1
|
Kaufmann H, Salvador C, Salazar VW, Cruz N, Dias GM, Tschoeke D, Campos L, Sawabe T, Miyazaki M, Maruyama F, Thompson F, Thompson C. Genomic Repertoire of Twenty-Two Novel Vibrionaceae Species Isolated from Marine Sediments. MICROBIAL ECOLOGY 2025; 88:36. [PMID: 40301151 PMCID: PMC12041005 DOI: 10.1007/s00248-025-02533-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/10/2025] [Indexed: 05/01/2025]
Abstract
The genomic repertoire of vibrios has been extensively studied, particularly regarding their metabolic plasticity, symbiotic interactions, and resistance mechanisms to environmental stressors. However, little is known about the genomic diversity and adaptations of vibrios inhabiting deep-sea marine sediments. In this study, we investigated the genomic diversity of vibrios isolated from deep-sea core sediments collected using a manned submersible off Japan. A total of 50 vibrio isolates were obtained and characterized phenotypically, and by genome sequencing. From this total, we disclosed 22 novel species examining genome-to-genome distance, average amino acid identity, and phenotypes (Alivibrio: 1; Enterovibrio: 1; Photobacterium: 8; Vibrio: 12). The novel species have fallen within known clades (e.g., Fisheri, Enterovibrio, Profundum, and Splendidus) and novel clades (JAMM0721, JAMM0388, JAMM0395). The 28 remainder isolates were identified as known species: Aliivibrio sifiae (2), A. salmonicida (1), Enterovibrio baiacu (1), E. norvegicus (1), Photobacterium profundum (3), P. angustum (1), P. chitiniliticum (1), P. frigidiphilum (1), Photobacterium indicum (1), P. sanguinicancri (1). P. swingsii (2), Vibrio alginolyticus (3), V. anguillarum (1), V. campbellii (1), V. fluvialis (1), V. gigantis (1), V. lentus (1), V. splendidus (4), and V. tasmaniensis (1). Genomic analyses revealed that all 50 vibrios harbored genes associated with high-pressure adaptation, including sensor kinases, chaperones, autoinducer-2 (AI-2) signaling, oxidative damage repair, polyunsaturated fatty acid biosynthesis, and stress response mechanisms related to periplasmic and outer membrane protein misfolding under heat shock and osmotic stress. Additionally, alternative sigma factors, trimethylamine oxide (TMAO) respiration, and osmoprotectant acquisition pathways were identified, further supporting their ability to thrive in deep-sea environments. Notably, the genomes exhibited a high prevalence of antibiotic resistance genes, with antibiotic efflux pumps being the most abundant group. The ugd gene expanded in number in some novel species (Photobacterium satsumensis sp. nov. JAMM1754: 4 copies; Vibrio makurazakiensis sp. nov. JAMM1826: 3 copies). This gene may confer antibiotic (polymyxin) resistance to these vibrios.
Collapse
Affiliation(s)
- Hannah Kaufmann
- Laboratory of Microbiology, Institute of Biology, UFRJ, Rio de Janeiro, Brazil
| | - Carolina Salvador
- Laboratory of Microbiology, Institute of Biology, UFRJ, Rio de Janeiro, Brazil
| | - Vinicius W Salazar
- Laboratory of Microbiology, Institute of Biology, UFRJ, Rio de Janeiro, Brazil
- Faculty of Medicine, Dentistry, and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Natália Cruz
- Laboratory of Microbiology, Institute of Biology, UFRJ, Rio de Janeiro, Brazil
| | - Graciela Maria Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Diogo Tschoeke
- Laboratory of Microbiology, Institute of Biology, UFRJ, Rio de Janeiro, Brazil
- Instituto Alberto Luiz Coimbra de Pós-Graduação E Pesquisa de Engenharia (COPPE), Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Lucia Campos
- Laboratory of Microbiology, Institute of Biology, UFRJ, Rio de Janeiro, Brazil
| | - Tomoo Sawabe
- Laboratory of Microbiology, Fisheries Sciences School, Hokkaido University, Hakodate, Japan
| | - Masayuki Miyazaki
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Yokosuka, Japan
- Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Fumito Maruyama
- Microbial Genomics and Ecology Laboratory, Hiroshima University, Hiroshima, Japan
| | - Fabiano Thompson
- Laboratory of Microbiology, Institute of Biology, UFRJ, Rio de Janeiro, Brazil.
| | - Cristiane Thompson
- Laboratory of Microbiology, Institute of Biology, UFRJ, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Kamp DL, Kerwin AH, McAnulty SJ, Nyholm SV. Organ structure and bacterial microbiogeography in a reproductive organ of the Hawaiian bobtail squid reveal dimensions of a defensive symbiosis. Appl Environ Microbiol 2025:e0216324. [PMID: 40231847 DOI: 10.1128/aem.02163-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/09/2025] [Indexed: 04/16/2025] Open
Abstract
Many plants and animals house symbiotic microorganisms in specialized tissues or organs. Here, we used multidimensional in situ imaging techniques to illuminate how host organ structure and bacterial microbiogeography contribute to the symbiotic function of an organ in the Hawaiian bobtail squid, Euprymna scolopes. Along with the well-studied light organ, female E. scolopes harbor a community of bacteria in the accessory nidamental gland (ANG). The ANG is a dense network of epithelium-lined tubules, some of which are dominated by a single bacterial taxon. These bacteria are deposited into squid eggs, where they defend the developing embryos from harmful biofouling. This study used a combination of imaging techniques to visualize different dimensions of the ANG and its bacterial communities. Imaging entire organs with light sheet microscopy revealed that the ANG is a composite tissue of individual, non-intersecting tubules that each harbor their own bacterial population. The organ is bisected, with tubules converging toward two points at the posterior end. At these points, tubules empty into a space where bacteria can mix with squid jelly to be deposited onto eggs. Observations of the symbiotic community correlated bacterial taxa with cell morphology and revealed that tubule populations varied: some tubules contained populations of mixed taxa, whereas others contained only one bacterial genus. Together, these data shed light on how bacterial populations interact within the ANG and how the host uses physical structure to maintain and employ a symbiotic bacterial population in a defensive context.IMPORTANCESequence-based microbiome studies have revealed much about how hosts interact with communities of symbiotic microbiota but often lack a spatial understanding of how microbes relate to each other and the host in which they reside. This study uses a combination of microscopy techniques to reveal how the structure of a symbiotic organ in the female bobtail squid, Euprymna scolopes, houses diverse, beneficial bacterial populations and deploys them for egg defense. These findings suggest that spatial partitioning may be key to harboring a diverse population of antimicrobial-producing bacteria and establishing a foundation for further understanding how host structures mediate symbiotic interactions.
Collapse
Affiliation(s)
- Derrick L Kamp
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Allison H Kerwin
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
- Department of Biology, McDaniel College, Westminster, Maryland, USA
| | - Sarah J McAnulty
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
- Skype a Scientist, Philadelphia, Pennsylvania, USA
| | - Spencer V Nyholm
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
3
|
Auclert LZ, Chhanda MS, Derome N. Interwoven processes in fish development: microbial community succession and immune maturation. PeerJ 2024; 12:e17051. [PMID: 38560465 PMCID: PMC10981415 DOI: 10.7717/peerj.17051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/13/2024] [Indexed: 04/04/2024] Open
Abstract
Fishes are hosts for many microorganisms that provide them with beneficial effects on growth, immune system development, nutrition and protection against pathogens. In order to avoid spreading of infectious diseases in aquaculture, prevention includes vaccinations and routine disinfection of eggs and equipment, while curative treatments consist in the administration of antibiotics. Vaccination processes can stress the fish and require substantial farmer's investment. Additionally, disinfection and antibiotics are not specific, and while they may be effective in the short term, they have major drawbacks in the long term. Indeed, they eliminate beneficial bacteria which are useful for the host and promote the raising of antibiotic resistance in beneficial, commensal but also in pathogenic bacterial strains. Numerous publications highlight the importance that plays the diversified microbial community colonizing fish (i.e., microbiota) in the development, health and ultimately survival of their host. This review targets the current knowledge on the bidirectional communication between the microbiota and the fish immune system during fish development. It explores the extent of this mutualistic relationship: on one hand, the effect that microbes exert on the immune system ontogeny of fishes, and on the other hand, the impact of critical steps in immune system development on the microbial recruitment and succession throughout their life. We will first describe the immune system and its ontogeny and gene expression steps in the immune system development of fishes. Secondly, the plurality of the microbiotas (depending on host organism, organ, and development stage) will be reviewed. Then, a description of the constant interactions between microbiota and immune system throughout the fish's life stages will be discussed. Healthy microbiotas allow immune system maturation and modulation of inflammation, both of which contribute to immune homeostasis. Thus, immune equilibrium is closely linked to microbiota stability and to the stages of microbial community succession during the host development. We will provide examples from several fish species and describe more extensively the mechanisms occurring in zebrafish model because immune system ontogeny is much more finely described for this species, thanks to the many existing zebrafish mutants which allow more precise investigations. We will conclude on how the conceptual framework associated to the research on the immune system will benefit from considering the relations between microbiota and immune system maturation. More precisely, the development of active tolerance of the microbiota from the earliest stages of life enables the sustainable establishment of a complex healthy microbial community in the adult host. Establishing a balanced host-microbiota interaction avoids triggering deleterious inflammation, and maintains immunological and microbiological homeostasis.
Collapse
Affiliation(s)
- Lisa Zoé Auclert
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Mousumi Sarker Chhanda
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
- Department of Aquaculture, Faculty of Fisheries, Hajee Mohammad Danesh Science and Technology University, Basherhat, Bangladesh
| | - Nicolas Derome
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| |
Collapse
|
4
|
Mat A, Vu HH, Wolf E, Tessmar-Raible K. All Light, Everywhere? Photoreceptors at Nonconventional Sites. Physiology (Bethesda) 2024; 39:0. [PMID: 37905983 PMCID: PMC11283901 DOI: 10.1152/physiol.00017.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/29/2023] [Accepted: 10/29/2023] [Indexed: 11/02/2023] Open
Abstract
One of the biggest environmental alterations we have made to our species is the change in the exposure to light. During the day, we typically sit behind glass windows illuminated by artificial light that is >400 times dimmer and has a very different spectrum than natural daylight. On the opposite end are the nights that are now lit up by several orders of magnitude. This review aims to provide food for thought as to why this matters for humans and other animals. Evidence from behavioral neuroscience, physiology, chronobiology, and molecular biology is increasingly converging on the conclusions that the biological nonvisual functions of light and photosensory molecules are highly complex. The initial work of von Frisch on extraocular photoreceptors in fish, the identification of rhodopsins as the molecular light receptors in animal eyes and eye-like structures and cryptochromes as light sensors in nonmammalian chronobiology, still allowed for the impression that light reception would be a relatively restricted, localized sense in most animals. However, light-sensitive processes and/or sensory proteins have now been localized to many different cell types and tissues. It might be necessary to consider nonlight-responding cells as the exception, rather than the rule.
Collapse
Affiliation(s)
- Audrey Mat
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- VIPS2, Vienna BioCenter, Vienna, Austria
| | - Hong Ha Vu
- Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Eva Wolf
- Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Carl-von-Ossietzky University, Oldenburg, Germany
| |
Collapse
|
5
|
Cai R, He W, Zhang J, Liu R, Yin Z, Zhang X, Sun C. Blue light promotes zero-valent sulfur production in a deep-sea bacterium. EMBO J 2023; 42:e112514. [PMID: 36946144 PMCID: PMC10267690 DOI: 10.15252/embj.2022112514] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
Increasing evidence has shown that light exists in a diverse range of deep-sea environments. We unexpectedly found that blue light is necessary to produce excess zero-valent sulfur (ZVS) in Erythrobacter flavus 21-3, a bacterium that has been recently isolated from a deep-sea cold seep. E. flavus 21-3 is able to convert thiosulfate to ZVS using a novel thiosulfate oxidation pathway comprising a thiosulfate dehydrogenase (TsdA) and a thiosulfohydrolase (SoxB). Using proteomic, bacterial two-hybrid and heterologous expression assays, we found that the light-oxygen-voltage histidine kinase LOV-1477 responds to blue light and activates the diguanylate cyclase DGC-2902 to produce c-di-GMP. Subsequently, the PilZ domain-containing protein mPilZ-1753 binds to c-di-GMP and activates TsdA through direct interaction. Finally, Raman spectroscopy and gene knockout results verified that TsdA and two SoxB homologs cooperate to regulate ZVS production. As ZVS is an energy source for E. flavus 21-3, we propose that deep-sea blue light provides E. flavus 21-3 with a selective advantage in the cold seep, suggesting a previously unappreciated relationship between light-sensing pathways and sulfur metabolism in a deep-sea microorganism.
Collapse
Affiliation(s)
- Ruining Cai
- CAS Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- College of Earth ScienceUniversity of Chinese Academy of SciencesBeijingChina
- Center of Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| | - Wanying He
- College of Earth ScienceUniversity of Chinese Academy of SciencesBeijingChina
- Center of Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
- CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of OceanologyChinese Academy of SciencesQingdaoChina
| | - Jing Zhang
- School of Life SciencesHebei UniversityBaodingChina
| | - Rui Liu
- CAS Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Center of Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| | - Ziyu Yin
- College of Earth ScienceUniversity of Chinese Academy of SciencesBeijingChina
- Center of Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
- CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of OceanologyChinese Academy of SciencesQingdaoChina
| | - Xin Zhang
- College of Earth ScienceUniversity of Chinese Academy of SciencesBeijingChina
- Center of Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
- CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of OceanologyChinese Academy of SciencesQingdaoChina
| | - Chaomin Sun
- CAS Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- College of Earth ScienceUniversity of Chinese Academy of SciencesBeijingChina
- Center of Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| |
Collapse
|
6
|
Ramalho MO, Moreau CS. Untangling the complex interactions between turtle ants and their microbial partners. Anim Microbiome 2023; 5:1. [PMID: 36597141 PMCID: PMC9809061 DOI: 10.1186/s42523-022-00223-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND To understand the patterns of biodiversity it is important to consider symbiotic interactions as they can shape animal evolution. In several ant genera symbiotic interactions with microbial communities have been shown to have profound impacts for the host. For example, we know that for Camponotini the gut community can upgrade the host's diet and is shaped by development and colony interactions. However, what is true for one ant group may not be true for another. For the microbial communities that have been examined across ants we see variation in the diversity, host factors that structure these communities, and the function these microbes provide for the host. In the herbivorous turtle ants (Cephalotes) their stable symbiotic interactions with gut bacteria have persisted for 50 million years with the gut bacteria synthesizing essential amino acids that are used by the host. Although we know the function for some of these turtle ant-associated bacteria there are still many open questions. RESULTS In the present study we examined microbial community diversity (16S rRNA and 18S rRNA amplicons) of more than 75 species of turtle ants across different geographic locations and in the context of the host's phylogenetic history. Our results show (1) that belonging to a certain species and biogeographic regions are relevant to structuring the microbial community of turtle ants; (2) both bacterial and eukaryotic communities demonstrated correlations and cooccurrence within the ant host; (3) within the core bacterial community, Burkholderiaceae bacterial lineage were the only group that showed strong patterns of codiversification with the host, which is remarkable since the core bacterial community is stable and persistent. CONCLUSIONS We concluded that for the turtle ants there is a diverse and evolutionarily stable core bacterial community, which leads to interesting questions about what microbial or host factors influence when these partner histories become evolutionarily intertwined.
Collapse
Affiliation(s)
- Manuela O. Ramalho
- grid.268132.c0000 0001 0701 2416Department of Biology, West Chester University, 750 South Church Street, West Chester, PA 19383 USA
| | - Corrie S. Moreau
- grid.5386.8000000041936877XDepartment of Entomology, Cornell University, Ithaca, NY 14853 USA ,grid.5386.8000000041936877XDepartment of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
7
|
Fronk DC, Sachs JL. Symbiotic organs: the nexus of host-microbe evolution. Trends Ecol Evol 2022; 37:599-610. [PMID: 35393155 DOI: 10.1016/j.tree.2022.02.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023]
Abstract
Diverse plants and animals have evolved specialized structures to filter and house beneficial microbes. These symbiotic organs form crucial points of exchange between host and symbiont, are often shaped by both partners, and exhibit features that facilitate a suite of microbial services. While symbiotic organs exhibit varied function, morphology, and developmental plasticity, they share core features linked to the evolutionary maintenance of beneficial symbiosis. Moreover, these organs can have a significant role in altering the demographic forces that shape microbial genomes, driving population bottlenecks and horizontal gene transfer (HGT). To advance our understanding of these 'joint phenotypes' across varied systems, future research must consider the emergent forces that can shape symbiotic organs, including fitness feedbacks and conflicts between interacting genomes.
Collapse
Affiliation(s)
- David C Fronk
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Joel L Sachs
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA; Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA; Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
8
|
Microbiomes of Hadal Fishes across Trench Habitats Contain Similar Taxa and Known Piezophiles. mSphere 2022; 7:e0003222. [PMID: 35306867 PMCID: PMC9044967 DOI: 10.1128/msphere.00032-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Hadal snailfishes are the deepest-living fishes in the ocean, inhabiting trenches from depths of ∼6,000 to 8,000 m. While the microbial communities in trench environments have begun to be characterized, the microbes associated with hadal megafauna remain relatively unknown. Here, we describe the gut microbiomes of two hadal snailfishes, Pseudoliparis swirei (Mariana Trench) and Notoliparis kermadecensis (Kermadec Trench), using 16S rRNA gene amplicon sequencing. We contextualize these microbiomes with comparisons to the abyssal macrourid Coryphaenoides yaquinae and the continental shelf-dwelling snailfish Careproctus melanurus. The microbial communities of the hadal snailfishes were distinct from their shallower counterparts and were dominated by the same sequences related to the Mycoplasmataceae and Desulfovibrionaceae. These shared taxa indicate that symbiont lineages have remained similar to the ancestral symbiont since their geographic separation or that they are dispersed between geographically distant trenches and subsequently colonize specific hosts. The abyssal and hadal fishes contained sequences related to known, cultured piezophiles, microbes that grow optimally under high hydrostatic pressure, including Psychromonas, Moritella, and Shewanella. These taxa are adept at colonizing nutrient-rich environments present in the deep ocean, such as on particles and in the guts of hosts, and we hypothesize they could make a dietary contribution to deep-sea fishes by degrading chitin and producing fatty acids. We characterize the gut microbiota within some of the deepest fishes to provide new insight into the diversity and distribution of host-associated microbial taxa and the potential of these animals, and the microbes they harbor, for understanding adaptation to deep-sea habitats. IMPORTANCE Hadal trenches, characterized by high hydrostatic pressures and low temperatures, are one of the most extreme environments on our planet. By examining the microbiome of abyssal and hadal fishes, we provide insight into the diversity and distribution of host-associated life at great depth. Our findings show that there are similar microbial populations in fishes geographically separated by thousands of miles, reflecting strong selection for specific microbial lineages. Only a few psychropiezophilic taxa, which do not reflect the diversity of microbial life at great depth, have been successfully isolated in the laboratory. Our examination of deep-sea fish microbiomes shows that typical high-pressure culturing methodologies, which have largely remained unchanged since the pioneering work of Claude ZoBell in the 1950s, may simulate the chemical environment found in animal guts and helps explain why the same deep-sea genera are consistently isolated.
Collapse
|
9
|
Baker LJ, Reich HG, Kitchen SA, Grace Klinges J, Koch HR, Baums IB, Muller EM, Thurber RV. The coral symbiont Candidatus Aquarickettsia is variably abundant in threatened Caribbean acroporids and transmitted horizontally. THE ISME JOURNAL 2022; 16:400-411. [PMID: 34363004 PMCID: PMC8776821 DOI: 10.1038/s41396-021-01077-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/28/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
The symbiont "Candidatus Aquarickettsia rohweri" infects a diversity of aquatic hosts. In the threatened Caribbean coral, Acropora cervicornis, Aquarickettsia proliferates in response to increased nutrient exposure, resulting in suppressed growth and increased disease susceptibility and mortality of coral. This study evaluated the extent, as well as the ecology and evolution of Aquarickettsia infecting threatened corals, Ac. cervicornis, and Ac. palmata and their hybrid ("Ac. prolifera"). Aquarickettsia was found in all acroporids, with coral host and geographic location impacting the infection magnitude. Phylogenomic and genome-wide single-nucleotide variant analysis of Aquarickettsia found phylogenetic clustering by geographic region, not by coral taxon. Analysis of Aquarickettsia fixation indices suggests multiple sequential infections of the same coral colony are unlikely. Furthermore, relative to other Rickettsiales species, Aquarickettsia is undergoing positive selection, with Florida populations experiencing greater positive selection relative to other Caribbean locations. This may be due in part to Aquarickettsia proliferating in response to greater nutrient stress in Florida, as indicated by greater in situ replication rates in these corals. Aquarickettsia was not found to significantly codiversify with either the coral animal or the coral's algal symbiont (Symbiodinium "fitti"). Quantitative PCR analysis showed that gametes, larvae, recruits, and juveniles from susceptible, captive-reared coral genets were not infected with Aquarickettsia. Thus, horizontal transmission of Aquarickettsia via coral mucocytes or an unidentified host is more likely. The prevalence of Aquarickettsia in Ac. cervicornis and its high abundance in the Florida coral population suggests that coral disease mitigation efforts focus on preventing early infection via horizontal transmission.
Collapse
Affiliation(s)
- Lydia J Baker
- Department of Microbiology, Oregon State University, Corvallis, OR, USA.
| | - Hannah G Reich
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Sheila A Kitchen
- Division of Biology and Biological Engineering, California Institute of Science and Technology, Pasadena, CA, USA
| | - J Grace Klinges
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Hanna R Koch
- Coral Restoration Program, Mote Marine Laboratory, Summerland Key, FL, USA
| | - Iliana B Baums
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Erinn M Muller
- Coral Restoration Program, Mote Marine Laboratory, Summerland Key, FL, USA
| | | |
Collapse
|
10
|
Isakov N. Histocompatibility and Reproduction: Lessons from the Anglerfish. LIFE (BASEL, SWITZERLAND) 2022; 12:life12010113. [PMID: 35054506 PMCID: PMC8780861 DOI: 10.3390/life12010113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 11/16/2022]
Abstract
Reproduction in certain deep-sea anglerfishes involves the permanent attachment of dwarf males to much larger females and fusion of their tissues leading to the establishment of a shared circulatory system. This unusual phenomenon of sexual parasitism enables anglerfishes to maximize reproductive success in the vast and deep oceans, where females and males otherwise rarely meet. An even more surprising phenomenon relates to the observation that joining of genetically disparate male and female anglerfishes does not evoke a strong anti-graft immune rejection response, which occurs in vertebrates following allogeneic parabiosis. Recent studies demonstrated that the evolutionary processes that led to the unique mating strategy of anglerfishes coevolved with genetic changes that resulted in loss of functional genes encoding critical components of the adaptive immune system. These genetic alterations enabled anglerfishes to tolerate the histoincompatible tissue antigens of their mate and prevent the occurrence of reciprocal graft rejection responses. While the exact mechanisms by which anglerfishes defend themselves against pathogens have not yet been deciphered, it is speculated that during evolution, anglerfishes adopted new immune strategies that compensate for the loss of B and T lymphocyte functions and enable them to resist infection by pathogens.
Collapse
Affiliation(s)
- Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| |
Collapse
|
11
|
Jiang C, Tanaka M, Nishikawa S, Mino S, Romalde JL, Thompson FL, Gomez-Gil B, Sawabe T. Vibrio Clade 3.0: New Vibrionaceae Evolutionary Units Using Genome-Based Approach. Curr Microbiol 2021; 79:10. [PMID: 34905112 DOI: 10.1007/s00284-021-02725-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/10/2021] [Indexed: 01/05/2023]
Abstract
Currently, over 190 species in family Vibrionaceae, including not-yet-cultured taxa, have been described and classified into over nine genera, in which the number of species has doubled compared to the previous vibrio evolutionary update (Vibrio Clade 2.0) (Sawabe et al. 2014). In this study, "Vibrio Clade 3.0," the second update of the molecular phylogenetic analysis was performed based on nucleotide sequences of eight housekeeping genes (8-HKGs) retrieved from genome sequences, including 22 newly determined genomes. A total of 51 distinct clades were observed, of which 21 clades are newly described. We further evaluated the delineation powers of the clade classification based on nucleotide sequences of 34 single-copy genes and 11 ribosomal protein genes (11-RPGs) retrieved from core-genome sequences; however, the delineation power of 8-HKGs is still high and that gene set can be reliably used for the classification and identification of Vibrionaceae. Furthermore, the 11-RPGs set proved to be useful in identifying uncultured species among metagenome-assembled genome (MAG) and/or single-cell genome-assembled genome (SAG) pools. This study expands the awareness of the diversity and evolutionary history of the family Vibrionaceae and accelerates the taxonomic applications in classifying as not-yet-cultured taxa among MAGs and SAGs.
Collapse
Affiliation(s)
- Chunqi Jiang
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Mami Tanaka
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Sayo Nishikawa
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Jesús L Romalde
- Departamento de Microbiología y Parasitología, CRETUS & CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela, España
| | - Fabiano L Thompson
- Institute of Biology and SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Bruno Gomez-Gil
- CIAD, AC, Mazatlan Unit for Aquaculture and Environmental Management, Mazatlán, México
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan.
| |
Collapse
|
12
|
Abstract
Microbial communities associated with deep-sea animals are critical to the establishment of novel biological communities in unusual environments. Over the past few decades, rapid exploration of the deep sea has enabled the discovery of novel microbial communities, some of which form symbiotic relationships with animal hosts. Symbiosis in the deep sea changes host physiology, behavior, ecology, and evolution over time and space. Symbiont diversity within a host is often aligned with diverse metabolic pathways that broaden the environmental niche for the animal host. In this review, we focus on microbiomes and obligate symbionts found in different deep-sea habitats and how they facilitate survival of the organisms that live in these environments. In addition, we discuss factors that govern microbiome diversity, host specificity, and biogeography in the deep sea. Finally, we highlight the current limitations of microbiome research and draw a road map for future directions to advance our knowledge of microbiomes in the deep sea. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Eslam O Osman
- Biology Department, Eberly College, Pennsylvania State University, State College, Pennsylvania, USA; .,Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Marine Biology Lab, Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Alexis M Weinnig
- Biology Department, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Acquisition of bioluminescent trait by non-luminous organisms from luminous organisms through various origins. Photochem Photobiol Sci 2021; 20:1547-1562. [PMID: 34714534 DOI: 10.1007/s43630-021-00124-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/20/2021] [Indexed: 12/20/2022]
Abstract
Bioluminescence is a natural light emitting phenomenon that occurs due to a chemical reaction between luciferin and luciferase. It is primarily an innate and inherited trait in most terrestrial luminous organisms. However, most luminous organisms produce light in the ocean by acquiring luminous symbionts, luciferin (substrate), and/or luciferase (enzyme) through various transmission pathways. For instance, coelenterazine, a well-known luciferin, is obtained by cnidarians, crustaceans, and deep-sea fish through multi-level dietary linkages from coelenterazine producers such as ctenophores, decapods, and copepods. In contrast, some non-luminous Vibrio bacteria became bioluminescent by obtaining lux genes from luminous Vibrio species by horizontal gene transfer. Various examples detailed in this review show how non-luminescent organisms became luminescent by acquiring symbionts, dietary luciferins and luciferases, and genes. This review highlights three modes (symbiosis, ingestion, and horizontal gene transfer) that allow organisms lacking genes for autonomous bioluminescent systems to obtain the ability to produce light. In addition to bioluminescence, this manuscript discusses the acquisition of other traits such as pigments, fluorescence, toxins, and others, to infer the potential processes of acquisition.
Collapse
|
14
|
Perreau J, Moran NA. Genetic innovations in animal-microbe symbioses. Nat Rev Genet 2021; 23:23-39. [PMID: 34389828 DOI: 10.1038/s41576-021-00395-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
Animal hosts have initiated myriad symbiotic associations with microorganisms and often have maintained these symbioses for millions of years, spanning drastic changes in ecological conditions and lifestyles. The establishment and persistence of these relationships require genetic innovations on the parts of both symbionts and hosts. The nature of symbiont innovations depends on their genetic population structure, categorized here as open, closed or mixed. These categories reflect modes of inter-host transmission that result in distinct genomic features, or genomic syndromes, in symbionts. Although less studied, hosts also innovate in order to preserve and control symbiotic partnerships. New capabilities to sequence host-associated microbial communities and to experimentally manipulate both hosts and symbionts are providing unprecedented insights into how genetic innovations arise under different symbiont population structures and how these innovations function to support symbiotic relationships.
Collapse
Affiliation(s)
- Julie Perreau
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|
15
|
Thompson AW, Ward AC, Sweeney CP, Sutherland KR. Host-specific symbioses and the microbial prey of a pelagic tunicate (Pyrosoma atlanticum). ISME COMMUNICATIONS 2021; 1:11. [PMID: 36721065 PMCID: PMC9723572 DOI: 10.1038/s43705-021-00007-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/12/2021] [Accepted: 02/24/2021] [Indexed: 02/03/2023]
Abstract
Pyrosomes are widely distributed pelagic tunicates that have the potential to reshape marine food webs when they bloom. However, their grazing preferences and interactions with the background microbial community are poorly understood. This is the first study of the marine microorganisms associated with pyrosomes undertaken to improve the understanding of pyrosome biology, the impact of pyrosome blooms on marine microbial systems, and microbial symbioses with marine animals. The diversity, relative abundance, and taxonomy of pyrosome-associated microorganisms were compared to seawater during a Pyrosoma atlanticum bloom in the Northern California Current System using high-throughput sequencing of the 16S rRNA gene, microscopy, and flow cytometry. We found that pyrosomes harbor a microbiome distinct from the surrounding seawater, which was dominated by a few novel taxa. In addition to the dominant taxa, numerous more rare pyrosome-specific microbial taxa were recovered. Multiple bioluminescent taxa were present in pyrosomes, which may be a source of the iconic pyrosome luminescence. We also discovered free-living marine microorganisms in association with pyrosomes, suggesting that pyrosome feeding impacts all microbial size classes but preferentially removes larger eukaryotic taxa. This study demonstrates that microbial symbionts and microbial prey are central to pyrosome biology. In addition to pyrosome impacts on higher trophic level marine food webs, the work suggests that pyrosomes also alter marine food webs at the microbial level through feeding and seeding of the marine microbial communities with their symbionts. Future efforts to predict pyrosome blooms, and account for their ecosystem impacts, should consider pyrosome interactions with marine microbial communities.
Collapse
Affiliation(s)
- Anne W Thompson
- Department of Biology, Portland State University, Portland, OR, USA.
| | - Anna C Ward
- Oregon Institute of Marine Biology, University of Oregon, Eugene, OR, USA
| | - Carey P Sweeney
- Department of Biology, Portland State University, Portland, OR, USA
| | - Kelly R Sutherland
- Oregon Institute of Marine Biology, University of Oregon, Eugene, OR, USA
| |
Collapse
|
16
|
Multiple concurrent and convergent stages of genome reduction in bacterial symbionts across a stink bug family. Sci Rep 2021; 11:7731. [PMID: 33833268 PMCID: PMC8032781 DOI: 10.1038/s41598-021-86574-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/15/2021] [Indexed: 02/01/2023] Open
Abstract
Nutritional symbioses between bacteria and insects are prevalent and diverse, allowing insects to expand their feeding strategies and niches. A common consequence of long-term associations is a considerable reduction in symbiont genome size likely influenced by the radical shift in selective pressures as a result of the less variable environment within the host. While several of these cases can be found across distinct insect species, most examples provide a limited view of a single or few stages of the process of genome reduction. Stink bugs (Pentatomidae) contain inherited gamma-proteobacterial symbionts in a modified organ in their midgut and are an example of a long-term nutritional symbiosis, but multiple cases of new symbiont acquisition throughout the history of the family have been described. We sequenced the genomes of 11 symbionts of stink bugs with sizes that ranged from equal to those of their free-living relatives to less than 20%. Comparative genomics of these and previously sequenced symbionts revealed initial stages of genome reduction including an initial pseudogenization before genome reduction, followed by multiple stages of progressive degeneration of existing metabolic pathways likely to impact host interactions such as cell wall component biosynthesis. Amino acid biosynthesis pathways were retained in a similar manner as in other nutritional symbionts. Stink bug symbionts display convergent genome reduction events showing progressive changes from a free-living bacterium to a host-dependent symbiont. This system can therefore be used to study convergent genome evolution of symbiosis at a scale not previously available.
Collapse
|
17
|
Gould AL, Fritts-Penniman A, Gaisiner A. Museum Genomics Illuminate the High Specificity of a Bioluminescent Symbiosis for a Genus of Reef Fish. Front Ecol Evol 2021; 9:630207. [PMID: 34485316 PMCID: PMC8412414 DOI: 10.3389/fevo.2021.630207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Symbiotic relationships between bioluminescent bacteria and fishes have evolved multiple times across hundreds of fish taxa, but relatively little is known about the specificity of these associations and how stable they are over host generations. This study describes the degree of specificity of a bioluminescent symbiosis between cardinalfishes in the genus Siphamia and luminous bacteria in the Vibrio family. Primarily using museum specimens, we investigated the codivergence of host and symbiont and test for patterns of divergence that correlate with both biogeography and time. Contrary to expectations, we determined that the light organ symbionts of all 14 Siphamia species examined belong to one genetic clade of Photobacterium mandapamensis (Clade II), indicating that the association is highly specific and conserved throughout the host genus. Thus, we did not find evidence of codivergence among hosts and symbionts. We did observe that symbionts hosted by individuals sampled from colder water regions were more divergent, containing more than three times as many single nucleotide polymorphisms than the rest of the symbionts examined. Overall, our findings indicate that the symbiosis between Siphamia fishes and P. mandapamensis Clade II has been highly conserved across host taxa and over a broad geographic range despite the facultative nature of the bacterial symbiont. We also present a new approach to simultaneously recover genetic information from a bacterial symbiont and its vertebrate host from formalin-fixed specimens, enhancing the utility of museum collections.
Collapse
Affiliation(s)
- Alison L. Gould
- California Academy of Sciences, San Francisco, CA, United States
| | | | - Ana Gaisiner
- California Academy of Sciences, San Francisco, CA, United States
| |
Collapse
|
18
|
Peoples LM, Kyaw TS, Ugalde JA, Mullane KK, Chastain RA, Yayanos AA, Kusube M, Methé BA, Bartlett DH. Distinctive gene and protein characteristics of extremely piezophilic Colwellia. BMC Genomics 2020; 21:692. [PMID: 33023469 PMCID: PMC7542103 DOI: 10.1186/s12864-020-07102-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/24/2020] [Indexed: 01/05/2023] Open
Abstract
Background The deep ocean is characterized by low temperatures, high hydrostatic pressures, and low concentrations of organic matter. While these conditions likely select for distinct genomic characteristics within prokaryotes, the attributes facilitating adaptation to the deep ocean are relatively unexplored. In this study, we compared the genomes of seven strains within the genus Colwellia, including some of the most piezophilic microbes known, to identify genomic features that enable life in the deep sea. Results Significant differences were found to exist between piezophilic and non-piezophilic strains of Colwellia. Piezophilic Colwellia have a more basic and hydrophobic proteome. The piezophilic abyssal and hadal isolates have more genes involved in replication/recombination/repair, cell wall/membrane biogenesis, and cell motility. The characteristics of respiration, pilus generation, and membrane fluidity adjustment vary between the strains, with operons for a nuo dehydrogenase and a tad pilus only present in the piezophiles. In contrast, the piezosensitive members are unique in having the capacity for dissimilatory nitrite and TMAO reduction. A number of genes exist only within deep-sea adapted species, such as those encoding d-alanine-d-alanine ligase for peptidoglycan formation, alanine dehydrogenase for NADH/NAD+ homeostasis, and a SAM methyltransferase for tRNA modification. Many of these piezophile-specific genes are in variable regions of the genome near genomic islands, transposases, and toxin-antitoxin systems. Conclusions We identified a number of adaptations that may facilitate deep-sea radiation in members of the genus Colwellia, as well as in other piezophilic bacteria. An enrichment in more basic and hydrophobic amino acids could help piezophiles stabilize and limit water intrusion into proteins as a result of high pressure. Variations in genes associated with the membrane, including those involved in unsaturated fatty acid production and respiration, indicate that membrane-based adaptations are critical for coping with high pressure. The presence of many piezophile-specific genes near genomic islands highlights that adaptation to the deep ocean may be facilitated by horizontal gene transfer through transposases or other mobile elements. Some of these genes are amenable to further study in genetically tractable piezophilic and piezotolerant deep-sea microorganisms.
Collapse
Affiliation(s)
- Logan M Peoples
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA.,Flathead Lake Biological Station, University of Montana, Polson, MT, 59860, USA
| | - Than S Kyaw
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA
| | - Juan A Ugalde
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Kelli K Mullane
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA
| | - Roger A Chastain
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA
| | - A Aristides Yayanos
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA
| | - Masataka Kusube
- Department of Material Science, National Institute of Technology, Wakayama College, 77 Noshima, Nada-cho, Gobo, Wakayama, 644-0023, Japan
| | - Barbara A Methé
- Center for Microbiome and Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Douglas H Bartlett
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA.
| |
Collapse
|
19
|
Freed LL, Easson C, Baker LJ, Fenolio D, Sutton TT, Khan Y, Blackwelder P, Hendry TA, Lopez JV. Characterization of the microbiome and bioluminescent symbionts across life stages of Ceratioid Anglerfishes of the Gulf of Mexico. FEMS Microbiol Ecol 2020; 95:5567176. [PMID: 31504465 PMCID: PMC6778416 DOI: 10.1093/femsec/fiz146] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/09/2019] [Indexed: 01/31/2023] Open
Abstract
The interdependence of diverse organisms through symbiosis reaches even the deepest parts of the oceans. As part of the DEEPEND project (deependconsortium.org) research on deep Gulf of Mexico biodiversity, we profiled the bacterial communities (‘microbiomes’) and luminous symbionts of 36 specimens of adult and larval deep-sea anglerfishes of the suborder Ceratioidei using 16S rDNA. Transmission electron microscopy was used to characterize the location of symbionts in adult light organs (esca). Whole larval microbiomes, and adult skin and gut microbiomes, were dominated by bacteria in the genera Moritella and Pseudoalteromonas. 16S rDNA sequencing results from adult fishes corroborate the previously published identity of ceratioid bioluminescent symbionts and support the findings that these symbionts do not consistently exhibit host specificity at the host family level. Bioluminescent symbiont amplicon sequence variants were absent from larval ceratioid samples, but were found at all depths in the seawater, with a highest abundance found at mesopelagic depths. As adults spend the majority of their lives in the meso- and bathypelagic zones, the trend in symbiont abundance is consistent with their life history. These findings support the hypothesis that bioluminescent symbionts are not present throughout host development, and that ceratioids acquire their bioluminescent symbionts from the environment.
Collapse
Affiliation(s)
- Lindsay L Freed
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, FL, 33004 USA
| | - Cole Easson
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, FL, 33004 USA
| | - Lydia J Baker
- Department of Microbiology, Cornell University, Ithaca, NY, 14850 USA
| | - Danté Fenolio
- Center for Conservation and Research, San Antonio Zoo, San Antonio, TX, 78212 USA
| | - Tracey T Sutton
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, FL, 33004 USA
| | - Yasmin Khan
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, FL, 33004 USA
| | - Patricia Blackwelder
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, FL, 33004 USA.,University of Miami Center for Advanced Microscopy, Department of Chemistry, University of Miami, Coral Gables, FL, 33146 USA
| | - Tory A Hendry
- Department of Microbiology, Cornell University, Ithaca, NY, 14850 USA
| | - Jose V Lopez
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, FL, 33004 USA
| |
Collapse
|
20
|
Easson CG, Chaves-Fonnegra A, Thacker RW, Lopez JV. Host population genetics and biogeography structure the microbiome of the sponge Cliona delitrix. Ecol Evol 2020; 10:2007-2020. [PMID: 32128133 PMCID: PMC7042757 DOI: 10.1002/ece3.6033] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Sponges occur across diverse marine biomes and host internal microbial communities that can provide critical ecological functions. While strong patterns of host specificity have been observed consistently in sponge microbiomes, the precise ecological relationships between hosts and their symbiotic microbial communities remain to be fully delineated. In the current study, we investigate the relative roles of host population genetics and biogeography in structuring the microbial communities hosted by the excavating sponge Cliona delitrix. A total of 53 samples, previously used to demarcate the population genetic structure of C. delitrix, were selected from two locations in the Caribbean Sea and from eight locations across the reefs of Florida and the Bahamas. Microbial community diversity and composition were measured using Illumina-based high-throughput sequencing of the 16S rRNA V4 region and related to host population structure and geographic distribution. Most operational taxonomic units (OTUs) specific to Cliona delitrix microbiomes were rare, while other OTUs were shared with congeneric hosts. Across a large regional scale (>1,000 km), geographic distance was associated with considerable variability of the sponge microbiome, suggesting a distance-decay relationship, but little impact over smaller spatial scales (<300 km) was observed. Host population structure had a moderate effect on the structure of these microbial communities, regardless of geographic distance. These results support the interplay between geographic, environmental, and host factors as forces determining the community structure of microbiomes associated with C. delitrix. Moreover, these data suggest that the mechanisms of host regulation can be observed at the population genetic scale, prior to the onset of speciation.
Collapse
Affiliation(s)
- Cole G. Easson
- Department of BiologyMiddle Tennessee State UniversityMurfreesboroTN
- Halmos College of Natural Sciences and OceanographyNova Southeastern UniversityDania BeachFL
| | - Andia Chaves-Fonnegra
- Harriet L. Wilkes Honors CollegeHarbor Branch Oceanographic InstituteFlorida Atlantic UniversityFort PierceFL
| | - Robert W. Thacker
- Department of Ecology and EvolutionStony Brook UniversityStony BrookNY
| | - Jose V. Lopez
- Halmos College of Natural Sciences and OceanographyNova Southeastern UniversityDania BeachFL
| |
Collapse
|