1
|
Hu Y, Zhang Y, He J, Rao H, Zhang D, Shen Z, Zhou C. ANO1: central role and clinical significance in non-neoplastic and neoplastic diseases. Front Immunol 2025; 16:1570333. [PMID: 40356890 PMCID: PMC12067801 DOI: 10.3389/fimmu.2025.1570333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/20/2025] [Indexed: 05/15/2025] Open
Abstract
Anoctamin 1 (ANO1), also known as TMEM16A, is a multifunctional protein that serves as a calcium-activated chloride channel (CaCC). It is ubiquitously expressed across various tissues, including epithelial cells, smooth muscle cells, and neurons, where it is integral to physiological processes such as epithelial secretion, smooth muscle contraction, neural conduction, and cell proliferation and migration. Dysregulation of ANO1 has been linked to the pathogenesis of numerous diseases. Extensive research has established its involvement in non-neoplastic conditions such as asthma, hypertension, and gastrointestinal (GI) dysfunction. Moreover, ANO1 has garnered significant attention for its role in the development and progression of cancers, including head and neck cancer, breast cancer, and lung cancer, where its overexpression correlates with increased tumor growth, metastasis, and poor prognosis. Additionally, ANO1 regulates multiple signaling pathways, including the epidermal growth factor receptor (EGFR) pathway, the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway, and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway, among others. These pathways are pivotal in regulating cell proliferation, migration, and invasion. Given its central role in these processes, ANO1 has emerged as a promising diagnostic biomarker and therapeutic target. Recent advancements in ANO1 research have highlighted its potential in disease diagnosis and treatment. Strategies targeting ANO1, such as small molecule modulators or gene-silencing techniques, have shown preclinical promise in both non-neoplastic and neoplastic diseases. This review explores the latest findings in ANO1 research, focusing on its mechanistic involvement in disease progression, its regulation, and its therapeutic potential. Modulating ANO1 activity may offer novel therapeutic strategies for effectively treating ANO1-associated diseases.
Collapse
Affiliation(s)
- Yanghao Hu
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Yifei Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Jiali He
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Huihuang Rao
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Duomi Zhang
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Zhisen Shen
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Chongchang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Dubaissi E, Hilton EN, Lilley S, Collins R, Holt C, March P, Danahay H, Gosling M, Grencis RK, Roberts IS, Thornton DJ. The Tmem16a chloride channel is required for mucin maturation after secretion from goblet-like cells in the Xenopus tropicalis tadpole skin. Sci Rep 2024; 14:25555. [PMID: 39461969 PMCID: PMC11514049 DOI: 10.1038/s41598-024-76482-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The TMEM16A chloride channel is proposed as a therapeutic target in cystic fibrosis, where activation of this ion channel might restore airway surface hydration and mitigate respiratory symptoms. While TMEM16A is associated with increased mucin production under stimulated or pro-inflammatory conditions, its role in baseline mucin production, secretion and/or maturation is less well understood. Here, we use the Xenopus tadpole skin mucociliary surface as a model of human upper airway epithelium to study Tmem16a function in mucus production. We found that Xenopus tropicalis Tmem16a is present at the apical membrane surface of tadpole skin small secretory cells that express canonical markers of mammalian "goblet cells" such as Foxa1 and spdef. X. tropicalis Tmem16a functions as a voltage-gated, calcium-activated chloride channel when transfected into mammalian cells in culture. Depletion of Tmem16a from the tadpole skin results in dysregulated mucin maturation post-secretion, with secreted mucins having a disrupted molecular size distribution and altered morphology assessed by sucrose gradient centrifugation and electron microscopy, respectively. Our results show that in the Xenopus tadpole skin, Tmem16a is necessary for normal mucus barrier formation and demonstrate the utility of this model system to discover new biology relevant to human mucosal biology in health and disease.
Collapse
Affiliation(s)
- Eamon Dubaissi
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, M13 9PT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Emma N Hilton
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, M13 9PT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Sarah Lilley
- Sussex Drug Discovery Centre, University of Sussex, Falmer, Brighton, BN1 9QJ, UK
| | - Richard Collins
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Charlotte Holt
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Peter March
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Henry Danahay
- Enterprise Therapeutics, Sussex Innovation Centre, Science Park Square, Falmer, Brighton, BN1 9SB, UK
| | - Martin Gosling
- Sussex Drug Discovery Centre, University of Sussex, Falmer, Brighton, BN1 9QJ, UK
- Enterprise Therapeutics, Sussex Innovation Centre, Science Park Square, Falmer, Brighton, BN1 9SB, UK
| | - Richard K Grencis
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, M13 9PT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Ian S Roberts
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - David J Thornton
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK.
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK.
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, M13 9PT, UK.
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
3
|
Schreiber R, Ousingsawat J, Kunzelmann K. The anoctamins: Structure and function. Cell Calcium 2024; 120:102885. [PMID: 38642428 DOI: 10.1016/j.ceca.2024.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/22/2024]
Abstract
When activated by increase in intracellular Ca2+, anoctamins (TMEM16 proteins) operate as phospholipid scramblases and as ion channels. Anoctamin 1 (ANO1) is the Ca2+-activated epithelial anion-selective channel that is coexpressed together with the abundant scramblase ANO6 and additional intracellular anoctamins. In salivary and pancreatic glands, ANO1 is tightly packed in the apical membrane and secretes Cl-. Epithelia of airways and gut use cystic fibrosis transmembrane conductance regulator (CFTR) as an apical Cl- exit pathway while ANO1 supports Cl- secretion mainly by facilitating activation of luminal CFTR and basolateral K+ channels. Under healthy conditions ANO1 modulates intracellular Ca2+ signals by tethering the endoplasmic reticulum, and except of glands its direct secretory contribution as Cl- channel might be small, compared to CFTR. In the kidneys ANO1 supports proximal tubular acid secretion and protein reabsorption and probably helps to excrete HCO3-in the collecting duct epithelium. However, under pathological conditions as in polycystic kidney disease, ANO1 is strongly upregulated and may cause enhanced proliferation and cyst growth. Under pathological condition, ANO1 and ANO6 are upregulated and operate as secretory channel/phospholipid scramblases, partly by supporting Ca2+-dependent processes. Much less is known about the role of other epithelial anoctamins whose potential functions are discussed in this review.
Collapse
Affiliation(s)
- Rainer Schreiber
- Physiological Institute, University of Regensburg, University street 31, D-93053 Regensburg, Germany
| | - Jiraporn Ousingsawat
- Physiological Institute, University of Regensburg, University street 31, D-93053 Regensburg, Germany
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, University street 31, D-93053 Regensburg, Germany.
| |
Collapse
|
4
|
Deng X, Seguinot BO, Bradshaw G, Lee JS, Coy S, Kalocsay M, Santagata S, Mitchison T. STMND1 is a phylogenetically ancient stathmin which localizes to motile cilia and exhibits nuclear translocation that is inhibited when soluble tubulin concentration increases. Mol Biol Cell 2024; 35:ar82. [PMID: 38630521 PMCID: PMC11238091 DOI: 10.1091/mbc.e23-12-0514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
Stathmins are small, unstructured proteins that bind tubulin dimers and are implicated in several human diseases, but whose function remains unknown. We characterized a new stathmin, STMND1 (Stathmin Domain Containing 1) as the human representative of an ancient subfamily. STMND1 features a N-terminal myristoylated and palmitoylated motif which directs it to membranes and a tubulin-binding stathmin-like domain (SLD) that contains an internal nuclear localization signal. Biochemistry and proximity labeling showed that STMND1 binds tubulin, and live imaging showed that tubulin binding inhibits translocation from cellular membranes to the nucleus. STMND1 is highly expressed in multiciliated epithelial cells, where it localizes to motile cilia. Overexpression in a model system increased the length of primary cilia. Our study suggests that the most ancient stathmins have cilium-related functions that involve sensing soluble tubulin.
Collapse
Affiliation(s)
- Xiang Deng
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Bryan O. Seguinot
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Gary Bradshaw
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Jong Suk Lee
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
| | - Shannon Coy
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
| | - Marian Kalocsay
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Sandro Santagata
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
| | - Timothy Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
5
|
Yoshie S, Murono S, Hazama A. Approach for Elucidating the Molecular Mechanism of Epithelial to Mesenchymal Transition in Fibrosis of Asthmatic Airway Remodeling Focusing on Cl - Channels. Int J Mol Sci 2023; 25:289. [PMID: 38203460 PMCID: PMC10779031 DOI: 10.3390/ijms25010289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Airway remodeling caused by asthma is characterized by structural changes of subepithelial fibrosis, goblet cell metaplasia, submucosal gland hyperplasia, smooth muscle cell hyperplasia, and angiogenesis, leading to symptoms such as dyspnea, which cause marked quality of life deterioration. In particular, fibrosis exacerbated by asthma progression is reportedly mediated by epithelial-mesenchymal transition (EMT). It is well known that the molecular mechanism of EMT in fibrosis of asthmatic airway remodeling is closely associated with several signaling pathways, including the TGF-β1/Smad, TGF-β1/non-Smad, and Wnt/β-catenin signaling pathways. However, the molecular mechanism of EMT in fibrosis of asthmatic airway remodeling has not yet been fully clarified. Given that Cl- transport through Cl- channels causes passive water flow and consequent changes in cell volume, these channels may be considered to play a key role in EMT, which is characterized by significant morphological changes. In the present article, we highlight how EMT, which causes fibrosis and carcinogenesis in various tissues, is strongly associated with activation or inactivation of Cl- channels and discuss whether Cl- channels can lead to elucidation of the molecular mechanism of EMT in fibrosis of asthmatic airway remodeling.
Collapse
Affiliation(s)
- Susumu Yoshie
- Department of Cellular and Integrative Physiology, Graduate School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Shigeyuki Murono
- Department of Otolaryngology Head and Neck Surgery, Graduate School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Akihiro Hazama
- Department of Cellular and Integrative Physiology, Graduate School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| |
Collapse
|
6
|
Purushothaman AK, Nelson EJR. Role of innate immunity and systemic inflammation in cystic fibrosis disease progression. Heliyon 2023; 9:e17553. [PMID: 37449112 PMCID: PMC10336457 DOI: 10.1016/j.heliyon.2023.e17553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Pathophysiological manifestations of cystic fibrosis (CF) result from a functional defect in the cystic fibrosis transmembrane conductance regulator (CFTR) paving way for mucus obstruction and pathogen colonization. The role of CFTR in modulating immune cell function and vascular integrity, irrespective of mucus thickening, in determining the host cell response to pathogens/allergens and causing systemic inflammation is least appreciated. Since CFTR plays a key role in the conductance of anions like Cl-, loss of CFTR function could affect various basic cellular processes, such as cellular homeostasis, lysosome acidification, and redox balance. CFTR aids in endotoxin tolerance by regulating Toll-like receptor-mediated signaling resulting in uncontrolled activation of innate immune cells. Although leukocytes of CF patients are hyperactivated, they exhibit compromised phagosome activity thus favouring the orchestration of sepsis from defective pathogen clearance. This review will emphasize the importance of innate immunity and systemic inflammatory response in the development of CF and other CFTR-associated pathologies.
Collapse
Affiliation(s)
- Anand Kumar Purushothaman
- Gene Therapy Laboratory, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Everette Jacob Remington Nelson
- Gene Therapy Laboratory, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
7
|
Zhang J, Hartmann AM, Guo J. Editorial: Chloride homeostasis in animal cell physiology. Front Physiol 2023; 14:1227565. [PMID: 37342798 PMCID: PMC10277798 DOI: 10.3389/fphys.2023.1227565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023] Open
Affiliation(s)
- Jinwei Zhang
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- State Key Laboratory of Chemical Biology, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Hatherly Laboratories, Streatham Campus, Exeter, United Kingdom
| | - Anna-Maria Hartmann
- Division of Neurogenetics, Faculty VI, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Jiangtao Guo
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China
- Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Centeio R, Cabrita I, Schreiber R, Kunzelmann K. TMEM16A/F support exocytosis but do not inhibit Notch-mediated goblet cell metaplasia of BCi-NS1.1 human airway epithelium. Front Physiol 2023; 14:1157704. [PMID: 37234411 PMCID: PMC10206426 DOI: 10.3389/fphys.2023.1157704] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Cl- channels such as the Ca2+ activated Cl- channel TMEM16A and the Cl- permeable phospholipid scramblase TMEM16F may affect the intracellular Cl- concentration ([Cl-]i), which could act as an intracellular signal. Loss of airway expression of TMEM16A induced a massive expansion of the secretory cell population like goblet and club cells, causing differentiation into a secretory airway epithelium. Knockout of the Ca2+-activated Cl- channel TMEM16A or the phospholipid scramblase TMEM16F leads to mucus accumulation in intestinal goblet cells and airway secretory cells. We show that both TMEM16A and TMEM16F support exocytosis and release of exocytic vesicles, respectively. Lack of TMEM16A/F expression therefore causes inhibition of mucus secretion and leads to goblet cell metaplasia. The human basal epithelial cell line BCi-NS1.1 forms a highly differentiated mucociliated airway epithelium when grown in PneumaCult™ media under an air liquid interface. The present data suggest that mucociliary differentiation requires activation of Notch signaling, but not the function of TMEM16A. Taken together, TMEM16A/F are important for exocytosis, mucus secretion and formation of extracellular vesicles (exosomes or ectosomes) but the present data do no not support a functional role of TMEM16A/F in Notch-mediated differentiation of BCi-NS1.1 cells towards a secretory epithelium.
Collapse
Affiliation(s)
- Raquel Centeio
- Physiological Institute, University of Regensburg, Regensburg, Germany
| | - Inês Cabrita
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Rainer Schreiber
- Physiological Institute, University of Regensburg, Regensburg, Germany
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, Regensburg, Germany
| |
Collapse
|
9
|
Rodrigo Albors A, Singer GA, Llorens-Bobadilla E, Frisén J, May AP, Ponting CP, Storey KG. An ependymal cell census identifies heterogeneous and ongoing cell maturation in the adult mouse spinal cord that changes dynamically on injury. Dev Cell 2023; 58:239-255.e10. [PMID: 36706756 DOI: 10.1016/j.devcel.2023.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/14/2022] [Accepted: 01/04/2023] [Indexed: 01/27/2023]
Abstract
The adult spinal cord stem cell potential resides within the ependymal cell population and declines with age. Ependymal cells are, however, heterogeneous, and the biological diversity this represents and how it changes with age remain unknown. Here, we present a single-cell transcriptomic census of spinal cord ependymal cells from adult and aged mice, identifying not only all known ependymal cell subtypes but also immature as well as mature cell states. By comparing transcriptomes of spinal cord and brain ependymal cells, which lack stem cell abilities, we identify immature cells as potential spinal cord stem cells. Following spinal cord injury, these cells re-enter the cell cycle, which is accompanied by a short-lived reversal of ependymal cell maturation. We further analyze ependymal cells in the human spinal cord and identify widespread cell maturation and altered cell identities. This in-depth characterization of spinal cord ependymal cells provides insight into their biology and informs strategies for spinal cord repair.
Collapse
Affiliation(s)
- Aida Rodrigo Albors
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | - Gail A Singer
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Andrew P May
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Tornado Bio, Inc., South San Francisco, CA 94080, USA
| | - Chris P Ponting
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Kate G Storey
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
10
|
Ievlev V, Lynch TJ, Freischlag KW, Gries CB, Shah A, Pai AC, Ahlers BA, Park S, Engelhardt JF, Parekh KR. Krt14 and Krt15 differentially regulate regenerative properties and differentiation potential of airway basal cells. JCI Insight 2023; 8:e162041. [PMID: 36512409 PMCID: PMC9977304 DOI: 10.1172/jci.insight.162041] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Keratin expression dynamically changes in airway basal cells (BCs) after acute and chronic injury, yet the functional consequences of these changes on BC behavior remain unknown. In bronchiolitis obliterans (BO) after lung transplantation, BC clonogenicity declines, which is associated with a switch from keratin15 (Krt15) to keratin14 (Krt14). We investigated these keratins' roles using Crispr-KO in vitro and in vivo and found that Krt14-KO and Krt15-KO produce contrasting phenotypes in terms of differentiation and clonogenicity. Primary mouse Krt14-KO BCs did not differentiate into club and ciliated cells but had enhanced clonogenicity. By contrast, Krt15-KO did not alter BC differentiation but impaired clonogenicity in vitro and reduced the number of label-retaining BCs in vivo after injury. Krt14, but not Krt15, bound the tumor suppressor stratifin (Sfn). Disruption of Krt14, but not of Krt15, reduced Sfn protein abundance and increased expression of the oncogene dNp63a during BC differentiation, whereas dNp63a levels were reduced in Krt15-KO BCs. Overall, the phenotype of Krt15-KO BCs contrasts with Krt14-KO phenotype and resembles the phenotype in BO with decreased clonogenicity, increased Krt14, and decreased dNp63a expression. This work demonstrates that Krt14 and Krt15 functionally regulate BC behavior, which is relevant in chronic disease states like BO.
Collapse
Affiliation(s)
- Vitaly Ievlev
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Thomas J. Lynch
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Carver College of Medicine, Iowa City, Iowa, USA
| | - Kyle W. Freischlag
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Carver College of Medicine, Iowa City, Iowa, USA
| | - Caitlyn B. Gries
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Carver College of Medicine, Iowa City, Iowa, USA
| | - Anit Shah
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Albert C. Pai
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Carver College of Medicine, Iowa City, Iowa, USA
| | - Bethany A. Ahlers
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Carver College of Medicine, Iowa City, Iowa, USA
| | - Soo Park
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - John F. Engelhardt
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Kalpaj R. Parekh
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
11
|
Gonçalves AN, Moura RS, Correia-Pinto J, Nogueira-Silva C. Intraluminal chloride regulates lung branching morphogenesis: involvement of PIEZO1/PIEZO2. Respir Res 2023; 24:42. [PMID: 36740669 PMCID: PMC9901166 DOI: 10.1186/s12931-023-02328-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 01/13/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Clinical and experimental evidence shows lung fluid volume as a modulator of fetal lung growth with important value in treating fetal lung hypoplasia. Thus, understanding the mechanisms underlying these morphological dynamics has been the topic of multiple investigations with, however, limited results, partially due to the difficulty of capturing or recapitulating these movements in the lab. In this sense, this study aims to establish an ex vivo model allowing the study of lung fluid function in branching morphogenesis and identify the subsequent molecular/ cellular mechanisms. METHODS Ex vivo lung explant culture was selected as a model to study branching morphogenesis, and intraluminal injections were performed to change the composition of lung fluid. Distinct chloride (Cl-) concentrations (5.8, 29, 143, and 715 mM) or Cl- channels inhibitors [antracene-9-carboxylic acid (A9C), cystic fibrosis transmembrane conductance regulator inhibitor172 (CFTRinh), and calcium-dependent Cl- channel inhibitorA01 (CaCCinh)] were injected into lung lumen at two timepoints, day0 (D0) and D2. At D4, morphological and molecular analyses were performed in terms of branching morphogenesis, spatial distribution (immunofluorescence), and protein quantification (western blot) of mechanoreceptors (PIEZO1 and PIEZO2), neuroendocrine (bombesin, ghrelin, and PGP9.5) and smooth muscle [alpha-smooth muscle actin (α-SMA) and myosin light chain 2 (MLC2)] markers. RESULTS For the first time, we described effective intraluminal injections at D0 and D2 and demonstrated intraluminal movements at D4 in ex vivo lung explant cultures. Through immunofluorescence assay in in vivo and ex vivo branching morphogenesis, we show that PGP9.5 colocalizes with PIEZO1 and PIEZO2 receptors. Fetal lung growth is increased at higher [Cl-], 715 mM Cl-, through the overexpression of PIEZO1, PIEZO2, ghrelin, bombesin, MLC2, and α-SMA. In contrast, intraluminal injection of CFTRinh or CaCCinh decreases fetal lung growth and the expression of PIEZO1, PIEZO2, ghrelin, bombesin, MLC2, and α-SMA. Finally, the inhibition of PIEZO1/PIEZO2 by GsMTx4 decreases branching morphogenesis and ghrelin, bombesin, MLC2, and α-SMA expression in an intraluminal injection-independent manner. CONCLUSIONS Our results identify PIEZO1/PIEZO2 expressed in neuroendocrine cells as a regulator of fetal lung growth induced by lung fluid.
Collapse
Affiliation(s)
- Ana N. Gonçalves
- grid.10328.380000 0001 2159 175XSchool of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Gualtar, 4710-057 Braga, Portugal ,grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rute S. Moura
- grid.10328.380000 0001 2159 175XSchool of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Gualtar, 4710-057 Braga, Portugal ,grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Correia-Pinto
- grid.10328.380000 0001 2159 175XSchool of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Gualtar, 4710-057 Braga, Portugal ,grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal ,Department of Pediatric Surgery, Hospital de Braga, Braga, Portugal
| | - Cristina Nogueira-Silva
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Gualtar, 4710-057, Braga, Portugal. .,Life and Health Sciences Research Institute/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal. .,Department of Obstetrics and Gynecology, Hospital de Braga, Braga, Portugal.
| |
Collapse
|
12
|
Philp AR, Miranda F, Gianotti A, Mansilla A, Scudieri P, Musante I, Vega G, Figueroa CD, Galietta LJV, Sarmiento JM, Flores CA. KCa3.1 differentially regulates trachea and bronchi epithelial gene expression in a chronic-asthma mouse model. Physiol Genomics 2022; 54:273-282. [PMID: 35658672 DOI: 10.1152/physiolgenomics.00134.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ion channels are potentially exploitable as pharmacological targets to treat asthma. This study evaluated the role of KCa3.1 channels, encoded by Kcnn4, in regulating the gene expression of mouse airway epithelium and the development of asthma traits. We used the ovalbumin (OVA) challenge as an asthma model in wild type and Kcnn4-/- mice, performed histological analysis, and measured serum IgE to evaluate asthma traits. We analyzed gene expression of isolated epithelial cells of trachea or bronchi using mRNA sequencing and gene ontology and performed Ussing chamber experiments in mouse trachea to evaluate anion secretion. Gene expression of epithelial cells from mouse airways differed between trachea and bronchi, indicating regional differences in the inflammatory and transepithelial transport properties of proximal and distal airways. We found that Kcnn4 silencing reduced mast cell numbers, mucus, and collagen in the airways, and reduced the amount of epithelial anion secretion in the OVA-challenged animals. Additionally, gene expression was differentially modified in the trachea and bronchi, with Kcnn4 genetic silencing significantly altering the expression of genes involved in the TNF pathway, supporting the potential of KCa3.1 as a therapeutic target for asthma.
Collapse
Affiliation(s)
- Amber R Philp
- Centro de Estudios Científicos, Valdivia, Los Rios, Chile.,Austral University of Chile, Valdivia, Chile
| | - Fernando Miranda
- Departamento de Fisiología, Austral University of Chile, Valdivia, Chile
| | | | - Agustín Mansilla
- Centro de Estudios Científicos, Valdivia, Los Rios, Chile.,Austral University of Chile, Valdivia, Chile
| | | | | | - Génesis Vega
- Centro de Estudios Científicos, Valdivia, Los Rios, Chile
| | | | - Luis J V Galietta
- TIGEM, Pozzuoli, Italia.,Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - José M Sarmiento
- Departamento de Fisiología, Austral University of Chile, Valdivia, Chile
| | - Carlos A Flores
- Centro de Estudios Científicos, Valdivia, Los Rios, Chile.,Universidad San Sebastián, Valdivia, Chile
| |
Collapse
|
13
|
Pereira G, Guo Y, Silva E, Bevilacqua C, Charpigny G, Lopes-da-Costa L, Humblot P. Progesterone differentially affects the transcriptomic profiles of cow endometrial cell types. BMC Genomics 2022; 23:82. [PMID: 35086476 PMCID: PMC8793221 DOI: 10.1186/s12864-022-08323-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/20/2022] [Indexed: 01/04/2023] Open
Abstract
Background The endometrium is a heterogeneous tissue composed of luminal epithelial (LE), glandular epithelial (GE), and stromal cells (ST), experiencing progesterone regulated dynamic changes during the estrous cycle. In the cow, this regulation at the transcriptomic level was only evaluated in the whole tissue. This study describes specific gene expression in the three types of cells isolated from endometrial biopsies following laser capture microdissection and the transcriptome changes induced by progesterone in GE and ST cells. Results Endometrial LE, GE, and ST cells show specific transcriptomic profiles. Most of the differentially expressed genes (DEGs) in response to progesterone are cell type-specific (96%). Genes involved in cell cycle and nuclear division are under-expressed in the presence of progesterone in GE, highlighting the anti-proliferative action of progesterone in epithelial cells. Elevated progesterone concentrations are also associated with the under-expression of estrogen receptor 1 (ESR1) in GE and oxytocin receptor (OXTR) in GE and ST cells. In ST cells, transcription factors such as SOX17 and FOXA2, known to regulate uterine epithelial-stromal cross-talk conveying to endometrial receptivity, are over-expressed under progesterone influence. Conclusions The results from this study show that progesterone regulates endometrial function in a cell type-specific way, which is independent of the expression of its main receptor PGR. These novel insights into uterine physiology present the cell compartment as the physiological unit rather than the whole tissue. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08323-z.
Collapse
Affiliation(s)
- Gonçalo Pereira
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Yongzhi Guo
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, SLU, PO Box 7054, 750 07, Uppsala, Sweden
| | - Elisabete Silva
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Claudia Bevilacqua
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Gilles Charpigny
- Université Paris-Saclay, INRAE, ENVA, BREED, 78350, Jouy-en-Josas, France
| | - Luís Lopes-da-Costa
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal.
| | - Patrice Humblot
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, SLU, PO Box 7054, 750 07, Uppsala, Sweden
| |
Collapse
|
14
|
Cellular and molecular architecture of submucosal glands in wild-type and cystic fibrosis pigs. Proc Natl Acad Sci U S A 2022; 119:2119759119. [PMID: 35046051 PMCID: PMC8794846 DOI: 10.1073/pnas.2119759119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Submucosal glands (SMGs) protect lungs but can also contribute to disease. For example, in cystic fibrosis (CF), SMGs produce abnormal mucus that disrupts mucociliary transport. CF is an ion transport disease, yet knowledge of the ion transporters expressed by SMG acini, which produce mucus, and SMG ducts that carry it to the airway lumen is limited. Therefore, we isolated SMGs from newborn pigs and used single-cell messenger RNA sequencing, immunohistochemistry, and in situ hybridization to identify cell types, gene expression, and spatial distribution. Cell types and transcript levels were the same in non-CF and CF SMGs, suggesting that loss of epithelial anion secretion rather than an intrinsic cell defect causes CF mucus abnormalities. Gene signatures of acinar mucous and acinar serous cells revealed specialized functions in producing mucins and antimicrobials, respectively. However, surprisingly, these two cell types expressed the same ion transporters and neurohumoral receptors, suggesting the importance of balancing mucin and liquid secretion to produce optimal mucus properties. SMG duct cell transcripts suggest that they secrete HCO3- and Cl-, and thus have some similarity to pancreatic ducts that are also defective in CF. These and additional findings suggest the functions of the SMG acinus and duct and provide a baseline for understanding how environmental and genetic challenges impact their contribution to lung disease.
Collapse
|
15
|
Huang EN, Quach H, Lee JA, Dierolf J, Moraes TJ, Wong AP. A Developmental Role of the Cystic Fibrosis Transmembrane Conductance Regulator in Cystic Fibrosis Lung Disease Pathogenesis. Front Cell Dev Biol 2021; 9:742891. [PMID: 34708042 PMCID: PMC8542926 DOI: 10.3389/fcell.2021.742891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/21/2021] [Indexed: 12/23/2022] Open
Abstract
The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein is a cAMP-activated anion channel that is critical for regulating fluid and ion transport across the epithelium. This process is disrupted in CF epithelia, and patients harbouring CF-causing mutations experience reduced lung function as a result, associated with the increased rate of mortality. Much progress has been made in CF research leading to treatments that improve CFTR function, including small molecule modulators. However, clinical outcomes are not necessarily mutation-specific as individuals harboring the same genetic mutation may present with varying disease manifestations and responses to therapy. This suggests that the CFTR protein may have alternative functions that remain under-appreciated and yet can impact disease. In this mini review, we highlight some notable research implicating an important role of CFTR protein during early lung development and how mutant CFTR proteins may impact CF airway disease pathogenesis. We also discuss recent novel cell and animal models that can now be used to identify a developmental cause of CF lung disease.
Collapse
Affiliation(s)
- Elena N Huang
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Henry Quach
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jin-A Lee
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Joshua Dierolf
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Theo J Moraes
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.,Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Amy P Wong
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Pinto MC, Silva IAL, Figueira MF, Amaral MD, Lopes-Pacheco M. Pharmacological Modulation of Ion Channels for the Treatment of Cystic Fibrosis. J Exp Pharmacol 2021; 13:693-723. [PMID: 34326672 PMCID: PMC8316759 DOI: 10.2147/jep.s255377] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis (CF) is a life-shortening monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, an anion channel that transports chloride and bicarbonate across epithelia. Despite clinical progress in delaying disease progression with symptomatic therapies, these individuals still develop various chronic complications in lungs and other organs, which significantly restricts their life expectancy and quality of life. The development of high-throughput assays to screen drug-like compound libraries have enabled the discovery of highly effective CFTR modulator therapies. These novel therapies target the primary defect underlying CF and are now approved for clinical use for individuals with specific CF genotypes. However, the clinically approved modulators only partially reverse CFTR dysfunction and there is still a considerable number of individuals with CF carrying rare CFTR mutations who remain without any effective CFTR modulator therapy. Accordingly, additional efforts have been pursued to identify novel and more potent CFTR modulators that may benefit a larger CF population. The use of ex vivo individual-derived specimens has also become a powerful tool to evaluate novel drugs and predict their effectiveness in a personalized medicine approach. In addition to CFTR modulators, pro-drugs aiming at modulating alternative ion channels/transporters are under development to compensate for the lack of CFTR function. These therapies may restore normal mucociliary clearance through a mutation-agnostic approach (ie, independent of CFTR mutation) and include inhibitors of the epithelial sodium channel (ENaC), modulators of the calcium-activated channel transmembrane 16A (TMEM16, or anoctamin 1) or of the solute carrier family 26A member 9 (SLC26A9), and anionophores. The present review focuses on recent progress and challenges for the development of ion channel/transporter-modulating drugs for the treatment of CF.
Collapse
Affiliation(s)
- Madalena C Pinto
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Iris A L Silva
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Miriam F Figueira
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Margarida D Amaral
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| |
Collapse
|
17
|
Liu Y, Liu Z, Wang K. The Ca 2+-activated chloride channel ANO1/TMEM16A: An emerging therapeutic target for epithelium-originated diseases? Acta Pharm Sin B 2021; 11:1412-1433. [PMID: 34221860 PMCID: PMC8245819 DOI: 10.1016/j.apsb.2020.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/19/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Anoctamin 1 (ANO1) or TMEM16A gene encodes a member of Ca2+ activated Cl– channels (CaCCs) that are critical for physiological functions, such as epithelial secretion, smooth muscle contraction and sensory signal transduction. The attraction and interest in ANO1/TMEM16A arise from a decade long investigations that abnormal expression or dysfunction of ANO1 is involved in many pathological phenotypes and diseases, including asthma, neuropathic pain, hypertension and cancer. However, the lack of specific modulators of ANO1 has impeded the efforts to validate ANO1 as a therapeutic target. This review focuses on the recent progress made in understanding of the pathophysiological functions of CaCC ANO1 and the current modulators used as pharmacological tools, hopefully illustrating a broad spectrum of ANO1 channelopathy and a path forward for this target validation.
Collapse
Key Words
- ANO1
- ANO1, anoctamin-1
- ASM, airway smooth muscle
- Ang II, angiotensin II
- BBB, blood–brain barrier
- CAMK, Ca2+/calmodulin-dependent protein kinase
- CF, cystic fibrosis
- CFTR, cystic fibrosis transmembrane conductance regulator
- Ca2+-activated Cl– channels (CaCCs)
- CaCCinh-A01
- CaCCs, Ca2+ activated chloride channels
- Cancer
- Cystic fibrosis
- DRG, dorsal root ganglion
- Drug target
- EGFR, epidermal growth factor receptor
- ENaC, epithelial sodium channels
- ER, endoplasmic reticulum
- ESCC, esophageal squamous cell carcinoma
- FRT, fisher rat thyroid
- GI, gastrointestinal
- GIST, gastrointestinal stromal tumor
- GPCR, G-protein coupled receptor
- HNSCC, head and neck squamous cell carcinoma
- HTS, high-throughput screening
- ICC, interstitial cells of Cajal
- IPAH, idiopathic pulmonary arterial hypertension
- MAPK, mitogen-activated protein kinase
- NF-κB, nuclear factor κB
- PAH, pulmonary arterial hypertension
- PAR2, protease activated receptor 2
- PASMC, pulmonary artery smooth muscle cells
- PIP2, phosphatidylinositol 4,5-bisphosphate
- PKD, polycystic kidney disease
- T16Ainh-A01
- TGF-β, transforming growth factor-β
- TMEM16A
- VGCC, voltage gated calcium channel
- VRAC, volume regulated anion channel
- VSMC, vascular smooth muscle cells
- YFP, yellow fluorescent protein
Collapse
Affiliation(s)
- Yani Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, Qingdao 266021, China
| | - Zongtao Liu
- Department of Clinical Laboratory, Qingdao Third People's Hospital, Qingdao 266041, China
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, Qingdao 266021, China
- Corresponding authors.
| |
Collapse
|
18
|
Schuh MP, Alkhudairy L, Potter A, Potter SS, Chetal K, Thakkar K, Salomonis N, Kopan R. The Rhesus Macaque Serves As a Model for Human Lateral Branch Nephrogenesis. J Am Soc Nephrol 2021; 32:1097-1112. [PMID: 33789950 PMCID: PMC8259676 DOI: 10.1681/asn.2020101459] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/18/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Most nephrons are added in late gestation. Truncated extrauterine nephrogenesis in premature infants results in fewer nephrons and significantly increased risk for CKD in adulthood. To overcome the ethical and technical difficulties associated with studies of late-gestation human fetal kidney development, third-trimester rhesus macaques served as a model to understand lateral branch nephrogenesis (LBN) at the molecular level. METHODS Immunostaining and 3D rendering assessed morphology. Single-cell (sc) and single-nucleus (sn) RNA-Seq were performed on four cortically enriched fetal rhesus kidneys of 129-131 days gestational age (GA). An integrative bioinformatics strategy was applied across single-cell modalities, species, and time. RNAScope validation studies were performed on human archival tissue. RESULTS Third-trimester rhesus kidney undergoes human-like LBN. scRNA-Seq of 23,608 cells revealed 37 transcriptionally distinct cell populations, including naïve nephron progenitor cells (NPCs), with the prior noted marker genes CITED1, MEOX1, and EYA1 (c25). These same populations and markers were reflected in snRNA-Seq of 5972 nuclei. Late-gestation rhesus NPC markers resembled late-gestation murine NPC, whereas early second-trimester human NPC markers aligned to midgestation murine NPCs. New, age-specific rhesus NPCs (SHISA8) and ureteric buds (POU3F4 and TWIST) predicted markers were verified in late-gestation human archival samples. CONCLUSIONS Rhesus macaque is the first model of bona fide LBN, enabling molecular studies of late gestation, human-like nephrogenesis. These molecular findings support the hypothesis that aging nephron progenitors have a distinct molecular signature and align to their earlier human counterparts, with unique markers highlighting LBN-specific progenitor maturation.
Collapse
Affiliation(s)
- Meredith P. Schuh
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Lyan Alkhudairy
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Andrew Potter
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - S. Steven Potter
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Kashish Chetal
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Kairavee Thakkar
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Nathan Salomonis
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Raphael Kopan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
19
|
Cabrita I, Talbi K, Kunzelmann K, Schreiber R. Loss of PKD1 and PKD2 share common effects on intracellular Ca 2+ signaling. Cell Calcium 2021; 97:102413. [PMID: 33915319 DOI: 10.1016/j.ceca.2021.102413] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/17/2021] [Accepted: 04/18/2021] [Indexed: 12/21/2022]
Abstract
In polycystic kidney disease (PKD) multiple bilateral renal cysts gradually enlarge causing a decline in renal function. Transepithelial chloride secretion through cystic fibrosis transmembrane conductance regulator (CFTR) and TMEM16A (anoctamin 1) drive cyst enlargement. We demonstrated recently that a loss of PKD1 increases expression and function of TMEM16A in murine kidneys and in mouse M1 collecting duct cells. The data demonstrated that TMEM16A contributes essentially to cyst growth by upregulating intracellular Ca2+ signaling. Enhanced expression of TMEM16A and Ca2+ signaling increased both cell proliferation and fluid secretion, which suggested inhibition of TMEM16A as a novel therapy in ADPKD. About 15 % of all ADPKD cases are caused by mutations in PKD2. To analyze the effects of loss of function of PKD2 on Ca2+ signaling, we knocked-down Pkd2 in mouse primary renal epithelial cells in the present study, using viral transfection of shRNA. Unlike in Pkd1-/- cells, knockdown of PKD2 lowered basal Ca2+ and augmented store-operated Ca2+ entry, which was both independent of TMEM16A. However, disease causing purinergic Ca2+ store release was enhanced, similar to that observed in Pkd1-/- renal epithelial cells. The present data suggest pharmacological inhibition of TMEM16A as a treatment in ADPKD caused by mutations in both PKD1 and PKD2.
Collapse
Affiliation(s)
- Ines Cabrita
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Khaoula Talbi
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| |
Collapse
|
20
|
Cabrita I, Benedetto R, Wanitchakool P, Lerias J, Centeio R, Ousingsawat J, Schreiber R, Kunzelmann K. TMEM16A Mediates Mucus Production in Human Airway Epithelial Cells. Am J Respir Cell Mol Biol 2021; 64:50-58. [PMID: 33026825 DOI: 10.1165/rcmb.2019-0442oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
TMEM16A is a Ca2+-activated chloride channel that was shown to enhance production and secretion of mucus in inflamed airways. It is, however, not clear whether TMEM16A directly supports mucus production, or whether mucin and TMEM16A are upregulated independently during inflammatory airway diseases such as asthma and cystic fibrosis (CF). We examined this question using BCi-NS1 cells, a human airway basal cell line that maintains multipotent differentiation capacity, and the two human airway epithelial cell lines, Calu-3 and CFBE. The data demonstrate that exposure of airway epithelial cells to IL-8 and IL-13, two cytokines known to be enhanced in CF and asthma, respectively, leads to an increase in mucus production. Expression of MUC5AC was fully dependent on expression of TMEM16A, as shown by siRNA knockdown of TMEM16A. In addition, different inhibitors of TMEM16A attenuated IL-13-induced mucus production. Interestingly, in CFBE cells expressing F508 delCFTR, IL-13 was unable to upregulate membrane expression of TMEM16A or Ca2+-activated whole cell currents. The regulator of TMEM16A, CLCA1, strongly augmented both Ca2+- and cAMP-activated Cl- currents in cells expressing wtCFTR but failed to augment membrane expression of TMEM16A in F508 delCFTR-expressing CFBE cells. The data confirm the functional relationship between CFTR and TMEM16A and suggest an impaired upregulation of TMEM16A by IL-13 or CLCA1 in cells expressing the most frequent CF-causing mutation F508 delCFTR.
Collapse
Affiliation(s)
- Inês Cabrita
- Physiological Institute, University of Regensburg, Regensburg, Germany
| | - Roberta Benedetto
- Physiological Institute, University of Regensburg, Regensburg, Germany
| | | | - Joana Lerias
- Physiological Institute, University of Regensburg, Regensburg, Germany
| | - Raquel Centeio
- Physiological Institute, University of Regensburg, Regensburg, Germany
| | | | - Rainer Schreiber
- Physiological Institute, University of Regensburg, Regensburg, Germany
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, Regensburg, Germany
| |
Collapse
|
21
|
He M, Wu B, Ye W, Le DD, Sinclair AW, Padovano V, Chen Y, Li KX, Sit R, Tan M, Caplan MJ, Neff N, Jan YN, Darmanis S, Jan LY. Chloride channels regulate differentiation and barrier functions of the mammalian airway. eLife 2020; 9:e53085. [PMID: 32286221 PMCID: PMC7182432 DOI: 10.7554/elife.53085] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 04/13/2020] [Indexed: 12/16/2022] Open
Abstract
The conducting airway forms a protective mucosal barrier and is the primary target of airway disorders. The molecular events required for the formation and function of the airway mucosal barrier, as well as the mechanisms by which barrier dysfunction leads to early onset airway diseases, remain unclear. In this study, we systematically characterized the developmental landscape of the mouse airway using single-cell RNA sequencing and identified remarkably conserved cellular programs operating during human fetal development. We demonstrated that in mouse, genetic inactivation of chloride channel Ano1/Tmem16a compromises airway barrier function, results in early signs of inflammation, and alters the airway cellular landscape by depleting epithelial progenitors. Mouse Ano1-/-mutants exhibited mucus obstruction and abnormal mucociliary clearance that resemble the airway defects associated with cystic fibrosis. The data reveal critical and non-redundant roles for Ano1 in organogenesis, and show that chloride channels are essential for mammalian airway formation and function.
Collapse
Affiliation(s)
- Mu He
- Department of Physiology, University of California, San FranciscoSan FranciscoUnited States
| | - Bing Wu
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Wenlei Ye
- Department of Physiology, University of California, San FranciscoSan FranciscoUnited States
| | - Daniel D Le
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Adriane W Sinclair
- Department of Urology, University of California, San FranciscoSan FranciscoUnited States
- Division of Pediatric Urology, University of California, San Francisco, Benioff Children's HospitalSan FranciscoUnited States
| | - Valeria Padovano
- Department of Cellular and Molecular Physiology, Yale University School of MedicineNew HeavenUnited States
| | - Yuzhang Chen
- Department of Anesthesia and Perioperative Care, University of California, San FranciscoSan FranciscoUnited States
| | - Ke-Xin Li
- Department of Physiology, University of California, San FranciscoSan FranciscoUnited States
| | - Rene Sit
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Michelle Tan
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Michael J Caplan
- Department of Cellular and Molecular Physiology, Yale University School of MedicineNew HeavenUnited States
| | - Norma Neff
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Yuh Nung Jan
- Department of Physiology, University of California, San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
| | | | - Lily Yeh Jan
- Department of Physiology, University of California, San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|