1
|
Butola T, Hernández-Frausto M, Blankvoort S, Flatset MS, Peng L, Hairston A, Johnson CD, Elmaleh M, Amilcar A, Hussain F, Clopath C, Kentros C, Basu J. Hippocampus shapes entorhinal cortical output through a direct feedback circuit. Nat Neurosci 2025; 28:811-822. [PMID: 39966537 DOI: 10.1038/s41593-025-01883-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/16/2025] [Indexed: 02/20/2025]
Abstract
Our brains integrate sensory, cognitive and internal state information with memories to extract behavioral relevance. Cortico-hippocampal interactions likely mediate this interplay, but underlying circuit mechanisms remain elusive. Unlike the entorhinal cortex-to-hippocampus pathway, we know little about the organization and function of the hippocampus-to-cortex feedback circuit. Here we report in mice, two functionally distinct parallel hippocampus-to-entorhinal cortex feedback pathways: the canonical disynaptic route via layer 5 and a novel monosynaptic input to layer 2/3. Circuit mapping reveals that hippocampal input predominantly drives excitation in layer 5 but feed-forward inhibition in layer 2/3. Upon repetitive pairing with cortical layer 1 inputs, hippocampal inputs undergo homosynaptic potentiation in layer 5, but induce heterosynaptic plasticity and spike output in layer 2/3. Behaviorally, hippocampal inputs to layer 5 and layer 2/3 support object memory encoding versus recall, respectively. Two-photon imaging during navigation reveals hippocampal suppression reduces spatially tuned cortical axonal activity. We present a model, where hippocampal feedback could iteratively shape ongoing cortical processing.
Collapse
Affiliation(s)
- Tanvi Butola
- Neuroscience Institute, New York University Langone Health, New York City, NY, USA
| | | | - Stefan Blankvoort
- Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marcus Sandbukt Flatset
- Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lulu Peng
- Neuroscience Institute, New York University Langone Health, New York City, NY, USA
| | - Ariel Hairston
- Neuroscience Institute, New York University Langone Health, New York City, NY, USA
| | - Cara Deanna Johnson
- Neuroscience Institute, New York University Langone Health, New York City, NY, USA
| | - Margot Elmaleh
- Neuroscience Institute, New York University Langone Health, New York City, NY, USA
| | - Amanda Amilcar
- Neuroscience Institute, New York University Langone Health, New York City, NY, USA
| | - Fabliha Hussain
- Neuroscience Institute, New York University Langone Health, New York City, NY, USA
| | - Claudia Clopath
- Department of Bioengineering, Imperial College London, London, UK
| | - Clifford Kentros
- Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Jayeeta Basu
- Neuroscience Institute, New York University Langone Health, New York City, NY, USA.
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York City, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York City, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
2
|
Chandra S, Sharma S, Chaudhuri R, Fiete I. Episodic and associative memory from spatial scaffolds in the hippocampus. Nature 2025; 638:739-751. [PMID: 39814883 DOI: 10.1038/s41586-024-08392-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 11/13/2024] [Indexed: 01/18/2025]
Abstract
Hippocampal circuits in the brain enable two distinct cognitive functions: the construction of spatial maps for navigation, and the storage of sequential episodic memories1-5. Although there have been advances in modelling spatial representations in the hippocampus6-10, we lack good models of its role in episodic memory. Here we present a neocortical-entorhinal-hippocampal network model that implements a high-capacity general associative memory, spatial memory and episodic memory. By factoring content storage from the dynamics of generating error-correcting stable states, the circuit (which we call vector hippocampal scaffolded heteroassociative memory (Vector-HaSH)) avoids the memory cliff of prior memory models11,12, and instead exhibits a graceful trade-off between number of stored items and recall detail. A pre-structured internal scaffold based on grid cell states is essential for constructing even non-spatial episodic memory: it enables high-capacity sequence memorization by abstracting the chaining problem into one of learning low-dimensional transitions. Vector-HaSH reproduces several hippocampal experiments on spatial mapping and context-based representations, and provides a circuit model of the 'memory palaces' used by memory athletes13. Thus, this work provides a unified understanding of the spatial mapping and associative and episodic memory roles of the hippocampus.
Collapse
Affiliation(s)
- Sarthak Chandra
- Department of Brain and Cognitive Sciences and McGovern Institute, MIT, Cambridge, MA, USA
| | - Sugandha Sharma
- Department of Brain and Cognitive Sciences and McGovern Institute, MIT, Cambridge, MA, USA
| | - Rishidev Chaudhuri
- Center for Neuroscience, Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA
- Department of Mathematics, University of California Davis, Davis, CA, USA
| | - Ila Fiete
- Department of Brain and Cognitive Sciences and McGovern Institute, MIT, Cambridge, MA, USA.
| |
Collapse
|
3
|
Dong LL, Fiete IR. Grid Cells in Cognition: Mechanisms and Function. Annu Rev Neurosci 2024; 47:345-368. [PMID: 38684081 DOI: 10.1146/annurev-neuro-101323-112047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The activity patterns of grid cells form distinctively regular triangular lattices over the explored spatial environment and are largely invariant to visual stimuli, animal movement, and environment geometry. These neurons present numerous fascinating challenges to the curious (neuro)scientist: What are the circuit mechanisms responsible for creating spatially periodic activity patterns from the monotonic input-output responses of single neurons? How and why does the brain encode a local, nonperiodic variable-the allocentric position of the animal-with a periodic, nonlocal code? And, are grid cells truly specialized for spatial computations? Otherwise, what is their role in general cognition more broadly? We review efforts in uncovering the mechanisms and functional properties of grid cells, highlighting recent progress in the experimental validation of mechanistic grid cell models, and discuss the coding properties and functional advantages of the grid code as suggested by continuous attractor network models of grid cells.
Collapse
Affiliation(s)
- Ling L Dong
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Ila R Fiete
- McGovern Institute and K. Lisa Yang Integrative Computational Neuroscience Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
4
|
Ginosar G, Aljadeff J, Las L, Derdikman D, Ulanovsky N. Are grid cells used for navigation? On local metrics, subjective spaces, and black holes. Neuron 2023; 111:1858-1875. [PMID: 37044087 DOI: 10.1016/j.neuron.2023.03.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/18/2022] [Accepted: 03/20/2023] [Indexed: 04/14/2023]
Abstract
The symmetric, lattice-like spatial pattern of grid-cell activity is thought to provide a neuronal global metric for space. This view is compatible with grid cells recorded in empty boxes but inconsistent with data from more naturalistic settings. We review evidence arguing against the global-metric notion, including the distortion and disintegration of the grid pattern in complex and three-dimensional environments. We argue that deviations from lattice symmetry are key for understanding grid-cell function. We propose three possible functions for grid cells, which treat real-world grid distortions as a feature rather than a bug. First, grid cells may constitute a local metric for proximal space rather than a global metric for all space. Second, grid cells could form a metric for subjective action-relevant space rather than physical space. Third, distortions may represent salient locations. Finally, we discuss mechanisms that can underlie these functions. These ideas may transform our thinking about grid cells.
Collapse
Affiliation(s)
- Gily Ginosar
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Johnatan Aljadeff
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Liora Las
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dori Derdikman
- Department of Neuroscience, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel.
| | - Nachum Ulanovsky
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
5
|
Morris G, Derdikman D. The chicken and egg problem of grid cells and place cells. Trends Cogn Sci 2023; 27:125-138. [PMID: 36437188 DOI: 10.1016/j.tics.2022.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/26/2022]
Abstract
Place cells and grid cells are major building blocks of the hippocampal cognitive map. The prominent forward model postulates that grid-cell modules are generated by a continuous attractor network; that a velocity signal evoked during locomotion moves entorhinal activity bumps; and that place-cell activity constitutes summation of entorhinal grid-cell modules. Experimental data support the first postulate, but not the latter two. Several families of solutions that depart from these postulates have been put forward. We suggest a modified model (spatial modulation continuous attractor network; SCAN), whereby place cells are generated from spatially selective nongrid cells. Locomotion causes these cells to move the hippocampal activity bump, leading to movement of the entorhinal manifolds. Such inversion accords with the shift of hippocampal thought from navigation to more abstract functions.
Collapse
Affiliation(s)
- Genela Morris
- Department of Neuroscience, Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel; Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
| | - Dori Derdikman
- Department of Neuroscience, Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
6
|
Fernandez-Leon JA, Uysal AK, Ji D. Place cells dynamically refine grid cell activities to reduce error accumulation during path integration in a continuous attractor model. Sci Rep 2022; 12:21443. [PMID: 36509873 PMCID: PMC9744848 DOI: 10.1038/s41598-022-25863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Navigation is one of the most fundamental skills of animals. During spatial navigation, grid cells in the medial entorhinal cortex process speed and direction of the animal to map the environment. Hippocampal place cells, in turn, encode place using sensory signals and reduce the accumulated error of grid cells for path integration. Although both cell types are part of the path integration system, the dynamic relationship between place and grid cells and the error reduction mechanism is yet to be understood. We implemented a realistic model of grid cells based on a continuous attractor model. The grid cell model was coupled to a place cell model to address their dynamic relationship during a simulated animal's exploration of a square arena. The grid cell model processed the animal's velocity and place field information from place cells. Place cells incorporated salient visual features and proximity information with input from grid cells to define their place fields. Grid cells had similar spatial phases but a diversity of spacings and orientations. To determine the role of place cells in error reduction for path integration, the animal's position estimates were decoded from grid cell activities with and without the place field input. We found that the accumulated error was reduced as place fields emerged during the exploration. Place fields closer to the animal's current location contributed more to the error reduction than remote place fields. Place cells' fields encoding space could function as spatial anchoring signals for precise path integration by grid cells.
Collapse
Affiliation(s)
- Jose A Fernandez-Leon
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Exactas, INTIA, Tandil, Buenos Aires, Argentina.
- CIFICEN, UNCPBA-CICPBA-CONICET, Tandil, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Ahmet Kerim Uysal
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Daoyun Ji
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
7
|
Xu Z, Mo F, Yang G, Fan P, Wang Y, Lu B, Xie J, Dai Y, Song Y, He E, Xu S, Liu J, Wang M, Cai X. Grid cell remapping under three-dimensional object and social landmarks detected by implantable microelectrode arrays for the medial entorhinal cortex. MICROSYSTEMS & NANOENGINEERING 2022; 8:104. [PMID: 36124081 PMCID: PMC9481550 DOI: 10.1038/s41378-022-00436-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/29/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Grid cells with stable hexagonal firing patterns in the medial entorhinal cortex (MEC) carry the vital function of serving as a metric for the surrounding environment. Whether this mechanism processes only spatial information or involves nonspatial information remains elusive. Here, we fabricated an MEC-shaped microelectrode array (MEA) to detect the variation in neural spikes and local field potentials of the MEC when rats forage in a square enclosure with a planar, three-dimensional object and social landmarks in sequence. The results showed that grid cells exhibited rate remapping under social conditions in which spike firing fields closer to the social landmark had a higher firing rate. Furthermore, global remapping showed that hexagonal firing patterns were rotated and scaled when the planar landmark was replaced with object and social landmarks. In addition, when grid cells were activated, the local field potentials were dominated by the theta band (5-8 Hz), and spike phase locking was observed at troughs of theta oscillations. Our results suggest the pattern separation mechanism of grid cells in which the spatial firing structure and firing rate respond to spatial and social information, respectively, which may provide new insights into how the brain creates a cognitive map.
Collapse
Affiliation(s)
- Zhaojie Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Fan Mo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Gucheng Yang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Penghui Fan
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yiding Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Botao Lu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jingyu Xie
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yuchuan Dai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Enhui He
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Shihong Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Juntao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Mixia Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
8
|
Tukker JJ, Beed P, Brecht M, Kempter R, Moser EI, Schmitz D. Microcircuits for spatial coding in the medial entorhinal cortex. Physiol Rev 2022; 102:653-688. [PMID: 34254836 PMCID: PMC8759973 DOI: 10.1152/physrev.00042.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The hippocampal formation is critically involved in learning and memory and contains a large proportion of neurons encoding aspects of the organism's spatial surroundings. In the medial entorhinal cortex (MEC), this includes grid cells with their distinctive hexagonal firing fields as well as a host of other functionally defined cell types including head direction cells, speed cells, border cells, and object-vector cells. Such spatial coding emerges from the processing of external inputs by local microcircuits. However, it remains unclear exactly how local microcircuits and their dynamics within the MEC contribute to spatial discharge patterns. In this review we focus on recent investigations of intrinsic MEC connectivity, which have started to describe and quantify both excitatory and inhibitory wiring in the superficial layers of the MEC. Although the picture is far from complete, it appears that these layers contain robust recurrent connectivity that could sustain the attractor dynamics posited to underlie grid pattern formation. These findings pave the way to a deeper understanding of the mechanisms underlying spatial navigation and memory.
Collapse
Affiliation(s)
- John J Tukker
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Prateep Beed
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humbold-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Berlin, Germany
- Neurocure Cluster of Excellence, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Richard Kempter
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Edvard I Moser
- Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humbold-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Neurocure Cluster of Excellence, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
9
|
Waaga T, Agmon H, Normand VA, Nagelhus A, Gardner RJ, Moser MB, Moser EI, Burak Y. Grid-cell modules remain coordinated when neural activity is dissociated from external sensory cues. Neuron 2022; 110:1843-1856.e6. [PMID: 35385698 PMCID: PMC9235855 DOI: 10.1016/j.neuron.2022.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/25/2022] [Accepted: 03/09/2022] [Indexed: 11/30/2022]
Abstract
The representation of an animal’s position in the medial entorhinal cortex (MEC) is distributed across several modules of grid cells, each characterized by a distinct spatial scale. The population activity within each module is tightly coordinated and preserved across environments and behavioral states. Little is known, however, about the coordination of activity patterns across modules. We analyzed the joint activity patterns of hundreds of grid cells simultaneously recorded in animals that were foraging either in the light, when sensory cues could stabilize the representation, or in darkness, when such stabilization was disrupted. We found that the states of different modules are tightly coordinated, even in darkness, when the internal representation of position within the MEC deviates substantially from the true position of the animal. These findings suggest that internal brain mechanisms dynamically coordinate the representation of position in different modules, ensuring that they jointly encode a coherent and smooth trajectory. Hundreds of grid cells were recorded simultaneously from multiple grid modules Coordination between grid modules was assessed in rats that foraged in darkness Coordination persists despite relative drift of the represented versus true position This suggests that internal network mechanisms maintain inter-module coordination
Collapse
Affiliation(s)
- Torgeir Waaga
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Haggai Agmon
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Valentin A Normand
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anne Nagelhus
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Richard J Gardner
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - May-Britt Moser
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Edvard I Moser
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Yoram Burak
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
10
|
Rueckemann JW, Sosa M, Giocomo LM, Buffalo EA. The grid code for ordered experience. Nat Rev Neurosci 2021; 22:637-649. [PMID: 34453151 PMCID: PMC9371942 DOI: 10.1038/s41583-021-00499-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
Entorhinal cortical grid cells fire in a periodic pattern that tiles space, which is suggestive of a spatial coordinate system. However, irregularities in the grid pattern as well as responses of grid cells in contexts other than spatial navigation have presented a challenge to existing models of entorhinal function. In this Perspective, we propose that hippocampal input provides a key informative drive to the grid network in both spatial and non-spatial circumstances, particularly around salient events. We build on previous models in which neural activity propagates through the entorhinal-hippocampal network in time. This temporal contiguity in network activity points to temporal order as a necessary characteristic of representations generated by the hippocampal formation. We advocate that interactions in the entorhinal-hippocampal loop build a topological representation that is rooted in the temporal order of experience. In this way, the structure of grid cell firing supports a learned topology rather than a rigid coordinate frame that is bound to measurements of the physical world.
Collapse
Affiliation(s)
- Jon W Rueckemann
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
- Washington National Primate Research Center, Seattle, WA, USA
| | - Marielena Sosa
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lisa M Giocomo
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Elizabeth A Buffalo
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA.
- Washington National Primate Research Center, Seattle, WA, USA.
| |
Collapse
|
11
|
Agmon H, Burak Y. A theory of joint attractor dynamics in the hippocampus and the entorhinal cortex accounts for artificial remapping and grid cell field-to-field variability. eLife 2020; 9:56894. [PMID: 32779570 PMCID: PMC7447444 DOI: 10.7554/elife.56894] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/07/2020] [Indexed: 01/04/2023] Open
Abstract
The representation of position in the mammalian brain is distributed across multiple neural populations. Grid cell modules in the medial entorhinal cortex (MEC) express activity patterns that span a low-dimensional manifold which remains stable across different environments. In contrast, the activity patterns of hippocampal place cells span distinct low-dimensional manifolds in different environments. It is unknown how these multiple representations of position are coordinated. Here, we develop a theory of joint attractor dynamics in the hippocampus and the MEC. We show that the system exhibits a coordinated, joint representation of position across multiple environments, consistent with global remapping in place cells and grid cells. In addition, our model accounts for recent experimental observations that lack a mechanistic explanation: variability in the firing rate of single grid cells across firing fields, and artificial remapping of place cells under depolarization, but not under hyperpolarization, of layer II stellate cells of the MEC.
Collapse
Affiliation(s)
- Haggai Agmon
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yoram Burak
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|