1
|
Gaafar A, Hamza FN, Yousif R, Shinwari Z, Alotaibi AG, Iqniebi A, Al-Hussein K, Al-Mazrou A, Manogaran PS, Elhassan T, Marquez-Méndez M, Aljurf M, Al-Humaidan H, Alaiya A. Distinct Phenotypic and Molecular Characteristics of CD34 - and CD34 + Hematopoietic Stem/Progenitor Cell Subsets in Cord Blood and Bone Marrow Samples: Implications for Clinical Applications. Diagnostics (Basel) 2025; 15:447. [PMID: 40002599 PMCID: PMC11853955 DOI: 10.3390/diagnostics15040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: We aimed to identify the molecular signatures of primitive CD34+ and CD34- hematopoietic stem/progenitor cell (HSC/HPC) subsets in cord blood and bone marrow samples. Methods: CD34+ and CD34- HSC/HPC subsets from cord blood and bone marrow were characterized using flow cytometry, real-time PCR, and proteomic analysis to evaluate their phenotypic and molecular profiles. Results: Our findings revealed a significantly higher percentage of Lin-CD34-CD38Low/- (-/-) cells than of Lin-CD34+CD38Low/- (+/-) cells in cord blood. Aldehyde dehydrogenase levels were significantly lower in (-/-) than in (+/-) cells. Clonogenic ability was lower in (-/-) than in (+/-) cells. However, CD34- cells exhibited potent megakaryocyte/erythrocyte differentiation ability. Importantly, the HSC/HPC subsets expressed pluripotency or stemness genes (SOX2, Nanog, and OCT4); however, OCT4 expression significantly increased in (-/-) compared with (+/-) cells. We identified 304 proteins in the HSC/HPC subsets-85.6% had similar expression patterns in the two subsets; only 14.4% were differentially expressed between (-/-) and (+/-) cells. This implies their comparability at the protein level. Certain proteins were implicated in cellular-development-, gene-expression-, and embryonic-development-related signaling networks. Conclusions: Distinct biological and functional characteristics were observed between (-/-) and (+/-) HSC/HPC subsets. Some of the identified proteins may be novel HSC/HPC subsets markers for clinical applications after validation.
Collapse
Affiliation(s)
- Ameera Gaafar
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
- Biochemistry and Molecular Medicine Department, Alfaisal University, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Fatheia Nabeil Hamza
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
- Biochemistry and Molecular Medicine Department, Alfaisal University, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Rama Yousif
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Zakia Shinwari
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Aminah Ghazi Alotaibi
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Alia Iqniebi
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Khalid Al-Hussein
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Amer Al-Mazrou
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Pulicat Subramanian Manogaran
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Tusneem Elhassan
- Biochemistry and Molecular Medicine Department, Alfaisal University, P.O. Box 3354, Riyadh 11211, Saudi Arabia
- Cancer Center for Excellence, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Marcela Marquez-Méndez
- Medicine Faculty, Universidad Autonoma de Nuevo Leon, Mitras Centro, Monterrey 64460, Mexico
| | - Mahmood Aljurf
- Cancer Center for Excellence, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Hind Al-Humaidan
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Ayodele Alaiya
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| |
Collapse
|
2
|
Lee BC, Tsai JC, Huang YH, Wang CC, Lee HC, Tsai HJ. The 419th Aspartic Acid of Neural Membrane Protein Enolase 2 Is a Key Residue Involved in the Axonal Growth of Motor Neurons Mediated by Interaction between Enolase 2 Receptor and Extracellular Pgk1 Ligand. Int J Mol Sci 2024; 25:10753. [PMID: 39409082 PMCID: PMC11477227 DOI: 10.3390/ijms251910753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Neuron-specific Enolase 2 (Eno2) is an isozyme primarily distributed in the central and peripheral nervous systems and neuroendocrine cells. It promotes neuronal survival, differentiation, and axonal regeneration. Recent studies have shown that Eno2 localized on the cell membrane of motor neurons acts as a receptor for extracellular phosphoglycerate kinase 1 (ePgk1), which is secreted by muscle cells and promotes the neurite outgrowth of motor neurons (NOMN). However, interaction between Eno1, another isozyme of Enolase, and ePgk1 failed to return the same result. To account for the difference, we constructed seven point-mutations of Eno2, corresponding to those of Eno1, and verified their effects on NOMN. Among the seven Eno2 mutants, eno2-siRNA-knockdown NSC34 cells transfected with plasmid encoding the 419th aspartic acid mutated into serine (Eno2-[D419S]) or Eno2-[E420K] showed a significant reduction in neurite length. Moreover, the Eno2-ePgk1-interacted synergic effect on NOMN driven by Eno2-[D419S] was more profoundly reduced than that driven by Eno2-[E420K], suggesting that D419 was the more essential residue involved in NOMN mediated by Eno2-ePgk1 interaction. Eno2-ePgk1-mediated NOMN appeared to increase the level of p-Cofilin, a growth cone collapse marker, in NSC34 cells transfected with Eno2-[D419S] and incubated with ePgk1, thereby inhibiting NOMN. Furthermore, we conducted in vivo experiments using zebrafish transgenic line Tg(mnx1:GFP), in which GFP is tagged in motor neurons. In the presence of ePgk1, the retarded growth of axons in embryos injected with eno2-specific antisense morpholino oligonucleotides (MO) could be rescued by wobble-eno2-mRNA. However, despite the addition of ePgk1, the decreased defective axons and the increased branched neurons were not significantly improved in the eno2-[D419S]-mRNA-injected embryos. Collectively, these results lead us to suggest that the 419th aspartic acid of mouse Eno2 is likely a crucial site affecting motor neuron development mediated by Eno2-ePgk1 interaction, and, hence, mutations result in a significant reduction in the degree of NOMN in vitro and axonal growth in vivo.
Collapse
Affiliation(s)
- Bing-Chang Lee
- Department of Life Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (B.-C.L.); (Y.-H.H.); (H.-C.L.)
| | - Jui-Che Tsai
- Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
| | - Yi-Hsin Huang
- Department of Life Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (B.-C.L.); (Y.-H.H.); (H.-C.L.)
| | - Chun-Cheng Wang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan;
| | - Hung-Chieh Lee
- Department of Life Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (B.-C.L.); (Y.-H.H.); (H.-C.L.)
| | - Huai-Jen Tsai
- Department of Life Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (B.-C.L.); (Y.-H.H.); (H.-C.L.)
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan;
| |
Collapse
|
3
|
Chen YS, Hong ZX, Lin YT, Tsao EC, Chen PY, Liu CA, Harn HJ, Chiou TW, Lin SZ. Efficiency of PGK1 proteins delivered to the brain via a liposomal system through intranasal route administration for the treatment of spinocerebellar ataxia type 3. Drug Deliv Transl Res 2024; 14:1940-1953. [PMID: 38161195 DOI: 10.1007/s13346-023-01498-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
A patient-friendly and efficient treatment method for patients with spinocerebellar ataxia type 3 (SCA3) was provided through a nose-to-brain liposomal system. Initially, PGK1 was overexpressed in HEK 293-84Q-GFP diseased cells (HEK 293-84Q-GFP-PGK1 cells) to confirm its effect on the diseased protein polyQ. A decrease in polyQ expression was demonstrated in HEK 293-84Q-GFP-PGK1 cells compared to HEK 293-84Q-GFP parental cells. Subsequently, PGK1 was encapsulated in a liposomal system to evaluate its therapeutic efficiency in SCA3. The optimized liposomes exhibited a significantly enhanced positive charge, facilitating efficient intracellular protein delivery to the cells. The proteins were encapsulated within the liposomes using an optimized method involving a combination of heat shock and sonication. The liposomal system was further demonstrated to be deliverable to the brain via intranasal administration. PGK1/liposomes were intranasally delivered to SCA3 mice, which subsequently exhibited an amelioration of motor impairment, as assessed via the accelerated rotarod test. Additionally, fewer shrunken morphology Purkinje cells and a reduction in polyQ expression were observed in SCA3 mice that received PGK1/liposomes but not in the untreated, liposome-only, or PGK1-only groups. This study provides a non-invasive route for protein delivery and greater delivery efficiency via the liposomal system for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Yu-Shuan Chen
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, 707, Sec.3, Chung-Yang Rd., 970, R.O.C, Hualien, Taiwan.
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
- Tzu Chi University of Science and Technology, Hualien, Taiwan.
| | - Zhen-Xiang Hong
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, 707, Sec.3, Chung-Yang Rd., 970, R.O.C, Hualien, Taiwan
| | - Yi-Tung Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, 707, Sec.3, Chung-Yang Rd., 970, R.O.C, Hualien, Taiwan
| | - En-Ci Tsao
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, 707, Sec.3, Chung-Yang Rd., 970, R.O.C, Hualien, Taiwan
| | - Pei-Yu Chen
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, 707, Sec.3, Chung-Yang Rd., 970, R.O.C, Hualien, Taiwan
| | - Ching-Ann Liu
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, 707, Sec.3, Chung-Yang Rd., 970, R.O.C, Hualien, Taiwan
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Horng-Jyh Harn
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, 707, Sec.3, Chung-Yang Rd., 970, R.O.C, Hualien, Taiwan
- Department of Pathology, Hualien Tzu Chi Hospital, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tzyy-Wen Chiou
- Department of Life Science, National Dong Hwa University, Hualien, Taiwan
| | - Shinn-Zong Lin
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
| |
Collapse
|
4
|
Dey B, Kumar A, Patel AB. Pathomechanistic Networks of Motor System Injury in Amyotrophic Lateral Sclerosis. Curr Neuropharmacol 2024; 22:1778-1806. [PMID: 37622689 PMCID: PMC11284732 DOI: 10.2174/1570159x21666230824091601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 08/26/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most common, adult-onset, progressive motor neurodegenerative disorder that results in death within 3 years of the clinical diagnosis. Due to the clinicopathological heterogeneity, any reliable biomarkers for diagnosis or prognosis of ALS have not been identified till date. Moreover, the only three clinically approved treatments are not uniformly effective in slowing the disease progression. Over the last 15 years, there has been a rapid advancement in research on the complex pathomechanistic landscape of ALS that has opened up new avenues for successful clinical translation of targeted therapeutics. Multiple studies suggest that the age-dependent interaction of risk-associated genes with environmental factors and endogenous modifiers is critical to the multi-step process of ALS pathogenesis. In this review, we provide an updated discussion on the dysregulated cross-talk between intracellular homeostasis processes, the unique molecular networks across selectively vulnerable cell types, and the multisystemic nature of ALS pathomechanisms. Importantly, this work highlights the alteration in epigenetic and epitranscriptomic landscape due to gene-environment interactions, which have been largely overlooked in the context of ALS pathology. Finally, we suggest that precision medicine research in ALS will be largely benefitted from the stratification of patient groups based on the clinical phenotype, onset and progression, genome, exposome, and metabolic identities.
Collapse
Affiliation(s)
- Bedaballi Dey
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Arvind Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Anant Bahadur Patel
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
5
|
Luo Y, Yang J, Zhang L, Tai Z, Huang H, Xu Z, Zhang H. Phosphoglycerate kinase (PGK) 1 succinylation modulates epileptic seizures and the blood-brain barrier. Exp Anim 2023; 72:475-489. [PMID: 37258131 PMCID: PMC10658094 DOI: 10.1538/expanim.23-0019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023] Open
Abstract
Epilepsy is the most common chronic disorder in the nervous system, mainly characterized by recurrent, periodic, unpredictable seizures. Post-translational modifications (PTMs) are important protein functional regulators that regulate various physiological and pathological processes. It is significant for cell activity, stability, protein folding, and localization. Phosphoglycerate kinase (PGK) 1 has traditionally been studied as an important adenosine triphosphate (ATP)-generating enzyme of the glycolytic pathway. PGK1 catalyzes the reversible transfer of a phosphoryl group from 1, 3-bisphosphoglycerate (1, 3-BPG) to ADP, producing 3-phosphoglycerate (3-PG) and ATP. In addition to cell metabolism regulation, PGK1 is involved in multiple biological activities, including angiogenesis, autophagy, and DNA repair. However, the exact role of PGK1 succinylation in epilepsy has not been thoroughly investigated. The expression of PGK1 succinylation was analyzed by Immunoprecipitation. Western blots were used to assess the expression of PGK1, angiostatin, and vascular endothelial growth factor (VEGF) in a rat model of lithium-pilocarpine-induced acute epilepsy. Behavioral experiments were performed in a rat model of lithium-pilocarpine-induced acute epilepsy. ELISA method was used to measure the level of S100β in serum brain biomarkers' integrity of the blood-brain barrier. The expression of the succinylation of PGK1 was decreased in a rat model of lithium-pilocarpine-induced acute epilepsy compared with the normal rats in the hippocampus. Interestingly, the lysine 15 (K15), and the arginine (R) variants of lentivirus increased the susceptibility in a rat model of lithium-pilocarpine-induced acute epilepsy, and the K15 the glutamate (E) variants, had the opposite effect. In addition, the succinylation of PGK1 at K15 affected the expression of PGK1 succinylation but not the expression of PGK1total protein. Furthermore, the study found that the succinylation of PGK1 at K15 may affect the level of angiostatin and VEGF in the hippocampus, which also affects the level of S100β in serum. In conclusion, the mutation of the K15 site of PGK1 may alter the expression of the succinylation of PGK1 and then affect the integrity of the blood-brain barrier through the angiostatin / VEGF pathway altering the activity of epilepsy, which may be one of the new mechanisms of treatment strategies.
Collapse
Affiliation(s)
- Yuemei Luo
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou 563003, P.R. China
| | - Juan Yang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou 563003, P.R. China
| | - Lijia Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou 563003, P.R. China
| | - Zhenzhen Tai
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou 563003, P.R. China
| | - Hao Huang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou 563003, P.R. China
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou 563003, P.R. China
| | - Haiqing Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
6
|
Huang YC, Lai JZ, Luo CL, Chuang CC, Lin TC, Wang PH, Chien FC. A Fluorescent Vector of Carbon Dot to Deliver Rab13 and Rab14 Plasmids for Promoting Neurite Outgrowth. ACS APPLIED BIO MATERIALS 2023; 6:3739-3749. [PMID: 37679053 DOI: 10.1021/acsabm.3c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The complex processes of neuron differentiation and neuron repair are critical for treating nervous system injuries and neurodegenerative diseases. Neurite outgrowth plays a crucial role in these processes by enabling the formation of connections between neurons and the generation of neuroplasticity to restore the function of the nervous system. In this study, we fabricated functionalized carbon dots (CDs) with distinctive photoluminescence and low cytotoxicity for use as fluorescence imaging probes and nanocarriers to deliver plasmid DNAs to neurons effectively for inducing neurite outgrowth. CDs were prepared through a reflux process in nitric acid solution, and their surface was then modified using polyethylenimine (PEI) to obtain positively charged CDs for increasing the absorption of plasmid DNAs and the efficiency of cell uptake. Experimental results indicated that the fabricated CDs maintained a low cytotoxicity and exhibited a high neuron uptake of up to 97%. An improvement in the plasmid DNA ingestion of neurons resulted in enhanced expression of Rab13-Q67L and Rab14 proteins, which considerably promoted neurite sprouting and elongation. After the fabricated PEI-modified CDs were used to deliver the Rab13-Q67L and Rab14 plasmids, more than 56% of the neurons had a neurite length that was greater than twice the size of their soma. Thus, DNA delivery through functionalized CDs has a high potential for use in gene therapy for neuronal injuries and diseases.
Collapse
Affiliation(s)
- Yung-Chin Huang
- Department of Optics and Photonics, National Central University, Taoyuan 32001, Taiwan
| | - Jian-Zong Lai
- Department of Optics and Photonics, National Central University, Taoyuan 32001, Taiwan
| | - Ching-Lung Luo
- Department of Optics and Photonics, National Central University, Taoyuan 32001, Taiwan
| | - Chia-Cheng Chuang
- Department of Optics and Photonics, National Central University, Taoyuan 32001, Taiwan
| | - Tzu-Chau Lin
- Photonic Materials Research Laboratory, Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Po-Hsiang Wang
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Fan-Ching Chien
- Department of Optics and Photonics, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
7
|
Fu CY, Chen HY, Lin CY, Chen SJ, Sheu JC, Tsai HJ. Extracellular Pgk1 interacts neural membrane protein enolase-2 to improve the neurite outgrowth of motor neurons. Commun Biol 2023; 6:849. [PMID: 37582937 PMCID: PMC10427645 DOI: 10.1038/s42003-023-05223-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 08/07/2023] [Indexed: 08/17/2023] Open
Abstract
Understanding the molecular interaction between ligand and receptor is important for providing the basis for the development of regenerative drugs. Although it has been reported that extracellular phosphoglycerate kinase 1 (Pgk1) can promote the neurite outgrowth of motoneurons, the Pgk1-interacting neural receptor remains unknown. Here we show that neural membranous Enolase-2 exhibits strong affinity with recombinant Pgk1-Flag, which is also evidently demonstrated by immunoelectron microscopy. The 325th-417th domain of Pgk1 interacts with the 405th-431st domain of Enolase-2, but neither Enolase-1 nor Enolase-3, promoting neurite outgrowth. Combining Pgk1 incubation and Enolase-2 overexpression, we demonstrate a highly significant enhancement of neurite outgrowth of motoneurons through a reduced p-P38-T180/p-Limk1-S323/p-Cofilin signaling. Collectively, extracellular Pgk1 interacts neural membrane receptor Enolase-2 to reduce the P38/Limk1/Cofilin signaling which results in promoting neurite outgrowth. The extracellular Pgk1-specific neural receptor found in this study should provide a material for screening potential small molecule drugs that promote motor nerve regeneration.
Collapse
Affiliation(s)
- Chuan-Yang Fu
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Hong-Yu Chen
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Cheng-Yung Lin
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| | - Shiang-Jiuun Chen
- Department of Life Science and Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
- TechCommon-5, Bioimage Tool, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Jin-Chuan Sheu
- Liver Disease Prevention and Treatment Research Foundation, Taipei, Taiwan
| | - Huai-Jen Tsai
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan.
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan.
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, City, Taiwan.
| |
Collapse
|
8
|
Luo Y, Qu J, He Z, Zhang M, Zou Z, Li L, Zhang Y, Ye J. Human Umbilical Cord Mesenchymal Stem Cells Improve the Status of Hypoxic/Ischemic Cerebral Palsy Rats by Downregulating NogoA/NgR/Rho Pathway. Cell Transplant 2023; 32:9636897231210069. [PMID: 37982384 PMCID: PMC10664427 DOI: 10.1177/09636897231210069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/31/2023] [Accepted: 09/28/2023] [Indexed: 11/21/2023] Open
Abstract
Human umbilical cord mesenchymal stem cells (hUCMSC) have shown promising potential in ameliorating brain injury, but the mechanism is unclear. We explore the role of NogoA/NgR/Rho pathway in mediating hUCMSC to improve neurobehavioral status and alleviate brain injury in hypoxia/ischemia-induced CP (cerebral palsy) rat model in order to promote the clinical application of stem cell therapy in CP. The injury model of HT22 cells was established after 3 h hypoxia, and then co-cultured with hUCMSC. The rat model of CP was established by ligation of the left common carotid artery for 2.5 h. Subsequently, hUCMSC was administered via the tail vein once a week for a total of four times. The neurobehavioral status of CP rats was determined by behavioral experiment, and the pathological brain injury was determined by pathological staining method. The mRNA and protein expressions of NogoA, NgR, RhoA, Rac1, and CDC42 in brain tissues of rats in all groups and cell groups were detected by real-time quantitative polymerase chain reaction (RT-qPCR), Western blot, and immunofluorescence. The CP rats exhibited obvious motor function abnormalities and pathological damage. Compared with the control group, hUCMSC transplantation could significantly improve the neurobehavioral situation and attenuate brain pathological injury in CP rats. The relative expression of NogoA, NgR, RhoA mRNA, and protein in brain tissues of rats in the CP group was significantly higher than the rats in the sham and CP+hUCMSC group. The relative expression of Rac1, CDC42 mRNA, and protein in brain tissues of rats in the CP group was significantly lower than the rats in the sham and CP+hUCMSC group. The animal experiment results were consistent with the experimental trend of hypoxic injury of HT22 cells. This study confirmed that hUCMSC can efficiently improve neurobehavioral status and alleviate brain injury in hypoxia/ischemia-induced CP rat model and HT22 cell model through downregulating the NogoA/NgR/Rho pathway.
Collapse
Affiliation(s)
- Yaoling Luo
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Clinical Medicine Research Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiayang Qu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- School of Rehabilitation Medicine Gannan Medical University, Ganzhou, China
| | - Zhengyi He
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Clinical Medicine Research Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Minhong Zhang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Clinical Medicine Research Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhengwei Zou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Clinical Medicine Research Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Lincai Li
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Clinical Medicine Research Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | | | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, China
| |
Collapse
|
9
|
Loss of stability and unfolding cooperativity in hPGK1 upon gradual structural perturbation of its N-terminal domain hydrophobic core. Sci Rep 2022; 12:17200. [PMID: 36229482 PMCID: PMC9561527 DOI: 10.1038/s41598-022-22088-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/10/2022] [Indexed: 01/06/2023] Open
Abstract
Phosphoglycerate kinase has been a model for the stability, folding cooperativity and catalysis of a two-domain protein. The human isoform 1 (hPGK1) is associated with cancer development and rare genetic diseases that affect several of its features. To investigate how mutations affect hPGK1 folding landscape and interaction networks, we have introduced mutations at a buried site in the N-terminal domain (F25 mutants) that either created cavities (F25L, F25V, F25A), enhanced conformational entropy (F25G) or introduced structural strain (F25W) and evaluated their effects using biophysical experimental and theoretical methods. All F25 mutants folded well, but showed reduced unfolding cooperativity, kinetic stability and altered activation energetics according to the results from thermal and chemical denaturation analyses. These alterations correlated well with the structural perturbation caused by mutations in the N-terminal domain and the destabilization caused in the interdomain interface as revealed by H/D exchange under native conditions. Importantly, experimental and theoretical analyses showed that these effects are significant even when the perturbation is mild and local. Our approach will be useful to establish the molecular basis of hPGK1 genotype-phenotype correlations due to phosphorylation events and single amino acid substitutions associated with disease.
Collapse
|
10
|
Chaytow H, Carroll E, Gordon D, Huang YT, van der Hoorn D, Smith HL, Becker T, Becker CG, Faller KME, Talbot K, Gillingwater TH. Targeting phosphoglycerate kinase 1 with terazosin improves motor neuron phenotypes in multiple models of amyotrophic lateral sclerosis. EBioMedicine 2022; 83:104202. [PMID: 35963713 PMCID: PMC9482929 DOI: 10.1016/j.ebiom.2022.104202] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/01/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with heterogeneous aetiology and a complex genetic background. Effective therapies are therefore likely to act on convergent pathways such as dysregulated energy metabolism, linked to multiple neurodegenerative diseases including ALS. METHODS Activity of the glycolysis enzyme phosphoglycerate kinase 1 (PGK1) was increased genetically or pharmacologically using terazosin in zebrafish, mouse and ESC-derived motor neuron models of ALS. Multiple disease phenotypes were assessed to determine the therapeutic potential of this approach, including axon growth and motor behaviour, survival and cell death following oxidative stress. FINDINGS We have found that targeting a single bioenergetic protein, PGK1, modulates motor neuron vulnerability in vivo. In zebrafish models of ALS, overexpression of PGK1 rescued motor axon phenotypes and improved motor behaviour. Treatment with terazosin, an FDA-approved compound with a known non-canonical action of increasing PGK1 activity, also improved these phenotypes. Terazosin treatment extended survival, improved motor phenotypes and increased motor neuron number in Thy1-hTDP-43 mice. In ESC-derived motor neurons expressing TDP-43M337V, terazosin protected against oxidative stress-induced cell death and increased basal glycolysis rates, while rescuing stress granule assembly. INTERPRETATION Our data demonstrate that terazosin protects motor neurons via multiple pathways, including upregulating glycolysis and rescuing stress granule formation. Repurposing terazosin therefore has the potential to increase the limited therapeutic options across all forms of ALS, irrespective of disease cause. FUNDING This work was supported by project grant funding from MND Scotland, the My Name'5 Doddie Foundation, Medical Research Council Doctoral Student Training Fellowship [Ref: BST0010Z] and Academy of Medical Sciences grant [SGL023\1100].
Collapse
Affiliation(s)
- Helena Chaytow
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh; Edinburgh, UK; Euan MacDonald Centre for Motor Neuron Disease Research; Edinburgh, UK
| | - Emily Carroll
- Nuffield Department of Clinical Neurosciences, University of Oxford; Oxford, UK
| | - David Gordon
- Nuffield Department of Clinical Neurosciences, University of Oxford; Oxford, UK
| | - Yu-Ting Huang
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh; Edinburgh, UK; Euan MacDonald Centre for Motor Neuron Disease Research; Edinburgh, UK
| | - Dinja van der Hoorn
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh; Edinburgh, UK; Euan MacDonald Centre for Motor Neuron Disease Research; Edinburgh, UK
| | - Hannah Louise Smith
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh; Edinburgh, UK; Euan MacDonald Centre for Motor Neuron Disease Research; Edinburgh, UK
| | - Thomas Becker
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh; Edinburgh, UK; Euan MacDonald Centre for Motor Neuron Disease Research; Edinburgh, UK; Center for Regenerative Therapies at the TU Dresden, Technische Universität Dresden, Dresden, Germany
| | - Catherina Gwynne Becker
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh; Edinburgh, UK; Euan MacDonald Centre for Motor Neuron Disease Research; Edinburgh, UK; Center for Regenerative Therapies at the TU Dresden, Technische Universität Dresden, Dresden, Germany
| | | | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford; Oxford, UK
| | - Thomas Henry Gillingwater
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh; Edinburgh, UK; Euan MacDonald Centre for Motor Neuron Disease Research; Edinburgh, UK.
| |
Collapse
|
11
|
Cerebroventricular Injection of Pgk1 Attenuates MPTP-Induced Neuronal Toxicity in Dopaminergic Cells in Zebrafish Brain in a Glycolysis-Independent Manner. Int J Mol Sci 2022; 23:ijms23084150. [PMID: 35456967 PMCID: PMC9025024 DOI: 10.3390/ijms23084150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/26/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by the degeneration of dopaminergic neurons. While extracellular Pgk1 (ePgk1) is reported to promote neurite outgrowth, it remains unclear if it can affect the survival of dopaminergic cells. To address this, we employed cerebroventricular microinjection (CVMI) to deliver Pgk1 into the brain of larvae and adult zebrafish treated with methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) as a PD-like model. The number of dopamine-producing cells in ventral diencephalon clusters of Pgk1-injected, MPTP-treated embryos increased over that of MPTP-treated embryos. Swimming distances of Pgk1-injected, MPTP-treated larvae and adult zebrafish were much longer compared to MPTP-treated samples. The effect of injected Pgk1 on both dopamine-producing cells and locomotion was time- and dose-dependent. Indeed, injected Pgk1 could be detected, located on dopamine neurons. When the glycolytic mutant Pgk1, Pgk1-T378P, was injected into the brain of MPTP-treated zebrafish groups, the protective ability of dopaminergic neurons did not differ from that of normal Pgk1. Therefore, ePgk1 is functionally independent from intracellular Pgk1 serving as an energy supplier. Furthermore, when Pgk1 was added to the culture medium for culturing dopamine-like SH-SY5Y cells, it could reduce the ROS pathway and apoptosis caused by the neurotoxin MPP+. These results show that ePgk1 benefits the survival of dopamine-producing cells and decreases neurotoxin damage.
Collapse
|
12
|
Luo M, Wang Z, Wu J, Xie X, You W, Yu Z, Shen H, Li X, Li H, Liu Y, Wang Z, Chen G. Effects of PAK1/LIMK1/Cofilin-mediated Actin Homeostasis on Axonal Injury after Experimental Intracerebral Hemorrhage. Neuroscience 2022; 490:155-170. [DOI: 10.1016/j.neuroscience.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
|
13
|
Pradhan LK, Das SK. The Regulatory Role of Reticulons in Neurodegeneration: Insights Underpinning Therapeutic Potential for Neurodegenerative Diseases. Cell Mol Neurobiol 2021; 41:1157-1174. [PMID: 32504327 PMCID: PMC11448699 DOI: 10.1007/s10571-020-00893-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
In the last few decades, cytoplasmic organellar dysfunction, such as that of the endoplasmic reticulum (ER), has created a new area of research interest towards the development of serious health maladies including neurodegenerative diseases. In this context, the extensively dispersed family of ER-localized proteins, i.e. reticulons (RTNs), is gaining interest because of its regulative control over neural regeneration. As most neurodegenerative diseases are pathologically manifested with the accretion of misfolded proteins with subsequent induction of ER stress, the regulatory role of RTNs in neural dysfunction cannot be ignored. With the limited information available in the literature, delineation of the functional connection between rising consequences of neurodegenerative diseases and RTNs need to be elucidated. In this review, we provide a broad overview on the recently revealed regulatory roles of reticulons in the pathophysiology of several health maladies, with special emphasis on neurodegeneration. Additionally, we have also recapitulated the decisive role of RTN4 in neurite regeneration and highlighted how neurodegeneration and proteinopathies are mechanistically linked with each other through specific RTN paralogues. With the recent findings advocating zebrafish Rtn4b (a mammalian Nogo-A homologue) downregulation following central nervous system (CNS) lesion, RTNs provides new insight into the CNS regeneration. However, there are controversies with respect to the role of Rtn4b in zebrafish CNS regeneration. Given these controversies, the connection between the unique regenerative capabilities of zebrafish CNS by distinct compensatory mechanisms and Rtn4b signalling pathway could shed light on the development of new therapeutic strategies against serious neurodegenerative diseases.
Collapse
Affiliation(s)
- Lilesh Kumar Pradhan
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed To Be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed To Be University), Kalinga Nagar, Bhubaneswar, 751003, India.
| |
Collapse
|
14
|
Zebrafish, an In Vivo Platform to Screen Drugs and Proteins for Biomedical Use. Pharmaceuticals (Basel) 2021; 14:ph14060500. [PMID: 34073947 PMCID: PMC8225009 DOI: 10.3390/ph14060500] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 12/28/2022] Open
Abstract
The nearly simultaneous convergence of human genetics and advanced molecular technologies has led to an improved understanding of human diseases. At the same time, the demand for drug screening and gene function identification has also increased, albeit time- and labor-intensive. However, bridging the gap between in vitro evidence from cell lines and in vivo evidence, the lower vertebrate zebrafish possesses many advantages over higher vertebrates, such as low maintenance, high fecundity, light-induced spawning, transparent embryos, short generation interval, rapid embryonic development, fully sequenced genome, and some phenotypes similar to human diseases. Such merits have popularized the zebrafish as a model system for biomedical and pharmaceutical studies, including drug screening. Here, we reviewed the various ways in which zebrafish serve as an in vivo platform to perform drug and protein screening in the fields of rare human diseases, social behavior and cancer studies. Since zebrafish mutations faithfully phenocopy many human disorders, many compounds identified from zebrafish screening systems have advanced to early clinical trials, such as those for Adenoid cystic carcinoma, Dravet syndrome and Diamond-Blackfan anemia. We also reviewed and described how zebrafish are used to carry out environmental pollutant detection and assessment of nanoparticle biosafety and QT prolongation.
Collapse
|
15
|
Zhou D, Cen K, Liu W, Liu F, Liu R, Sun Y, Zhao Y, Chang J, Zhu L. Xuesaitong exerts long-term neuroprotection for stroke recovery by inhibiting the ROCKII pathway, in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2021; 272:113943. [PMID: 33617967 DOI: 10.1016/j.jep.2021.113943] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/17/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xuesaitong (XST) is a traditional Chinese medicine injection with neuroprotective properties and has been extensively used to treat stroke for many years. The main component of XST is Panax notoginseng saponins (PNS), which is the main extract of the Chinese herbal medicine Panax notoginseng. AIM OF THE STUDY In this study, we investigated whether XST provided long-term neuroprotection by inhibiting neurite outgrowth inhibitor-A (Nogo-A) and the ROCKII pathway in experimental rats after middle cerebral artery occlusion (MCAO) and in SH-SY5Y cells exposed to oxygen-glucose deprivation/reperfusion (OGD/R). MATERIALS AND METHODS Rats with permanent MCAO were administered XST, Y27632, XST plus Y27632, and nimodipine for 14 and 28 days. Successful MCAO onset was confirmed by 2,3,5-triphenyl tetrazolium chloride (TTC) staining. Neurological deficit score (NDS) was used to assess neurological impairment. Hematoxylin-eosin (HE) staining and immunohistochemical (IHC) analysis of synaptophysin (SYN) and postsynaptic density protein-95 (PSD-95) were performed to evaluate cerebral ischemic injury and the neuroprotective capability of XST. Nogo-A levels and the ROCKII pathway were detected by IHC analysis, western blotting, and quantitative real-time polymerase chain reaction (qRT-PCR) to explore the protective mechanism of XST. OGD/R model was established in SH-SY5Y cells. Cell counting kit 8 (CCK8) was applied to detect the optimum OGD time and XST concentration. The expression levels Nogo-A and ROCKII pathway were determined using western blotting. RESULTS Our results showed that XST reduced neurological dysfunction and pathological damage, promoted weight gain and synaptic regeneration, reduced Nogo-A mRNA and protein levels, and inhibited the ROCKII pathway in MCAO rats. CCK8 assay displayed that the optimal OGD time and optimal XST concentration were 7 h and 20 μg/mL respectively in SH-SY5Y cells. XST could evidently inhibit OGD/R-induced Nogo-A protein expression and ROCKII pathway activation in SH-SY5Y cells. CONCLUSIONS The present study suggested that XST exerted long-term neuroprotective effects that assisted in stroke recovery, possibly through inhibition of the ROCKII pathway.
Collapse
Affiliation(s)
- Dongrui Zhou
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700, Beijing, China.
| | - Kai Cen
- Department of Stomatology, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700, Beijing, China.
| | - Wei Liu
- Department of Rehabilitation, Beijing Children's Hospital, Capital Medical University, 100045, Beijing, China.
| | - Fengzhi Liu
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700, Beijing, China.
| | - Ruijia Liu
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700, Beijing, China.
| | - Yikun Sun
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700, Beijing, China.
| | - Yizhou Zhao
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700, Beijing, China.
| | - Jingling Chang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700, Beijing, China.
| | - Lingqun Zhu
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700, Beijing, China; Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700, Beijing, China.
| |
Collapse
|
16
|
Sivandzade F, Cucullo L. Regenerative Stem Cell Therapy for Neurodegenerative Diseases: An Overview. Int J Mol Sci 2021; 22:2153. [PMID: 33671500 PMCID: PMC7926761 DOI: 10.3390/ijms22042153] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases resulting from the progressive loss of structure and/or function of neurons contribute to different paralysis degrees and loss of cognition and sensation. The lack of successful curative therapies for neurodegenerative disorders leads to a considerable burden on society and a high economic impact. Over the past 20 years, regenerative cell therapy, also known as stem cell therapy, has provided an excellent opportunity to investigate potentially powerful innovative strategies for treating neurodegenerative diseases. This is due to stem cells' capability to repair injured neuronal tissue by replacing the damaged or lost cells with differentiated cells, providing a conducive environment that is in favor of regeneration, or protecting the existing healthy neurons and glial cells from further damage. Thus, in this review, the various types of stem cells, the current knowledge of stem-cell-based therapies in neurodegenerative diseases, and the recent advances in this field are summarized. Indeed, a better understanding and further studies of stem cell technologies cause progress into realistic and efficacious treatments of neurodegenerative disorders.
Collapse
Affiliation(s)
- Farzane Sivandzade
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA;
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Luca Cucullo
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| |
Collapse
|
17
|
Lin CY, Lin HY, Chuang CK, Zhang PH, Tu RY, Lin SP, Tsai HJ. Effect of Mutated ids Overexpression on IDS Enzyme Activity and Developmental Phenotypes in Zebrafish Embryos: A Valuable Index for Assessing Critical Point-Mutations Associated with Mucopolysaccharidosis Type II Occurrence in Humans. Diagnostics (Basel) 2020; 10:diagnostics10100854. [PMID: 33096603 PMCID: PMC7589091 DOI: 10.3390/diagnostics10100854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 01/08/2023] Open
Abstract
Mucopolysaccharidosis type II (MPS II) is an X-linked disorder resulting from a deficiency in iduronate 2-sulfatase (IDS), which is reported to be caused by gene mutations in the iduronate 2-sulfatase (IDS) gene. Many IDS mutation sites have not yet had their causal relationship with MPS II characterized. We employed a gain-of-function strategy whereby we microinjected different mutated zebrafish ids (z-ids) mRNAs corresponded to human IDS gene into zebrafish embryos, and then measured their total IDS enzymatic activity and observed the occurrence of defective phenotypes during embryonic development. We examined three known mutation sites for human IDS genes (h-IDS) associated with MPS II symptoms, including h-IDS-P86L, -S333L and -R468W, which corresponded to z-ids-P80L, -S327L and -R454W. When these three mutated z-ids mRNAs were overexpressed in zebrafish embryos, the IDS enzymatic activity of the total proteins extracted from the injected embryos was not increased compared with the endogenous IDS of the untreated embryos, which suggests that the IDS enzymatic activity of these three mutated z-ids was totally lost, as expected. Additionally, we observed defective phenotypes in these injected embryos, resulting from the failed IDS enzyme breakdown, which, in turn, has a dominant negative effect on the endogenous wild-type IDS function. These phenotypes were similar to the clinical symptoms observed in MPS II pathogenesis. We further studied six uncharacterized IDS mutation sites as identified by the Taiwanese MPS newborn screening programs. We propose a novel IDS enzyme activity assay combined with phenotypic observation in zebrafish embryos, as an alternative platform for quickly providing a valuable index for preliminarily assessment of any identified IDS point mutation gene that has not yet been characterized, in the context of its role in MPS II development.
Collapse
Affiliation(s)
- Cheng-Yung Lin
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 25245, Taiwan; (C.-Y.L.); (H.-Y.L.); (P.-H.Z.)
| | - Hsiang-Yu Lin
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 25245, Taiwan; (C.-Y.L.); (H.-Y.L.); (P.-H.Z.)
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City 25160, Taiwan; (C.-K.C.); (R.-Y.T.)
- MacKay Junior College of Medicine, Nursing and Management, Taipei 11260, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Chih-Kuang Chuang
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City 25160, Taiwan; (C.-K.C.); (R.-Y.T.)
- College of Medicine, Fu-Jen Catholic University, Taipei 24205, Taiwan
| | - Po-Hsiang Zhang
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 25245, Taiwan; (C.-Y.L.); (H.-Y.L.); (P.-H.Z.)
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City 25160, Taiwan; (C.-K.C.); (R.-Y.T.)
| | - Ru-Yi Tu
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City 25160, Taiwan; (C.-K.C.); (R.-Y.T.)
| | - Shuan-Pei Lin
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City 25160, Taiwan; (C.-K.C.); (R.-Y.T.)
- Department of Infant and Child Care, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan
- Correspondence: (S.-P.L.); (H.-J.T.)
| | - Huai-Jen Tsai
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 25245, Taiwan; (C.-Y.L.); (H.-Y.L.); (P.-H.Z.)
- Correspondence: (S.-P.L.); (H.-J.T.)
| |
Collapse
|
18
|
Induced Pluripotent Stem Cell (iPSC)-Based Neurodegenerative Disease Models for Phenotype Recapitulation and Drug Screening. Molecules 2020; 25:molecules25082000. [PMID: 32344649 PMCID: PMC7221979 DOI: 10.3390/molecules25082000] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases represent a significant unmet medical need in our aging society. There are no effective treatments for most of these diseases, and we know comparatively little regarding pathogenic mechanisms. Among the challenges faced by those involved in developing therapeutic drugs for neurodegenerative diseases, the syndromes are often complex, and small animal models do not fully recapitulate the unique features of the human nervous system. Human induced pluripotent stem cells (iPSCs) are a novel technology that ideally would permit us to generate neuronal cells from individual patients, thereby eliminating the problem of species-specificity inherent when using animal models. Specific phenotypes of iPSC-derived cells may permit researchers to identify sub-types and to distinguish among unique clusters and groups. Recently, iPSCs were used for drug screening and testing for neurologic disorders including Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), spinocerebellar atrophy (SCA), and Zika virus infection. However, there remain many challenges still ahead, including how one might effectively recapitulate sporadic disease phenotypes and the selection of ideal phenotypes and for large-scale drug screening. Fortunately, quite a few novel strategies have been developed that might be combined with an iPSC-based model to solve these challenges, including organoid technology, single-cell RNA sequencing, genome editing, and deep learning artificial intelligence. Here, we will review current applications and potential future directions for iPSC-based neurodegenerative disease models for critical drug screening.
Collapse
|