao‐Xu Mao
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Shu‐Cheng Fang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Liang Wang
- Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Cong‐Zhao Zhou
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Wen‐Tao Hou
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Yuxing Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| |
Collapse
|
16
|
Ding D, Hou T, Wei M, Wu JX, Chen L. The inhibition mechanism of the SUR2A-containing K ATP channel by a regulatory helix. Nat Commun 2023; 14:3608. [PMID: 37330603 PMCID: PMC10276813 DOI: 10.1038/s41467-023-39379-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 06/10/2023] [Indexed: 06/19/2023] Open
Abstract
KATP channels are metabolic sensors for intracellular ATP/ADP ratios, play essential roles in many physiological processes, and are implicated in a spectrum of pathological conditions. SUR2A-containing KATP channels differ from other subtypes in their sensitivity to Mg-ADP activation. However, the underlying structural mechanism remains poorly understood. Here we present a series of cryo-EM structures of SUR2A in the presence of different combinations of Mg-nucleotides and the allosteric inhibitor repaglinide. These structures uncover regulatory helix (R helix) on the NBD1-TMD2 linker, which wedges between NBD1 and NBD2. R helix stabilizes SUR2A in the NBD-separated conformation to inhibit channel activation. The competitive binding of Mg-ADP with Mg-ATP to NBD2 mobilizes the R helix to relieve such inhibition, allowing channel activation. The structures of SUR2B in similar conditions suggest that the C-terminal 42 residues of SUR2B enhance the structural dynamics of NBD2 and facilitate the dissociation of the R helix and the binding of Mg-ADP to NBD2, promoting NBD dimerization and subsequent channel activation.
Collapse
Affiliation(s)
- Dian Ding
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, 100871, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
- National Biomedical Imaging Center, Peking University, 100871, Beijing, China
| | - Tianyi Hou
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, 100871, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
- National Biomedical Imaging Center, Peking University, 100871, Beijing, China
| | - Miao Wei
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, 100871, Beijing, China
- National Biomedical Imaging Center, Peking University, 100871, Beijing, China
| | - Jing-Xiang Wu
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, 100871, Beijing, China
- National Biomedical Imaging Center, Peking University, 100871, Beijing, China
| | - Lei Chen
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, 100871, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China.
- National Biomedical Imaging Center, Peking University, 100871, Beijing, China.
| |
Collapse
|
17
|
Martin GM, Patton BL, Shyng SL. K ATP channels in focus: Progress toward a structural understanding of ligand regulation. Curr Opin Struct Biol 2023; 79:102541. [PMID: 36807078 PMCID: PMC10023423 DOI: 10.1016/j.sbi.2023.102541] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/11/2022] [Accepted: 01/14/2023] [Indexed: 02/21/2023]
Abstract
KATP channels are hetero-octameric complexes of four inward rectifying potassium channels, Kir6.1 or Kir6.2, and four sulfonylurea receptors, SUR1, SUR2A, or SUR2B from the ABC transporter family. This unique combination enables KATP channels to couple intracellular ATP/ADP ratios, through gating, with membrane excitability, thus regulating a broad range of cellular activities. The prominence of KATP channels in human physiology, disease, and pharmacology has long attracted research interest. Since 2017, a steady flow of high-resolution KATP cryoEM structures has revealed complex and dynamic interactions between channel subunits and their ligands. Here, we highlight insights from recent structures that begin to provide mechanistic explanations for decades of experimental data and discuss the remaining knowledge gaps in our understanding of KATP channel regulation.
Collapse
Affiliation(s)
- Gregory M Martin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Bruce L Patton
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
18
|
ElSheikh A, Shyng SL. K ATP channel mutations in congenital hyperinsulinism: Progress and challenges towards mechanism-based therapies. Front Endocrinol (Lausanne) 2023; 14:1161117. [PMID: 37056678 PMCID: PMC10086357 DOI: 10.3389/fendo.2023.1161117] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Congenital hyperinsulinism (CHI) is the most common cause of persistent hypoglycemia in infancy/childhood and is a serious condition associated with severe recurrent attacks of hypoglycemia due to dysregulated insulin secretion. Timely diagnosis and effective treatment are crucial to prevent severe hypoglycemia that may lead to life-long neurological complications. In pancreatic β-cells, adenosine triphosphate (ATP)-sensitive K+ (KATP) channels are a central regulator of insulin secretion vital for glucose homeostasis. Genetic defects that lead to loss of expression or function of KATP channels are the most common cause of HI (KATP-HI). Much progress has been made in our understanding of the molecular genetics and pathophysiology of KATP-HI in the past decades; however, treatment remains challenging, in particular for patients with diffuse disease who do not respond to the KATP channel activator diazoxide. In this review, we discuss current approaches and limitations on the diagnosis and treatment of KATP-HI, and offer perspectives on alternative therapeutic strategies.
Collapse
Affiliation(s)
- Assmaa ElSheikh
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States
- Department of Medical Biochemistry, Tanta University, Tanta, Egypt
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
19
|
Walczewska-Szewc K, Nowak W. Structural Insights into ATP-Sensitive Potassium Channel Mechanics: A Role of Intrinsically Disordered Regions. J Chem Inf Model 2023; 63:1806-1818. [PMID: 36746748 PMCID: PMC10052335 DOI: 10.1021/acs.jcim.2c01196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Commonly used techniques, such as CryoEM or X-ray, are not able to capture the structural reorganizations of disordered regions of proteins (IDR); therefore, it is difficult to assess their functions in proteins based exclusively on experiments. To fill this gap, we used computational molecular dynamics (MD) simulation methods to capture IDR dynamics and trace biological function-related interactions in the Kir6.2/SUR1 potassium channel. This ATP-sensitive octameric complex, one of the critical elements in the insulin secretion process in human pancreatic β-cells, has four to five large, disordered fragments. Using unique MD simulations of the full Kir6.2/SUR1 channel complex, we present an in-depth analysis of the dynamics of the disordered regions and discuss the possible functions they could have in this system. Our MD results confirmed the crucial role of the N-terminus of the Kir6.2 fragment and the L0-loop of the SUR1 protein in the transfer of mechanical signals between domains that trigger insulin release. Moreover, we show that the presence of IDRs affects natural ligand binding. Our research takes us one step further toward understanding the action of this vital complex.
Collapse
Affiliation(s)
- Katarzyna Walczewska-Szewc
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudziądzka 5, 87-100 Toruń, Poland
| | - Wiesław Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudziądzka 5, 87-100 Toruń, Poland
| |
Collapse
|
20
|
Abstract
Ubiquitously expressed throughout the body, ATP-sensitive potassium (KATP) channels couple cellular metabolism to electrical activity in multiple tissues; their unique assembly as four Kir6 pore-forming subunits and four sulfonylurea receptor (SUR) subunits has resulted in a large armory of selective channel opener and inhibitor drugs. The spectrum of monogenic pathologies that result from gain- or loss-of-function mutations in these channels, and the potential for therapeutic correction of these pathologies, is now clear. However, while available drugs can be effective treatments for specific pathologies, cross-reactivity with the other Kir6 or SUR subfamily members can result in drug-induced versions of each pathology and may limit therapeutic usefulness. This review discusses the background to KATP channel physiology, pathology, and pharmacology and considers the potential for more specific or effective therapeutic agents.
Collapse
Affiliation(s)
- Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA;
| |
Collapse
|
21
|
Kollewe A, Schwarz Y, Oleinikov K, Raza A, Haupt A, Wartenberg P, Wyatt A, Boehm U, Ectors F, Bildl W, Zolles G, Schulte U, Bruns D, Flockerzi V, Fakler B. Subunit composition, molecular environment, and activation of native TRPC channels encoded by their interactomes. Neuron 2022; 110:4162-4175.e7. [PMID: 36257322 DOI: 10.1016/j.neuron.2022.09.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/15/2022] [Accepted: 09/23/2022] [Indexed: 12/24/2022]
Abstract
In the mammalian brain TRPC channels, a family of Ca2+-permeable cation channels, are involved in a variety of processes from neuronal growth and synapse formation to transmitter release, synaptic transmission and plasticity. The molecular appearance and operation of native TRPC channels, however, remained poorly understood. Here, we used high-resolution proteomics to show that TRPC channels in the rodent brain are macro-molecular complexes of more than 1 MDa in size that result from the co-assembly of the tetrameric channel core with an ensemble of interacting proteins (interactome). The core(s) of TRPC1-, C4-, and C5-containing channels are mostly heteromers with defined stoichiometries for each subtype, whereas TRPC3, C6, and C7 preferentially form homomers. In addition, TRPC1/C4/C5 channels may co-assemble with the metabotropic glutamate receptor mGluR1, thus guaranteeing both specificity and reliability of channel activation via the phospholipase-Ca2+ pathway. Our results unveil the subunit composition of native TRPC channels and resolve the molecular details underlying their activation.
Collapse
Affiliation(s)
- Astrid Kollewe
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Yvonne Schwarz
- Institute of Physiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Katharina Oleinikov
- Institute of Physiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Ahsan Raza
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany
| | - Alexander Haupt
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Philipp Wartenberg
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany
| | - Amanda Wyatt
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany
| | - Ulrich Boehm
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany
| | - Fabien Ectors
- Transgenic facility, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Wolfgang Bildl
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Gerd Zolles
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, Schänzlestr. 18, 79104 Freiburg, Germany
| | - Dieter Bruns
- Institute of Physiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Veit Flockerzi
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany.
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, Schänzlestr. 18, 79104 Freiburg, Germany; Center for Basics in NeuroModulation, Breisacherstr. 4, 79106 Freiburg, Germany.
| |
Collapse
|
22
|
Driggers CM, Shyng SL. Mechanistic insights on KATP channel regulation from cryo-EM structures. J Gen Physiol 2022; 155:213723. [PMID: 36441147 PMCID: PMC9700523 DOI: 10.1085/jgp.202113046] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 11/29/2022] Open
Abstract
Gated by intracellular ATP and ADP, ATP-sensitive potassium (KATP) channels couple cell energetics with membrane excitability in many cell types, enabling them to control a wide range of physiological processes based on metabolic demands. The KATP channel is a complex of four potassium channel subunits from the Kir channel family, Kir6.1 or Kir6.2, and four sulfonylurea receptor subunits, SUR1, SUR2A, or SUR2B, from the ATP-binding cassette (ABC) transporter family. Dysfunction of KATP channels underlies several human diseases. The importance of these channels in human health and disease has made them attractive drug targets. How the channel subunits interact with one another and how the ligands interact with the channel to regulate channel activity have been long-standing questions in the field. In the past 5 yr, a steady stream of high-resolution KATP channel structures has been published using single-particle cryo-electron microscopy (cryo-EM). Here, we review the advances these structures bring to our understanding of channel regulation by physiological and pharmacological ligands.
Collapse
Affiliation(s)
- Camden M. Driggers
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR,Correspondence to Show-Ling Shyng:
| |
Collapse
|
23
|
Wu JX, Ding D, Chen L. The Emerging Structural Pharmacology of ATP-Sensitive Potassium Channels. Mol Pharmacol 2022; 102:234-239. [PMID: 36253099 DOI: 10.1124/molpharm.122.000570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/29/2022] [Indexed: 02/14/2025] Open
Abstract
ATP-sensitive potassium channels (KATP) are energy sensors that participate in a range of physiologic processes. These channels are also clinically validated drug targets. For decades, KATP inhibitors have been prescribed for diabetes and KATP activators have been used for the treatment of hypoglycemia, hypertension, and hair loss. In this Emerging Concepts article, we highlight our current knowledge about the drug binding modes observed using cryogenic electron microscopy techniques. The inhibitors and activators bind to two distinct sites in the transmembrane domain of the sulfonylurea receptor (SUR) subunit. We also discuss the possible mechanism of how these drugs allosterically modulate the dimerization of SUR nucleotide-binding domains (NBDs) and thus KATP channel activity. SIGNIFICANCE STATEMENT: ATP-sensitive potassium channels (KATP) are fundamental to energy homeostasis, and they participate in many vital physiological processes. KATP channels are important drug targets. Both KATP inhibitors (insulin secretagogues) and KATP activators are broadly used clinically for the treatment of related diseases. Recent cryogenic electron microscopy studies allow us to understand the emerging concept of KATP structural pharmacology.
Collapse
Affiliation(s)
- Jing-Xiang Wu
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine (J.-X.W., D.D., L.C.), Peking-Tsinghua Center for Life Sciences (D.D., L.C.), Academy for Advanced Interdisciplinary Studies (D.D., L.C.), and National Biomedical Imaging Center, Peking University, Beijing, China (J.-X.W., D.D., L.C.)
| | - Dian Ding
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine (J.-X.W., D.D., L.C.), Peking-Tsinghua Center for Life Sciences (D.D., L.C.), Academy for Advanced Interdisciplinary Studies (D.D., L.C.), and National Biomedical Imaging Center, Peking University, Beijing, China (J.-X.W., D.D., L.C.)
| | - Lei Chen
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine (J.-X.W., D.D., L.C.), Peking-Tsinghua Center for Life Sciences (D.D., L.C.), Academy for Advanced Interdisciplinary Studies (D.D., L.C.), and National Biomedical Imaging Center, Peking University, Beijing, China (J.-X.W., D.D., L.C.)
| |
Collapse
|
24
|
Sung MW, Driggers CM, Mostofian B, Russo JD, Patton BL, Zuckerman DM, Shyng SL. Ligand-mediated Structural Dynamics of a Mammalian Pancreatic K ATP Channel. J Mol Biol 2022; 434:167789. [PMID: 35964676 PMCID: PMC9618280 DOI: 10.1016/j.jmb.2022.167789] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022]
Abstract
Regulation of pancreatic KATP channels involves orchestrated interactions of their subunits, Kir6.2 and SUR1, and ligands. Previously we reported KATP channel cryo-EM structures in the presence and absence of pharmacological inhibitors and ATP, focusing on the mechanisms by which inhibitors act as pharmacological chaperones of KATP channels (Martin et al., 2019). Here we analyzed the same cryo-EM datasets with a focus on channel conformational dynamics to elucidate structural correlates pertinent to ligand interactions and channel gating. We found pharmacological inhibitors and ATP enrich a channel conformation in which the Kir6.2 cytoplasmic domain is closely associated with the transmembrane domain, while depleting one where the Kir6.2 cytoplasmic domain is extended away into the cytoplasm. This conformational change remodels a network of intra- and inter-subunit interactions as well as the ATP and PIP2 binding pockets. The structures resolved key contacts between the distal N-terminus of Kir6.2 and SUR1's ABC module involving residues implicated in channel function and showed a SUR1 residue, K134, participates in PIP2 binding. Molecular dynamics simulations revealed two Kir6.2 residues, K39 and R54, that mediate both ATP and PIP2 binding, suggesting a mechanism for competitive gating by ATP and PIP2.
Collapse
Affiliation(s)
- Min Woo Sung
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, USA. https://twitter.com/MinWooSung5
| | - Camden M Driggers
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Barmak Mostofian
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - John D Russo
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Bruce L Patton
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Daniel M Zuckerman
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, USA.
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
25
|
Pipatpolkai T, Usher SG, Vedovato N, Ashcroft FM, Stansfeld PJ. The dynamic interplay of PIP 2 and ATP in the regulation of the K ATP channel. J Physiol 2022; 600:4503-4519. [PMID: 36047384 PMCID: PMC9825998 DOI: 10.1113/jp283345] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/04/2022] [Indexed: 01/11/2023] Open
Abstract
ATP-sensitive potassium (KATP ) channels couple the intracellular ATP concentration to insulin secretion. KATP channel activity is inhibited by ATP binding to the Kir6.2 tetramer and activated by phosphatidylinositol 4,5-bisphosphate (PIP2 ). Here, we use molecular dynamics simulation, electrophysiology and fluorescence spectroscopy to show that ATP and PIP2 occupy different binding pockets that share a single amino acid residue, K39. When both ligands are present, simulations suggest that K39 shows a greater preference to co-ordinate with PIP2 than with ATP. They also predict that a neonatal diabetes mutation at K39 (K39R) increases the number of hydrogen bonds formed between K39 and PIP2 , potentially accounting for the reduced ATP inhibition observed in electrophysiological experiments. Our work suggests that PIP2 and ATP interact allosterically to regulate KATP channel activity. KEY POINTS: The KATP channel is activated by the binding of phosphatidylinositol 4,5-bisphosphate (PIP2 ) lipids and inactivated by the binding of ATP. K39 has the potential to bind to both PIP2 and ATP. A mutation to this residue (K39R) results in neonatal diabetes. This study uses patch-clamp fluorometry, electrophysiology and molecular dynamics simulation. We show that PIP2 competes with ATP for K39, and this reduces channel inhibition by ATP. We show that K39R increases channel affinity to PIP2 by increasing the number of hydrogen bonds with PIP2 , when compared with the wild-type K39. This therefore decreases KATP channel inhibition by ATP.
Collapse
Affiliation(s)
- Tanadet Pipatpolkai
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordOxfordshireUK
- Department of BiochemistryUniversity of OxfordOxfordOxfordshireUK
- OXION Initiative in Ion Channels and DiseaseUniversity of OxfordOxfordOxfordshireUK
- Science for Life LaboratoryDepartment of Applied PhysicsKTH Royal Institute of TechnologySolnaSweden
| | - Samuel G. Usher
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordOxfordshireUK
- OXION Initiative in Ion Channels and DiseaseUniversity of OxfordOxfordOxfordshireUK
- Department of Drug Design and PharmacologyUniversity of CopenhagenCopenhagenDenmark
| | - Natascia Vedovato
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordOxfordshireUK
| | - Frances M. Ashcroft
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordOxfordshireUK
| | - Phillip J. Stansfeld
- School of Life SciencesUniversity of WarwickCoventryWarwickshireUK
- Department of ChemistryUniversity of WarwickCoventryWarwickshireUK
| |
Collapse
|
26
|
Aleksandrov LA, Aleksandrov AA, Jensen TJ, Strauss JD, Fay JF. Conformational Variability in Ground-State CFTR Lipoprotein Particle Cryo-EM Ensembles. Int J Mol Sci 2022; 23:9248. [PMID: 36012518 PMCID: PMC9409475 DOI: 10.3390/ijms23169248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/21/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis transmembrane regulator (CFTR) is a dynamic membrane protein belonging to the ABC transporter family. It is unusual within this family as it is an ion channel, as opposed to a transporter. Activation of CFTR requires ATP and phosphorylation by PKA, and dysregulation of CFTR mediated salt and water homeostasis can lead to cystic fibrosis. Recent advancements in structural biological methods have led to more than 10 published CFTR structures, and, so far, all of these structures of CFTR, determined by cryo-EM, have been limited to detergent-purified protein preparations. To visualize CFTR in an environment that more closely represents its native membranous environment, we utilized two different lipoprotein particle encapsulation techniques: one in which the ion channel is first purified and then reconstituted using the membrane scaffolding protein Saposin A and another that uses the solubilizing polymer Sokalan CP9 (DIBMA) to extract CFTR directly from membranes. Structures derived from these types of preparations may better correlate to their function, for instance, the single-channel measurements from membrane vesicles.
Collapse
Affiliation(s)
| | | | | | | | - Jonathan F. Fay
- Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 6107 Thurston Bowles Building, Chapel Hill, NC 27599, USA
| |
Collapse
|
27
|
Namasivayam V, Stefan K, Gorecki L, Korabecny J, Soukup O, Jansson PJ, Pahnke J, Stefan SM. Physicochemistry shapes bioactivity landscape of pan-ABC transporter modulators: Anchor point for innovative Alzheimer's disease therapeutics. Int J Biol Macromol 2022; 217:775-791. [PMID: 35839956 DOI: 10.1016/j.ijbiomac.2022.07.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is a devastating neurological disorder characterized by the pathological accumulation of macromolecular Aβ and tau leading to neuronal death. Drugs approved to treat AD may ameliorate disease symptoms, however, no curative treatment exists. Aβ peptides were discovered to be substrates of adenosine triphosphate-(ATP)-binding cassette (ABC) transporters. Activators of these membrane-bound efflux proteins that promote binding and/or translocation of Aβ could revolutionize AD medicine. The knowledge about ABC transporter activators is very scarce, however, the few molecules that were reported contain substructural features of multitarget (pan-)ABC transporter inhibitors. A cutting-edge strategy to obtain new drug candidates is to explore and potentially exploit the recently proposed multitarget binding site of pan-ABC transporter inhibitors as anchor point for the development of innovative activators to promote Aβ clearance from the brain. Molecular associations between functional bioactivities and physicochemical properties of small-molecules are key to understand these processes. This study provides an analysis of a recently reported unique multitarget dataset for the correlation between multitarget bioactivity and physicochemistry. Six novel pan-ABC transporter inhibitors were validated containing substructural features of ABC transporter activators, which underpins the relevance of the multitarget binding site for the targeted development of novel AD diagnostics and therapeutics.
Collapse
Affiliation(s)
- Vigneshwaran Namasivayam
- LIED, Pahnke Lab (www.pahnkelab.eu), University of Lübeck and University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany; Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Katja Stefan
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab (www.pahnkelab.eu), University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Lukas Gorecki
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Patric Jan Jansson
- Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St. Leonards, NSW 2065, Australia
| | - Jens Pahnke
- LIED, Pahnke Lab (www.pahnkelab.eu), University of Lübeck and University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany; Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab (www.pahnkelab.eu), University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway; Department of Pharmacology, Faculty of Medicine, University of Latvia, Jelgavas iela 4, 1004 Rīga, Latvia; Tel Aviv University, The Georg S. Wise Faculty of Life Sciences, Department of Neurobiology, P.O. Box 39040, Tel Aviv 6997801, Israel
| | - Sven Marcel Stefan
- LIED, Pahnke Lab (www.pahnkelab.eu), University of Lübeck and University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany; Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab (www.pahnkelab.eu), University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
28
|
Wang M, Wu JX, Chen L. Structural Insights Into the High Selectivity of the Anti-Diabetic Drug Mitiglinide. Front Pharmacol 2022; 13:929684. [PMID: 35847046 PMCID: PMC9279661 DOI: 10.3389/fphar.2022.929684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Mitiglinide is a highly selective fast-acting anti-diabetic drug that induces insulin secretion by inhibiting pancreatic KATP channels. However, how mitiglinide binds KATP channels remains unknown. Here, we show the cryo-EM structure of the SUR1 subunit complexed with mitiglinide. The structure reveals that mitiglinide binds inside the common insulin secretagogue-binding site of SUR1, which is surrounded by TM7, TM8, TM16, and TM17. Mitiglinide locks SUR1 in the NBD-separated inward-facing conformation. The detailed structural analysis of the mitiglinide-binding site uncovers the molecular basis of its high selectivity.
Collapse
Affiliation(s)
- Mengmeng Wang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- National Biomedical Imaging Center, Peking University, Beijing, China
| | - Jing-Xiang Wu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing, China
- National Biomedical Imaging Center, Peking University, Beijing, China
| | - Lei Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- National Biomedical Imaging Center, Peking University, Beijing, China
- *Correspondence: Lei Chen,
| |
Collapse
|
29
|
Yang HQ, Echeverry FA, ElSheikh A, Gando I, Anez Arredondo S, Samper N, Cardozo T, Delmar M, Shyng SL, Coetzee WA. Subcellular trafficking and endocytic recycling of K ATP channels. Am J Physiol Cell Physiol 2022; 322:C1230-C1247. [PMID: 35508187 PMCID: PMC9169827 DOI: 10.1152/ajpcell.00099.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 11/22/2022]
Abstract
Sarcolemmal/plasmalemmal ATP-sensitive K+ (KATP) channels have key roles in many cell types and tissues. Hundreds of studies have described how the KATP channel activity and ATP sensitivity can be regulated by changes in the cellular metabolic state, by receptor signaling pathways and by pharmacological interventions. These alterations in channel activity directly translate to alterations in cell or tissue function, that can range from modulating secretory responses, such as insulin release from pancreatic β-cells or neurotransmitters from neurons, to modulating contractile behavior of smooth muscle or cardiac cells to elicit alterations in blood flow or cardiac contractility. It is increasingly becoming apparent, however, that KATP channels are regulated beyond changes in their activity. Recent studies have highlighted that KATP channel surface expression is a tightly regulated process with similar implications in health and disease. The surface expression of KATP channels is finely balanced by several trafficking steps including synthesis, assembly, anterograde trafficking, membrane anchoring, endocytosis, endocytic recycling, and degradation. This review aims to summarize the physiological and pathophysiological implications of KATP channel trafficking and mechanisms that regulate KATP channel trafficking. A better understanding of this topic has potential to identify new approaches to develop therapeutically useful drugs to treat KATP channel-related diseases.
Collapse
Affiliation(s)
- Hua-Qian Yang
- Cyrus Tang Hematology Center, Soochow University, Suzhou, People's Republic of China
| | | | - Assmaa ElSheikh
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon
- Department of Medical Biochemistry, Tanta University, Tanta, Egypt
| | - Ivan Gando
- Department of Pathology, NYU School of Medicine, New York, New York
| | | | - Natalie Samper
- Department of Pathology, NYU School of Medicine, New York, New York
| | - Timothy Cardozo
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| | - Mario Delmar
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
- Department of Medicine, NYU School of Medicine, New York, New York
| | - Show-Ling Shyng
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon
| | - William A Coetzee
- Department of Pathology, NYU School of Medicine, New York, New York
- Department of Neuroscience & Physiology, NYU School of Medicine, New York, New York
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| |
Collapse
|
30
|
Structural insights into the mechanism of pancreatic K ATP channel regulation by nucleotides. Nat Commun 2022; 13:2770. [PMID: 35589716 PMCID: PMC9120461 DOI: 10.1038/s41467-022-30430-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
ATP-sensitive potassium channels (KATP) are metabolic sensors that convert the intracellular ATP/ADP ratio to the excitability of cells. They are involved in many physiological processes and implicated in several human diseases. Here we present the cryo-EM structures of the pancreatic KATP channel in both the closed state and the pre-open state, resolved in the same sample. We observe the binding of nucleotides at the inhibitory sites of the Kir6.2 channel in the closed but not in the pre-open state. Structural comparisons reveal the mechanism for ATP inhibition and Mg-ADP activation, two fundamental properties of KATP channels. Moreover, the structures also uncover the activation mechanism of diazoxide-type KATP openers. KATP channels are energy sensors. Here, authors report the Cryo-EM structures of pancreatic KATP in both the closed state and the pre-open state. These structures illuminate the mechanism of KATP channel regulation by the intracellular nucleotides.
Collapse
|
31
|
Lin CH, Lin YC, Yang SB, Chen PC. Carbamazepine promotes surface expression of mutant Kir6.2-A28V ATP-sensitive potassium channels by modulating Golgi retention and autophagy. J Biol Chem 2022; 298:101904. [PMID: 35398096 PMCID: PMC9065613 DOI: 10.1016/j.jbc.2022.101904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 11/21/2022] Open
Abstract
Pancreatic β-cells express ATP-sensitive potassium (KATP) channels, consisting of octamer complexes containing four sulfonylurea receptor 1 (SUR1) and four Kir6.2 subunits. Loss of KATP channel function causes persistent hyperinsulinemic hypoglycemia of infancy (PHHI), a rare but debilitating condition if not treated. We previously showed that the sodium-channel blocker carbamazepine (Carb) corrects KATP channel surface expression defects induced by PHHI-causing mutations in SUR1. In this study, we show that Carb treatment can also ameliorate the trafficking deficits associated with a recently discovered PHHI-causing mutation in Kir6.2 (Kir6.2-A28V). In human embryonic kidney 293 or INS-1 cells expressing this mutant KATP channel (SUR1 and Kir6.2-A28V), biotinylation and immunostaining assays revealed that Carb can increase surface expression of the mutant KATP channels. We further examined the subcellular distributions of mutant KATP channels before and after Carb treatment; without Carb treatment, we found that mutant KATP channels were aberrantly accumulated in the Golgi apparatus. However, after Carb treatment, coimmunoprecipitation of mutant KATP channels and Golgi marker GM130 was diminished, and KATP staining was also reduced in lysosomes. Intriguingly, Carb treatment also simultaneously increased autophagic flux and p62 accumulation, suggesting that autophagy-dependent degradation of the mutant channel was not only stimulated but also interrupted. In summary, our data suggest that surface expression of Kir6.2-A28V KATP channels is rescued by Carb treatment via promotion of mutant KATP channel exit from the Golgi apparatus and reduction of autophagy-mediated protein degradation.
Collapse
|
32
|
García-Fernández MD, Chatelain FC, Nury H, Moroni A, Moreau CJ. Distinct classes of potassium channels fused to GPCRs as electrical signaling biosensors. CELL REPORTS METHODS 2021; 1:None. [PMID: 34977850 PMCID: PMC8688152 DOI: 10.1016/j.crmeth.2021.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/05/2021] [Accepted: 10/26/2021] [Indexed: 11/23/2022]
Abstract
Ligand-gated ion channels (LGICs) are natural biosensors generating electrical signals in response to the binding of specific ligands. Creating de novo LGICs for biosensing applications is technically challenging. We have previously designed modified LGICs by linking G protein-coupled receptors (GPCRs) to the Kir6.2 channel. In this article, we extrapolate these design concepts to other channels with different structures and oligomeric states, namely a tetrameric viral Kcv channel and the dimeric mouse TREK-1 channel. After precise engineering of the linker regions, the two ion channels were successfully regulated by a GPCR fused to their N-terminal domain. Two-electrode voltage-clamp recordings showed that Kcv and mTREK-1 fusions were inhibited and activated by GPCR agonists, respectively, and antagonists abolished both effects. Thus, dissimilar ion channels can be allosterically regulated through their N-terminal domains, suggesting that this is a generalizable approach for ion channel engineering.
Collapse
Affiliation(s)
| | - Franck C. Chatelain
- Université Côte d’Azur, IPMC CNRS UMR7275, Laboratory of Excellence ICST, 660 route des Lucioles, 06650 Valbonne, France
| | - Hugues Nury
- Université Grenoble Alpes, CNRS, CEA, IBS, 71, av. Martyrs, CS10090, 38044 Grenoble Cedex9, France
| | - Anna Moroni
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milano, Italy
| | - Christophe J. Moreau
- Université Grenoble Alpes, CNRS, CEA, IBS, 71, av. Martyrs, CS10090, 38044 Grenoble Cedex9, France
| |
Collapse
|
33
|
Walczewska-Szewc K, Nowak W. Photo-Switchable Sulfonylureas Binding to ATP-Sensitive Potassium Channel Reveal the Mechanism of Light-Controlled Insulin Release. J Phys Chem B 2021; 125:13111-13121. [PMID: 34825567 PMCID: PMC8667036 DOI: 10.1021/acs.jpcb.1c07292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/13/2021] [Indexed: 11/29/2022]
Abstract
ATP-sensitive potassium (KATP) channels are present in numerous organs, including the heart, brain, and pancreas. Physiological opening and closing of KATPs present in pancreatic β-cells, in response to changes in the ATP/ADP concentration ratio, are correlated with insulin release into the bloodstream. Sulfonylurea drugs, commonly used in type 2 diabetes mellitus treatment, bind to the octamer KATP channels composed of four pore-forming Kir6.2 and four SUR1 subunits and increase the probability of insulin release. Azobenzene-based derivatives of sulfonylureas, such as JB253 inspired by well-established antidiabetic drug glimepiride, allow for control of this process by light. The mechanism of that phenomenon was not known until now. In this paper, we use molecular docking, molecular dynamics, and metadynamics to reveal structural determinants explaining light-controlled insulin release. We show that both trans- and cis-JB253 bind to the same SUR1 cavity as antidiabetic sulfonylurea glibenclamide (GBM). Simulations indicate that, in contrast to trans-JB253, the cis-JB253 structure generated by blue light absorption promotes open structures of SUR1, in close similarity to the GBM effect. We postulate that in the open SUR1 structures, the N-terminal tail from Kir6.2 protruding into the SUR1 pocket is stabilized by flexible enough sulfonylureas. Therefore, the adjacent Kir6.2 pore is more often closed, which in turn facilitates insulin release. Thus, KATP conductance is regulated by peptide linkers between its Kir6.2 and SUR1 subunits, a phenomenon present in other biological signaling pathways. Our data explain the observed light-modulated activity of photoactive sulfonylureas and widen a way to develop new antidiabetic drugs having reduced adverse effects.
Collapse
Affiliation(s)
- Katarzyna Walczewska-Szewc
- Faculty of Physics, Astronomy
and Informatics, Nicolaus Copernicus University
in Torun, ul. Grudziadzka 5, 87-100 Torun, Poland
| | - Wieslaw Nowak
- Faculty of Physics, Astronomy
and Informatics, Nicolaus Copernicus University
in Torun, ul. Grudziadzka 5, 87-100 Torun, Poland
| |
Collapse
|
34
|
Zhao C, MacKinnon R. Molecular structure of an open human K ATP channel. Proc Natl Acad Sci U S A 2021; 118:e2112267118. [PMID: 34815345 PMCID: PMC8640745 DOI: 10.1073/pnas.2112267118] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2021] [Indexed: 11/18/2022] Open
Abstract
KATP channels are metabolic sensors that translate intracellular ATP/ADP balance into membrane excitability. The molecular composition of KATP includes an inward-rectifier potassium channel (Kir) and an ABC transporter-like sulfonylurea receptor (SUR). Although structures of KATP have been determined in many conformations, in all cases, the pore in Kir is closed. Here, we describe human pancreatic KATP (hKATP) structures with an open pore at 3.1- to 4.0-Å resolution using single-particle cryo-electron microscopy (cryo-EM). Pore opening is associated with coordinated structural changes within the ATP-binding site and the channel gate in Kir. Conformational changes in SUR are also observed, resulting in an area reduction of contact surfaces between SUR and Kir. We also observe that pancreatic hKATP exhibits the unique (among inward-rectifier channels) property of PIP2-independent opening, which appears to be correlated with a docked cytoplasmic domain in the absence of PIP2.
Collapse
Affiliation(s)
- Chen Zhao
- HHMI, The Rockefeller University, New York, NY 10065
- Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, New York, NY 10065
| | - Roderick MacKinnon
- HHMI, The Rockefeller University, New York, NY 10065;
- Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, New York, NY 10065
| |
Collapse
|
35
|
Namasivayam V, Stefan K, Pahnke J, Stefan SM. Binding mode analysis of ABCA7 for the prediction of novel Alzheimer's disease therapeutics. Comput Struct Biotechnol J 2021; 19:6490-6504. [PMID: 34976306 PMCID: PMC8666613 DOI: 10.1016/j.csbj.2021.11.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
The adenosine-triphosphate-(ATP)-binding cassette (ABC) transporter ABCA7 is a genetic risk factor for Alzheimer's disease (AD). Defective ABCA7 promotes AD development and/or progression. Unfortunately, ABCA7 belongs to the group of 'under-studied' ABC transporters that cannot be addressed by small-molecules. However, such small-molecules would allow for the exploration of ABCA7 as pharmacological target for the development of new AD diagnostics and therapeutics. Pan-ABC transporter modulators inherit the potential to explore under-studied ABC transporters as novel pharmacological targets by potentially binding to the proposed 'multitarget binding site'. Using the recently reported cryogenic-electron microscopy (cryo-EM) structures of ABCA1 and ABCA4, a homology model of ABCA7 has been generated. A set of novel, diverse, and potent pan-ABC transporter inhibitors has been docked to this ABCA7 homology model for the discovery of the multitarget binding site. Subsequently, application of pharmacophore modelling identified the essential pharmacophore features of these compounds that may support the rational drug design of innovative diagnostics and therapeutics against AD.
Collapse
Key Words
- ABC transporter (ABCA1, ABCA4, ABCA7)
- ABC, ATP-binding cassette
- AD, Alzheimer’s disease
- APP, amyloid precursor protein
- ATP, Adenosine-triphosphate
- Alzheimer’s disease (AD)
- BBB, blood-brain barrier
- BODIPY-cholesterol, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene-cholesterol
- ECD, extracellular domain
- EH, extracellular helix
- GSH, reduced glutathione
- HTS, high-throughput screening
- IC, intracellular helix
- MOE, Molecular Operating Environment
- MSD, membrane spanning domain
- Multitarget modulation (PANABC)
- NBD, nucleotide binding domain
- NBD-cholesterol, 7-nitro-2-1,3-benzoxadiazol-4-yl-cholesterol
- PDB, protein data bank
- PET tracer (PETABC)
- PET, positron emission tomography
- PLIF, protein ligand interaction
- PSO, particle swarm optimization
- Polypharmacology
- R-domain/region, regulatory domain/region
- RMSD, root mean square distance
- Rational drug design and development
- SNP, single-nucleotide polymorphism
- TM, transmembrane helix
- cryo-EM, cryogenic-electron microscopy
Collapse
Affiliation(s)
- Vigneshwaran Namasivayam
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Katja Stefan
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab (www.pahnkelab.eu), University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Jens Pahnke
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab (www.pahnkelab.eu), University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- LIED, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Jelgavas iela 1, 1004 Rīga, Latvia
| | - Sven Marcel Stefan
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab (www.pahnkelab.eu), University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
| |
Collapse
|
36
|
Vascular K ATP channel structural dynamics reveal regulatory mechanism by Mg-nucleotides. Proc Natl Acad Sci U S A 2021; 118:2109441118. [PMID: 34711681 PMCID: PMC8694068 DOI: 10.1073/pnas.2109441118] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 11/24/2022] Open
Abstract
Vascular KATP channels formed by the potassium channel Kir6.1 and its regulatory protein SUR2B maintain blood pressure in the physiological range. Overactivity of the channel due to genetic mutations in either Kir6.1 or SUR2B causes severe cardiovascular pathologies known as Cantú syndrome. The cryogenic electron microscopy structures of the vascular KATP channel reported here show multiple, dynamically related conformations of the regulatory subunit SUR2B. Molecular dynamics simulations reveal the negatively charged ED-domain in SUR2B, a stretch of 15 glutamate (E) and aspartate (D) residues not previously resolved, play a key MgADP-dependent role in mediating interactions at the interface between the SUR2B and Kir6.1 subunits. Our findings provide a mechanistic understanding of how channel activity is regulated by intracellular MgADP. Vascular tone is dependent on smooth muscle KATP channels comprising pore-forming Kir6.1 and regulatory SUR2B subunits, in which mutations cause Cantú syndrome. Unique among KATP isoforms, they lack spontaneous activity and require Mg-nucleotides for activation. Structural mechanisms underlying these properties are unknown. Here, we determined cryogenic electron microscopy structures of vascular KATP channels bound to inhibitory ATP and glibenclamide, which differ informatively from similarly determined pancreatic KATP channel isoform (Kir6.2/SUR1). Unlike SUR1, SUR2B subunits adopt distinct rotational “propeller” and “quatrefoil” geometries surrounding their Kir6.1 core. The glutamate/aspartate-rich linker connecting the two halves of the SUR-ABC core is observed in a quatrefoil-like conformation. Molecular dynamics simulations reveal MgADP-dependent dynamic tripartite interactions between this linker, SUR2B, and Kir6.1. The structures captured implicate a progression of intermediate states between MgADP-free inactivated, and MgADP-bound activated conformations wherein the glutamate/aspartate-rich linker participates as mobile autoinhibitory domain, suggesting a conformational pathway toward KATP channel activation.
Collapse
|
37
|
Timsit Y, Grégoire SP. Towards the Idea of Molecular Brains. Int J Mol Sci 2021; 22:ijms222111868. [PMID: 34769300 PMCID: PMC8584932 DOI: 10.3390/ijms222111868] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
How can single cells without nervous systems perform complex behaviours such as habituation, associative learning and decision making, which are considered the hallmark of animals with a brain? Are there molecular systems that underlie cognitive properties equivalent to those of the brain? This review follows the development of the idea of molecular brains from Darwin’s “root brain hypothesis”, through bacterial chemotaxis, to the recent discovery of neuron-like r-protein networks in the ribosome. By combining a structural biology view with a Bayesian brain approach, this review explores the evolutionary labyrinth of information processing systems across scales. Ribosomal protein networks open a window into what were probably the earliest signalling systems to emerge before the radiation of the three kingdoms. While ribosomal networks are characterised by long-lasting interactions between their protein nodes, cell signalling networks are essentially based on transient interactions. As a corollary, while signals propagated in persistent networks may be ephemeral, networks whose interactions are transient constrain signals diffusing into the cytoplasm to be durable in time, such as post-translational modifications of proteins or second messenger synthesis. The duration and nature of the signals, in turn, implies different mechanisms for the integration of multiple signals and decision making. Evolution then reinvented networks with persistent interactions with the development of nervous systems in metazoans. Ribosomal protein networks and simple nervous systems display architectural and functional analogies whose comparison could suggest scale invariance in information processing. At the molecular level, the significant complexification of eukaryotic ribosomal protein networks is associated with a burst in the acquisition of new conserved aromatic amino acids. Knowing that aromatic residues play a critical role in allosteric receptors and channels, this observation suggests a general role of π systems and their interactions with charged amino acids in multiple signal integration and information processing. We think that these findings may provide the molecular basis for designing future computers with organic processors.
Collapse
Affiliation(s)
- Youri Timsit
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016 Paris, France
- Correspondence:
| | - Sergeant-Perthuis Grégoire
- Institut de Mathématiques de Jussieu—Paris Rive Gauche (IMJ-PRG), UMR 7586, CNRS-Université Paris Diderot, 75013 Paris, France;
| |
Collapse
|
38
|
Simpkin AJ, Winn MD, Rigden DJ, Keegan RM. Redeployment of automated MrBUMP search-model identification for map fitting in cryo-EM. Acta Crystallogr D Struct Biol 2021; 77:1378-1385. [PMID: 34726166 PMCID: PMC8561737 DOI: 10.1107/s2059798321009165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022] Open
Abstract
In crystallography, the phase problem can often be addressed by the careful preparation of molecular-replacement search models. This has led to the development of pipelines such as MrBUMP that can automatically identify homologous proteins from an input sequence and edit them to focus on the areas that are most conserved. Many of these approaches can be applied directly to cryo-EM to help discover, prepare and correctly place models (here called cryo-EM search models) into electrostatic potential maps. This can significantly reduce the amount of manual model building that is required for structure determination. Here, MrBUMP is repurposed to fit automatically obtained PDB-derived chains and domains into cryo-EM maps. MrBUMP was successfully able to identify and place cryo-EM search models across a range of resolutions. Methods such as map segmentation are also explored as potential routes to improved performance. Map segmentation was also found to improve the effectiveness of the pipeline for higher resolution (<8 Å) data sets.
Collapse
Affiliation(s)
- Adam J. Simpkin
- Institute of Structural, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Martyn D. Winn
- UKRI–STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Daniel J. Rigden
- Institute of Structural, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Ronan M. Keegan
- UKRI–STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| |
Collapse
|
39
|
Wang JQ, Wu ZX, Yang Y, Teng QX, Li YD, Lei ZN, Jani KA, Kaushal N, Chen ZS. ATP-binding cassette (ABC) transporters in cancer: A review of recent updates. J Evid Based Med 2021; 14:232-256. [PMID: 34388310 DOI: 10.1111/jebm.12434] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
The ATP-binding cassette (ABC) transporter superfamily is one of the largest membrane protein families existing in wide spectrum of organisms from prokaryotes to human. ABC transporters are also known as efflux pumps because they mediate the cross-membrane transportation of various endo- and xenobiotic molecules energized by ATP hydrolysis. Therefore, ABC transporters have been considered closely to multidrug resistance (MDR) in cancer, where the efflux of structurally distinct chemotherapeutic drugs causes reduced itherapeutic efficacy. Besides, ABC transporters also play other critical biological roles in cancer such as signal transduction. During the past decades, extensive efforts have been made in understanding the structure-function relationship, transportation profile of ABC transporters, as well as the possibility to overcome MDR via targeting these transporters. In this review, we discuss the most recent knowledge regarding ABC transporters and cancer drug resistance in order to provide insights for the development of more effective therapies.
Collapse
Affiliation(s)
- Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Yi-Dong Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
- School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Khushboo A Jani
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Neeraj Kaushal
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| |
Collapse
|
40
|
Structural insights into GIRK2 channel modulation by cholesterol and PIP 2. Cell Rep 2021; 36:109619. [PMID: 34433062 PMCID: PMC8436891 DOI: 10.1016/j.celrep.2021.109619] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/10/2021] [Accepted: 08/05/2021] [Indexed: 12/28/2022] Open
Abstract
G-protein-gated inwardly rectifying potassium (GIRK) channels are important for determining neuronal excitability. In addition to G proteins, GIRK channels are potentiated by membrane cholesterol, which is elevated in the brains of people with neurodegenerative diseases such as Alzheimer’s dementia and Parkinson’s disease. The structural mechanism of cholesterol modulation of GIRK channels is not well understood. In this study, we present cryo-electron microscopy (cryoEM) structures of GIRK2 in the presence and absence of the cholesterol analog cholesteryl hemisuccinate (CHS) and phosphatidylinositol 4,5-bisphosphate (PIP2). The structures reveal that CHS binds near PIP2 in lipid-facing hydrophobic pockets of the transmembrane domain. Our structural analysis suggests that CHS stabilizes PIP2 interaction with the channel and promotes engagement of the cytoplasmic domain onto the transmembrane region. Mutagenesis of one of the CHS binding pockets eliminates cholesterol-dependent potentiation of GIRK2. Elucidating the structural mechanisms underlying cholesterol modulation of GIRK2 channels could facilitate the development of therapeutics for treating neurological diseases. Ion channels are important in determining neuronal excitability. Elevated cholesterol levels found in some neurodegenerative diseases can affect the function of ion channels. Mathiharan et al. take a structural and functional approach to identifying physical sites for cholesterol, and they provide details on how cholesterol potentiates ion channel activity.
Collapse
|
41
|
Control of Biophysical and Pharmacological Properties of Potassium Channels by Ancillary Subunits. Handb Exp Pharmacol 2021; 267:445-480. [PMID: 34247280 DOI: 10.1007/164_2021_512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Potassium channels facilitate and regulate physiological processes as diverse as electrical signaling, ion, solute and hormone secretion, fluid homeostasis, hearing, pain sensation, muscular contraction, and the heartbeat. Potassium channels are each formed by either a tetramer or dimer of pore-forming α subunits that co-assemble to create a multimer with a K+-selective pore that in most cases is capable of functioning as a discrete unit to pass K+ ions across the cell membrane. The reality in vivo, however, is that the potassium channel α subunit multimers co-assemble with ancillary subunits to serve specific physiological functions. The ancillary subunits impart specific physiological properties that are often required for a particular activity in vivo; in addition, ancillary subunit interaction often alters the pharmacology of the resultant complex. In this chapter the modes of action of ancillary subunits on K+ channel physiology and pharmacology are described and categorized into various mechanistic classes.
Collapse
|
42
|
Januliene D, Moeller A. Cryo-EM of ABC transporters: an ice-cold solution to everything? FEBS Lett 2021; 594:3776-3789. [PMID: 33156959 DOI: 10.1002/1873-3468.13989] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/28/2020] [Accepted: 10/27/2020] [Indexed: 01/10/2023]
Abstract
High-resolution cryo-EM has revolutionized how we look at ABC transporters and membrane proteins in general. An ever-increasing number of software tools and faster processing now allow dissecting the molecular details of nanomachines at atomic precision. Considering the further benefits of significantly reduced sample demands and increased speed, cryo-EM will dominate the structure determination of membrane proteins in the near future without compromising on data quality or detail. Moreover, improved and new algorithms make it now possible to resolve the conformational spectrum of macromolecular machines under turnover conditions and to analyze heterogeneous samples at high resolution. The future of cryo-EM is, therefore, bright, and the growing number of imaging facilities and groups active in this field will amplify this trend even further. Nevertheless, expectations have to be managed, as cryo-EM alone cannot provide an ultimate answer to all scientific questions. In this review, we discuss the capabilities and limitations of cryo-EM together with possible solutions for studies of ABC transporters.
Collapse
Affiliation(s)
- Dovile Januliene
- University of Osnabrück, Germany.,Max-Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Arne Moeller
- University of Osnabrück, Germany.,Max-Planck Institute of Biophysics, Frankfurt am Main, Germany
| |
Collapse
|
43
|
Abstract
ATP-binding cassette (ABC) transporters constitute one of the largest and most ancient protein superfamilies found in all living organisms. They function as molecular machines by coupling ATP binding, hydrolysis, and phosphate release to translocation of diverse substrates across membranes. The substrates range from vitamins, steroids, lipids, and ions to peptides, proteins, polysaccharides, and xenobiotics. ABC transporters undergo substantial conformational changes during substrate translocation. A comprehensive understanding of their inner workings thus requires linking these structural rearrangements to the different functional state transitions. Recent advances in single-particle cryogenic electron microscopy have not only delivered crucial information on the architecture of several medically relevant ABC transporters and their supramolecular assemblies, including the ATP-sensitive potassium channel and the peptide-loading complex, but also made it possible to explore the entire conformational space of these nanomachines under turnover conditions and thereby gain detailed mechanistic insights into their mode of action.
Collapse
Affiliation(s)
- Christoph Thomas
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; ,
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; ,
| |
Collapse
|
44
|
Bickers SC, Benlekbir S, Rubinstein JL, Kanelis V. Structure of Ycf1p reveals the transmembrane domain TMD0 and the regulatory region of ABCC transporters. Proc Natl Acad Sci U S A 2021; 118:e2025853118. [PMID: 34021087 PMCID: PMC8166025 DOI: 10.1073/pnas.2025853118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
ATP binding cassette (ABC) proteins typically function in active transport of solutes across membranes. The ABC core structure is composed of two transmembrane domains (TMD1 and TMD2) and two cytosolic nucleotide binding domains (NBD1 and NBD2). Some members of the C-subfamily of ABC (ABCC) proteins, including human multidrug resistance proteins (MRPs), also possess an N-terminal transmembrane domain (TMD0) that contains five transmembrane α-helices and is connected to the ABC core by the L0 linker. While TMD0 was resolved in SUR1, the atypical ABCC protein that is part of the hetero-octameric ATP-sensitive K+ channel, little is known about the structure of TMD0 in monomeric ABC transporters. Here, we present the structure of yeast cadmium factor 1 protein (Ycf1p), a homolog of human MRP1, determined by electron cryo-microscopy (cryo-EM). A comparison of Ycf1p, SUR1, and a structure of MRP1 that showed TMD0 at low resolution demonstrates that TMD0 can adopt different orientations relative to the ABC core, including a ∼145° rotation between Ycf1p and SUR1. The cryo-EM map also reveals that segments of the regulatory (R) region, which links NBD1 to TMD2 and was poorly resolved in earlier ABCC structures, interacts with the L0 linker, NBD1, and TMD2. These interactions, combined with fluorescence quenching experiments of isolated NBD1 with and without the R region, suggest how posttranslational modifications of the R region modulate ABC protein activity. Mapping known mutations from MRP2 and MRP6 onto the Ycf1p structure explains how mutations involving TMD0 and the R region of these proteins lead to disease.
Collapse
Affiliation(s)
- Sarah C Bickers
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, ON L5L 1C6, Canada
| | - Samir Benlekbir
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Voula Kanelis
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada;
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, ON L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
45
|
Abstract
Monoclonal antibodies combine specificity and high affinity binding with excellent pharmacokinetic properties and are rapidly being developed for a wide range of drug targets including clinically important potassium ion channels. Nonetheless, while therapeutic antibodies come with great promise, K+ channels represent particularly difficult targets for biologics development for a variety of reasons that include their dynamic structures and relatively small extracellular loops, their high degree of sequence conservation (leading to immune tolerance), and their generally low-level expression in vivo. The process is made all the more difficult when large numbers of antibody candidates must be screened for a given target, or when lead candidates fail to cross-react with orthologous channels in animal disease models due to their highly selective binding properties. While the number of antibodies targeting potassium channels in preclinical or clinical development is still modest, significant advances in the areas of protein expression and antibody screening are converging to open the field to an avalanche of new drugs. Here, the opportunities and constraints associated with the discovery of antibodies against K+ channels are discussed, with an emphasis on novel technologies that are opening the field to exciting new possibilities for biologics development.
Collapse
|
46
|
Khunweeraphong N, Kuchler K. Multidrug Resistance in Mammals and Fungi-From MDR to PDR: A Rocky Road from Atomic Structures to Transport Mechanisms. Int J Mol Sci 2021; 22:4806. [PMID: 33946618 PMCID: PMC8124828 DOI: 10.3390/ijms22094806] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
Multidrug resistance (MDR) can be a serious complication for the treatment of cancer as well as for microbial and parasitic infections. Dysregulated overexpression of several members of the ATP-binding cassette transporter families have been intimately linked to MDR phenomena. Three paradigm ABC transporter members, ABCB1 (P-gp), ABCC1 (MRP1) and ABCG2 (BCRP) appear to act as brothers in arms in promoting or causing MDR in a variety of therapeutic cancer settings. However, their molecular mechanisms of action, the basis for their broad and overlapping substrate selectivity, remains ill-posed. The rapidly increasing numbers of high-resolution atomic structures from X-ray crystallography or cryo-EM of mammalian ABC multidrug transporters initiated a new era towards a better understanding of structure-function relationships, and for the dynamics and mechanisms driving their transport cycles. In addition, the atomic structures offered new evolutionary perspectives in cases where transport systems have been structurally conserved from bacteria to humans, including the pleiotropic drug resistance (PDR) family in fungal pathogens for which high resolution structures are as yet unavailable. In this review, we will focus the discussion on comparative mechanisms of mammalian ABCG and fungal PDR transporters, owing to their close evolutionary relationships. In fact, the atomic structures of ABCG2 offer excellent models for a better understanding of fungal PDR transporters. Based on comparative structural models of ABCG transporters and fungal PDRs, we propose closely related or even conserved catalytic cycles, thus offering new therapeutic perspectives for preventing MDR in infectious disease settings.
Collapse
Affiliation(s)
| | - Karl Kuchler
- Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Medical University of Vienna, Dr. Bohr-Gasse 9/2, A-1030 Vienna, Austria;
| |
Collapse
|
47
|
Gunaratne GS, Brailoiu E, He S, Unterwald EM, Patel S, Slama JT, Walseth TF, Marchant JS. Essential requirement for JPT2 in NAADP-evoked Ca 2+ signaling. Sci Signal 2021; 14:14/675/eabd5605. [PMID: 33758061 DOI: 10.1126/scisignal.abd5605] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a second messenger that releases Ca2+ from acidic organelles through the activation of two-pore channels (TPCs) to regulate endolysosomal trafficking events. NAADP action is mediated by NAADP-binding protein(s) of unknown identity that confer NAADP sensitivity to TPCs. Here, we used a "clickable" NAADP-based photoprobe to isolate human NAADP-binding proteins and identified Jupiter microtubule-associated homolog 2 (JPT2) as a TPC accessory protein required for endogenous NAADP-evoked Ca2+ signaling. JPT2 was also required for the translocation of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus through the endolysosomal system. Thus, JPT2 is a component of the NAADP receptor complex that is essential for TPC-dependent Ca2+ signaling and control of coronaviral entry.
Collapse
Affiliation(s)
- Gihan S Gunaratne
- Department of Pharmacology, University of Minnesota Medical School, 312 Church Street, Minneapolis, MN 55455, USA.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Eugen Brailoiu
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Shijun He
- Department of Medicinal and Biological Chemistry, University of Toledo College of Pharmacy and Pharmaceutical Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Ellen M Unterwald
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - James T Slama
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Timothy F Walseth
- Department of Pharmacology, University of Minnesota Medical School, 312 Church Street, Minneapolis, MN 55455, USA
| | - Jonathan S Marchant
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
48
|
Production and purification of ATP-sensitive potassium channel particles for cryo-electron microscopy. Methods Enzymol 2021; 653:121-150. [PMID: 34099169 DOI: 10.1016/bs.mie.2021.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
ATP-sensitive potassium (KATP) channels are multimeric protein complexes made of four inward rectifying potassium channel (Kir6.x) subunits and four ABC protein sulfonylurea receptor (SURx) subunits. Kir6.x subunits form the potassium ion conducting pore of the channel, and SURx functions to regulate Kir6.x. Kir6.x and SURx are uniquely dependent on each other for expression and function. In pancreatic β-cells, channels comprising SUR1 and Kir6.2 mediate glucose-stimulated insulin secretion and are the targets of antidiabetic sulfonylureas. Mutations in genes encoding SUR1 or Kir6.2 are linked to insulin secretion disorders, with loss- or gain-of-function mutations causing congenital hyperinsulinism or neonatal diabetes mellitus, respectively. Defects in the KATP channel in other tissues underlie human diseases of the cardiovascular and nervous systems. Key to understanding how channels are regulated by physiological and pharmacological ligands and how mutations disrupt channel assembly or gating to cause disease is the ability to observe structural changes associated with subunit interactions and ligand binding. While recent advances in the structural method of single-particle cryo-electron microscopy (cryoEM) offers direct visualization of channel structures, success of obtaining high-resolution structures is dependent on highly concentrated, homogeneous KATP channel particles. In this chapter, we describe a method for expressing KATP channels in mammalian cell culture, solubilizing the channel in detergent micelles and purifying KATP channels using an affinity tag to the SURx subunit for cryoEM structural studies.
Collapse
|
49
|
Shill MC, Bepari AK, Khan M, Tasneem Z, Ahmed T, Hasan MA, Alam MJ, Hossain M, Rahman MA, Sharker SM, Shahriar M, Rahman GMS, Reza HM. Therapeutic Potentials of Colocasia affinis Leaf Extract for the Alleviation of Streptozotocin-Induced Diabetes and Diabetic Complications: In vivo and in silico-Based Studies. J Inflamm Res 2021; 14:443-459. [PMID: 33642871 PMCID: PMC7903966 DOI: 10.2147/jir.s297348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/27/2021] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Hypoglycemia in diabetes mellitus (DM) correlates with hepatic impairment, nephropathy, lipid abnormalities, and oxidative stress and subsequently complicates the disease pathogenesis. Medicinal plants have been used for the management of diabetes since ancient times. In this study, we explored the potentials of Colocasia affinis (CA), a plant known to possess anti-allergic and anti-inflammatory activities, as a remedy for diabetes and related complications. METHODS We induced diabetes in rats using a single intraperitoneal dose (65 mg/kg) of streptozotocin (STZ). We next treated the rats with an ethanolic extract of leaves of CA to reveal its antidiabetic and organ-protective potentials. Biomarkers of diabetes, inflammation, and oxidative stress were measured using biochemical and histopathological analysis. We also performed molecular docking for three major phytochemicals (kaempferol, myricetin, and rosmarinic acid) of CA. RESULTS Oral administration of the CA leaves extract at 250 mg/kg and 500 mg/kg doses decreased blood glucose level significantly (p<0.05) in STZ-induced diabetic rats. The extract also considerably attenuated plasma HbA1c levels and normalized blood lipids, glycogen, alanine aminotransferase (ALT), and aspartate aminotransferase (AST). Additionally, treatment with the extract improved kidney complications by decreasing serum creatinine and blood urea nitrogen (BUN) levels. Furthermore, CA leaves extract normalized nitric oxide (NO) and advance oxidative protein products (AOPP) in diabetic rats. The extract also showed significant improvement of the antioxidant enzymes glutathione dismutase (GSH) and superoxide dismutase (SOD) at a dose of 500 mg/kg. Besides, histological investigation demonstrated attenuation of inflammation of the vital organs, including the liver and the kidney. In silico studies revealed that three major phytochemicals (kaempferol, myricetin, and rosmarinic acid) of the ethanolic extract of leaves of CA can inhibit several molecular targets of diabetes and inflammation. CONCLUSION Collectively, our results demonstrated the therapeutic potentials of CA for the mitigation of diabetes and diabetic complications.
Collapse
Affiliation(s)
- Manik Chandra Shill
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Asim Kumar Bepari
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Mahi Khan
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Zarin Tasneem
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Tania Ahmed
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Md Asif Hasan
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Md Jahir Alam
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Murad Hossain
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Md Ashrafur Rahman
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Shazid Md Sharker
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Masum Shahriar
- Department of Pharmacy, Jahangirnagar University, Savar, Bangladesh
| | | | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| |
Collapse
|
50
|
Abstract
Potassium channels are present in every living cell and essential to setting up a stable, non-zero transmembrane electrostatic potential which manifests the off-equilibrium livelihood of the cell. They are involved in other cellular activities and regulation, such as the controlled release of hormones, the activation of T-cells for immune response, the firing of action potential in muscle cells and neurons, etc. Pharmacological reagents targeting potassium channels are important for treating various human diseases linked to dysfunction of the channels. High-resolution structures of these channels are very useful tools for delineating the detailed chemical basis underlying channel functions and for structure-based design and optimization of their pharmacological and pharmaceutical agents. Structural studies of potassium channels have revolutionized biophysical understandings of key concepts in the field - ion selectivity, conduction, channel gating, and modulation, making them multi-modality targets of pharmacological regulation. In this chapter, I will select a few high-resolution structures to illustrate key structural insights, proposed allostery behind channel functions, disagreements still open to debate, and channel-lipid interactions and co-evolution. The known structural consensus allows the inference of conserved molecular mechanisms shared among subfamilies of K+ channels and makes it possible to develop channel-specific pharmaceutical agents.
Collapse
Affiliation(s)
- Qiu-Xing Jiang
- Laboratory of Molecular Physiology and Biophysics and the Cryo-EM Center, Hauptmann-Woodward Medical Research Institute, Buffalo, NY, USA.
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, USA.
- Departments of Materials Design and Invention and Physiology and Biophysics, University of Buffalo (SUNY), Buffalo, NY, USA.
| |
Collapse
|