1
|
Lapitan RL. Precognition of Known And Unknown Biothreats: A Risk-Based Approach. Vector Borne Zoonotic Dis 2024; 24:795-801. [PMID: 39189131 DOI: 10.1089/vbz.2023.0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Data mining and artificial intelligence algorithms can estimate the probability of future occurrences with defined precision. Yet, the prediction of infectious disease outbreaks remains a complex and difficult task. This is demonstrated by the limited accuracy and sensitivity of current models in predicting the emergence of previously unknown pathogens such as Zika, Chikungunya, and SARS-CoV-2, and the resurgence of Mpox, along with their impacts on global health, trade, and security. Comprehensive analysis of infectious disease risk profiles, vulnerabilities, and mitigation capacities, along with their spatiotemporal dynamics at the international level, is essential for preventing their transnational propagation. However, annual indexes about the impact of infectious diseases provide a low level of granularity to allow stakeholders to craft better mitigation strategies. A quantitative risk assessment by analytical platforms requires billions of near real-time data points from heterogeneous sources, integrating and analyzing univariable or multivariable data with different levels of complexity and latency that, in most cases, overwhelm human cognitive capabilities. Autonomous biosurveillance can open the possibility for near real-time, risk- and evidence-based policymaking and operational decision support.
Collapse
Affiliation(s)
- Romelito L Lapitan
- Department of Homeland Security, Agriculture Programs and Trade Liaison, U.S. Customs and Border Protection, Washington, District of Columbia, USA
| |
Collapse
|
2
|
Symons J, Dixon TA, Dalziell J, Curach N, Paulsen IT, Wiskich A, Pretorius IS. Engineering biology and climate change mitigation: Policy considerations. Nat Commun 2024; 15:2669. [PMID: 38531884 PMCID: PMC10965893 DOI: 10.1038/s41467-024-46865-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
Engineering biology (EngBio) is a dynamic field that uses gene editing, synthesis, assembly, and engineering to design new or modified biological systems. EngBio applications could make a significant contribution to achieving net zero greenhouse gas emissions. Yet, policy support will be needed if EngBio is to fulfil its climate mitigation potential. What form should such policies take, and what EngBio applications should they target? This paper reviews EngBio's potential climate contributions to assist policymakers shape regulations and target resources and, in so doing, to facilitate democratic deliberation on desirable futures.
Collapse
Affiliation(s)
- Jonathan Symons
- Australian Research Council (ARC) Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Thomas A Dixon
- Australian Research Council (ARC) Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, 2109, Australia
| | - Jacqueline Dalziell
- School of History and Philosophy of Science, University of Sydney, Sydney, NSW, Australia
| | | | - Ian T Paulsen
- Australian Research Council (ARC) Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, 2109, Australia
| | - Anthony Wiskich
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, QLD, Australia
| | - Isak S Pretorius
- Australian Research Council (ARC) Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
3
|
Gómez-Márquez C, Morales JA, Romero-Gutiérrez T, Paredes O, Borrayo E. Decoding semiotic minimal genome: a non-genocentric approach. Front Microbiol 2024; 15:1356050. [PMID: 38476952 PMCID: PMC10929006 DOI: 10.3389/fmicb.2024.1356050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/02/2024] [Indexed: 03/14/2024] Open
Abstract
The search for the minimum information required for an organism to sustain a cellular system network has rendered both the identification of a fixed number of known genes and those genes whose function remains to be identified. The approaches used in such search generally focus their analysis on coding genomic regions, based on the genome to proteic-product perspective. Such approaches leave other fundamental processes aside, mainly those that include higher-level information management. To cope with this limitation, a non-genocentric approach based on genomic sequence analysis using language processing tools and gene ontology may prove an effective strategy for the identification of those fundamental genomic elements for life autonomy. Additionally, this approach will provide us with an integrative analysis of the information value present in all genomic elements, regardless of their coding status.
Collapse
Affiliation(s)
- Carolina Gómez-Márquez
- Biodigital Innovation Lab, Translational Bioengineering Department, Exact Sciences and Engineering University Center, Universidad de Guadalajara, Guadalajara, Mexico
| | - J. Alejandro Morales
- Biodigital Innovation Lab, Translational Bioengineering Department, Exact Sciences and Engineering University Center, Universidad de Guadalajara, Guadalajara, Mexico
| | - Teresa Romero-Gutiérrez
- Biodigital Innovation Lab, Translational Bioengineering Department, Exact Sciences and Engineering University Center, Universidad de Guadalajara, Guadalajara, Mexico
- Technological Innovation Department, Tlajomulco University Center, Universidad de Guadalajara, Guadalajara, Mexico
| | - Omar Paredes
- Biodigital Innovation Lab, Translational Bioengineering Department, Exact Sciences and Engineering University Center, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ernesto Borrayo
- Biodigital Innovation Lab, Translational Bioengineering Department, Exact Sciences and Engineering University Center, Universidad de Guadalajara, Guadalajara, Mexico
| |
Collapse
|
4
|
da Silva RGL, Blasimme A. Organ chip research in Europe: players, initiatives, and policies. Front Bioeng Biotechnol 2023; 11:1237561. [PMID: 37731764 PMCID: PMC10507620 DOI: 10.3389/fbioe.2023.1237561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/17/2023] [Indexed: 09/22/2023] Open
Abstract
Background: Organ chips are microfabricated devices containing living engineered organ substructures in a controlled microenvironment. Research on organ chips has increased considerably over the past two decades. Aim: This paper offers an overview of the emerging knowledge ecosystem of organ chip research in Europe. Method: This study is based on queries and analyses undertaken through the bibliometric software Dimensions.ai. Results: Organ chip research has been rapidly growing in Europe in recent years, supported by robust academic science consortia, public-private initiatives, dedicated funding, and science policy instruments. Our data shows that previous investment in basic and fundamental research in centers of excellence in bioengineering science and technology are relevant to future investment in organ chips. Moreover, organ chip research in Europe is characterized by collaborative infrastructures to promote convergence of scientific, technical, and clinical capabilities. Conclusion: According to our study, the knowledge ecosystem of organ chip research in Europe has been growing sustainably. This growth is due to relevant institutional diversity, public-private initiatives, and ongoing research collaborations supported by robust funding schemes.
Collapse
|
5
|
Wynne JJ, Titus TN, Agha‐Mohammadi A, Azua‐Bustos A, Boston PJ, de León P, Demirel‐Floyd C, De Waele J, Jones H, Malaska MJ, Miller AZ, Sapers HM, Sauro F, Sonderegger DL, Uckert K, Wong UY, Alexander EC, Chiao L, Cushing GE, DeDecker J, Fairén AG, Frumkin A, Harris GL, Kearney ML, Kerber L, Léveillé RJ, Manyapu K, Massironi M, Mylroie JE, Onac BP, Parazynski SE, Phillips‐Lander CM, Prettyman TH, Schulze‐Makuch D, Wagner RV, Whittaker WL, Williams KE. Fundamental Science and Engineering Questions in Planetary Cave Exploration. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2022; 127:e2022JE007194. [PMID: 36582809 PMCID: PMC9787064 DOI: 10.1029/2022je007194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 06/17/2023]
Abstract
Nearly half a century ago, two papers postulated the likelihood of lunar lava tube caves using mathematical models. Today, armed with an array of orbiting and fly-by satellites and survey instrumentation, we have now acquired cave data across our solar system-including the identification of potential cave entrances on the Moon, Mars, and at least nine other planetary bodies. These discoveries gave rise to the study of planetary caves. To help advance this field, we leveraged the expertise of an interdisciplinary group to identify a strategy to explore caves beyond Earth. Focusing primarily on astrobiology, the cave environment, geology, robotics, instrumentation, and human exploration, our goal was to produce a framework to guide this subdiscipline through at least the next decade. To do this, we first assembled a list of 198 science and engineering questions. Then, through a series of social surveys, 114 scientists and engineers winnowed down the list to the top 53 highest priority questions. This exercise resulted in identifying emerging and crucial research areas that require robust development to ultimately support a robotic mission to a planetary cave-principally the Moon and/or Mars. With the necessary financial investment and institutional support, the research and technological development required to achieve these necessary advancements over the next decade are attainable. Subsequently, we will be positioned to robotically examine lunar caves and search for evidence of life within Martian caves; in turn, this will set the stage for human exploration and potential habitation of both the lunar and Martian subsurface.
Collapse
Affiliation(s)
- J. Judson Wynne
- Department of Biological Sciences and Center for Adaptable Western LandscapesNorthern Arizona UniversityFlagstaffAZUSA
| | | | | | - Armando Azua‐Bustos
- Centro de AstrobiologíaCSIC‐INTAUnidad María de MaeztuInstituto Nacional de Técnica Aeroespacial Ctra de Torrejón a AjalvirMadridSpain
- Instituto de Ciencias BiomédicasFacultad de Ciencias de la SaludUniversidad Autónoma de ChileSantiagoChile
| | | | - Pablo de León
- Human Spaceflight LaboratoryDepartment of Space StudiesUniversity of North DakotaGrand ForksNDUSA
| | | | - Jo De Waele
- Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Heather Jones
- Robotics InstituteCarnegie Mellon UniversityPittsburghPAUSA
| | - Michael J. Malaska
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Ana Z. Miller
- Laboratório HERCULESUniversity of ÉvoraÉvoraPortugal
- Instituto de Recursos Naturales y AgrobiologíaConsejo Superior de Investigaciones CientíficasSevilleSpain
| | - Haley M. Sapers
- Department of Earth and Space Science and EngineeringYork UniversityTorontoONCanada
| | - Francesco Sauro
- Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Derek L. Sonderegger
- Department of Mathematics and StatisticsNorthern Arizona UniversityFlagstaffAZUSA
| | - Kyle Uckert
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | | | - E. Calvin Alexander
- Earth and Environmental Sciences DepartmentUniversity of MinnesotaMinneapolisMNUSA
| | - Leroy Chiao
- Department of Mechanical EngineeringRice UniversityHoustonTXUSA
| | - Glen E. Cushing
- U.S. Geological SurveyAstrogeology Science CenterFlagstaffAZUSA
| | - John DeDecker
- Center for Mineral Resources ScienceColorado School of MinesGoldenCOUSA
| | - Alberto G. Fairén
- Centro de AstrobiologíaCSIC‐INTAUnidad María de MaeztuInstituto Nacional de Técnica Aeroespacial Ctra de Torrejón a AjalvirMadridSpain
- Department of AstronomyCornell UniversityIthacaNYUSA
| | - Amos Frumkin
- Institute of Earth SciencesThe Hebrew UniversityJerusalemIsrael
| | - Gary L. Harris
- Human Spaceflight LaboratoryDepartment of Space StudiesUniversity of North DakotaGrand ForksNDUSA
| | - Michelle L. Kearney
- Department of Astronomy and Planetary SciencesNorthern Arizona UniversityFlagstaffAZUSA
| | - Laura Kerber
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Richard J. Léveillé
- Department of Earth and Planetary SciencesMcGill UniversityMontrealQCCanada
- Geosciences DepartmentJohn Abbott CollegeSte‐Anne‐de‐BellevueQCCanada
| | | | - Matteo Massironi
- Dipartimento di GeoscienzeUniversità degli Studi di PadovaPadovaItaly
| | - John E. Mylroie
- Department of GeosciencesMississippi State UniversityStarkvilleMSUSA
| | - Bogdan P. Onac
- School of GeosciencesUniversity of South FloridaTampaFLUSA
- Emil G. Racoviță InstituteBabeș‐Bolyai UniversityCluj‐NapocaRomania
| | | | | | | | - Dirk Schulze‐Makuch
- Astrobiology GroupCenter of Astronomy and AstrophysicsTechnische Universität BerlinBerlinGermany
- Section GeomicrobiologyGFZ German Research Centre for GeosciencesPotsdamGermany
- Department of Experimental LimnologyLeibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB)StechlinGermany
| | - Robert V. Wagner
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | - William L. Whittaker
- Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Kaj E. Williams
- U.S. Geological SurveyAstrogeology Science CenterFlagstaffAZUSA
| |
Collapse
|
6
|
Meeting sustainable development goals via robotics and autonomous systems. Nat Commun 2022; 13:3559. [PMID: 35729171 PMCID: PMC9211790 DOI: 10.1038/s41467-022-31150-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 06/06/2022] [Indexed: 11/24/2022] Open
Abstract
Robotics and autonomous systems are reshaping the world, changing healthcare, food production and biodiversity management. While they will play a fundamental role in delivering the UN Sustainable Development Goals, associated opportunities and threats are yet to be considered systematically. We report on a horizon scan evaluating robotics and autonomous systems impact on all Sustainable Development Goals, involving 102 experts from around the world. Robotics and autonomous systems are likely to transform how the Sustainable Development Goals are achieved, through replacing and supporting human activities, fostering innovation, enhancing remote access and improving monitoring. Emerging threats relate to reinforcing inequalities, exacerbating environmental change, diverting resources from tried-and-tested solutions and reducing freedom and privacy through inadequate governance. Although predicting future impacts of robotics and autonomous systems on the Sustainable Development Goals is difficult, thoroughly examining technological developments early is essential to prevent unintended detrimental consequences. Additionally, robotics and autonomous systems should be considered explicitly when developing future iterations of the Sustainable Development Goals to avoid reversing progress or exacerbating inequalities. A horizon scan was used to explore possible impacts of robotics and automated systems on achieving the UN Sustainable Development Goals. Positive effects are likely. Iterative regulatory processes and continued dialogue could help avoid environmental damages and increases in inequality.
Collapse
|
7
|
A global forum on synthetic biology: the need for international engagement. Nat Commun 2022; 13:3516. [PMID: 35717402 PMCID: PMC9206396 DOI: 10.1038/s41467-022-31265-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/13/2022] [Indexed: 12/03/2022] Open
|
8
|
Fernandez-Gonzalez A, Cowen S, Kim J, Foy CA, Jimenez J, Huggett JF, Whale AS. Applicability of Control Materials To Support Gene Promoter Characterization and Expression in Engineered Cells Using Digital PCR. Anal Chem 2022; 94:5566-5574. [PMID: 35357151 PMCID: PMC9008692 DOI: 10.1021/acs.analchem.1c05134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The use of standardized components and processes in engineering underpins the design-build-test model, and the engineering of biological systems is no different. Substantial efforts to standardize both the components and the methods to validate the engineered biological systems is ongoing. This study has developed a panel of control materials encoding the commonly used reporter genes GFP and RFP as DNA or RNA molecules. Each panel contained up to six samples with increasingly small copy number differences between the two reporter genes that ranged from 1- to 2-fold differences. These copy number differences represent the magnitude of changes that may need to be measured to validate an engineered system. Using digital PCR (dPCR), we demonstrated that it is possible to quantify changes in both gene and gene transcript numbers both within and between samples down to 1.05-fold. We corroborated these findings using a simple gene circuit within a bacterial model to demonstrate that dPCR was able to precisely identify small changes in gene expression of two transcripts in response to promoter stimulation. Finally, we used our findings to highlight sources of error that can contributed to the measurement uncertainty in the measurement of small ratios in biological systems. Together, the development of a panel of control materials and validation of a high accuracy method for the measurement of small changes in gene expression, this study can contribute to the engineering biology "toolkit" of methods and materials to support the current standardization efforts.
Collapse
Affiliation(s)
- Ana Fernandez-Gonzalez
- Molecular and Cell Biology Team, National Measurement Laboratory, LGC, Teddington, Middlesex, TW11 0LY, United Kingdom
| | - Simon Cowen
- Statistics Team, LGC, Teddington, Middlesex, TW11 0LY, United Kingdom
| | - Juhyun Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Carole A Foy
- Molecular and Cell Biology Team, National Measurement Laboratory, LGC, Teddington, Middlesex, TW11 0LY, United Kingdom
| | - Jose Jimenez
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Jim F Huggett
- Molecular and Cell Biology Team, National Measurement Laboratory, LGC, Teddington, Middlesex, TW11 0LY, United Kingdom.,School of Biosciences and Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, GU5 7XH, United Kingdom
| | - Alexandra S Whale
- Molecular and Cell Biology Team, National Measurement Laboratory, LGC, Teddington, Middlesex, TW11 0LY, United Kingdom
| |
Collapse
|
9
|
Mateos Fernández R, Petek M, Gerasymenko I, Juteršek M, Baebler Š, Kallam K, Moreno Giménez E, Gondolf J, Nordmann A, Gruden K, Orzaez D, Patron NJ. Insect pest management in the age of synthetic biology. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:25-36. [PMID: 34416790 PMCID: PMC8710903 DOI: 10.1111/pbi.13685] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 05/10/2023]
Abstract
Arthropod crop pests are responsible for 20% of global annual crop losses, a figure predicted to increase in a changing climate where the ranges of numerous species are projected to expand. At the same time, many insect species are beneficial, acting as pollinators and predators of pest species. For thousands of years, humans have used increasingly sophisticated chemical formulations to control insect pests but, as the scale of agriculture expanded to meet the needs of the global population, concerns about the negative impacts of agricultural practices on biodiversity have grown. While biological solutions, such as biological control agents and pheromones, have previously had relatively minor roles in pest management, biotechnology has opened the door to numerous new approaches for controlling insect pests. In this review, we look at how advances in synthetic biology and biotechnology are providing new options for pest control. We discuss emerging technologies for engineering resistant crops and insect populations and examine advances in biomanufacturing that are enabling the production of new products for pest control.
Collapse
Affiliation(s)
| | - Marko Petek
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
| | - Iryna Gerasymenko
- Plant Biotechnology and Metabolic EngineeringTechnische Universität DarmstadtDarmstadtGermany
| | - Mojca Juteršek
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
- Jožef Stefan International Postgraduate SchoolLjubljanaSlovenia
| | - Špela Baebler
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
| | | | | | - Janine Gondolf
- Institut für PhilosophieTechnische Universität DarmstadtDarmstadtGermany
| | - Alfred Nordmann
- Institut für PhilosophieTechnische Universität DarmstadtDarmstadtGermany
| | - Kristina Gruden
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
| | - Diego Orzaez
- Institute for Plant Molecular and Cell Biology (IBMCP)UPV‐CSICValenciaSpain
| | | |
Collapse
|
10
|
Interactions between plant lipid-binding proteins and their ligands. Prog Lipid Res 2022; 86:101156. [DOI: 10.1016/j.plipres.2022.101156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/05/2021] [Accepted: 01/14/2022] [Indexed: 01/11/2023]
|
11
|
Valdivia-Granda WA. Known and Unknown Transboundary Infectious Diseases as Hybrid Threats. Front Public Health 2021; 9:668062. [PMID: 34336765 PMCID: PMC8316594 DOI: 10.3389/fpubh.2021.668062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
The pathogenicity, transmissibility, environmental stability, and potential for genetic manipulation make microbes hybrid threats that could blur the distinction between peace and war. These agents can fall below the detection, attribution, and response capabilities of a nation and seriously affect their health, trade, and security. A framework that could enhance horizon scanning regarding the potential risk of microbes used as hybrid threats requires not only accurately discriminating known and unknown pathogens but building novel scenarios to deploy mitigation strategies. This demands the transition of analyst-based biosurveillance tracking a narrow set of pathogens toward an autonomous biosurveillance enterprise capable of processing vast data streams beyond human cognitive capabilities. Autonomous surveillance systems must gather, integrate, analyze, and visualize billions of data points from different and unrelated sources. Machine learning and artificial intelligence algorithms can contextualize capability information for different stakeholders at different levels of resolution: strategic and tactical. This document provides a discussion of the use of microorganisms as hybrid threats and considerations to quantitatively estimate their risk to ensure societal awareness, preparedness, mitigation, and resilience.
Collapse
|
12
|
Feehan R, Montezano D, Slusky JSG. Machine learning for enzyme engineering, selection and design. Protein Eng Des Sel 2021; 34:gzab019. [PMID: 34296736 PMCID: PMC8299298 DOI: 10.1093/protein/gzab019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 11/15/2022] Open
Abstract
Machine learning is a useful computational tool for large and complex tasks such as those in the field of enzyme engineering, selection and design. In this review, we examine enzyme-related applications of machine learning. We start by comparing tools that can identify the function of an enzyme and the site responsible for that function. Then we detail methods for optimizing important experimental properties, such as the enzyme environment and enzyme reactants. We describe recent advances in enzyme systems design and enzyme design itself. Throughout we compare and contrast the data and algorithms used for these tasks to illustrate how the algorithms and data can be best used by future designers.
Collapse
Affiliation(s)
- Ryan Feehan
- Center for Computational Biology, The University of Kansas, 2030 Becker Dr., Lawrence, KS 66047-1620, USA
| | - Daniel Montezano
- Center for Computational Biology, The University of Kansas, 2030 Becker Dr., Lawrence, KS 66047-1620, USA
| | - Joanna S G Slusky
- Center for Computational Biology, The University of Kansas, 2030 Becker Dr., Lawrence, KS 66047-1620, USA
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Ave. Lawrence, KS 66045-7600, USA
| |
Collapse
|
13
|
Abstract
Multiple national and international trends and drivers are radically changing what biological security means for the United Kingdom (UK). New technologies present novel opportunities and challenges, and globalisation has created new pathways and increased the speed, volume and routes by which organisms can spread. The UK Biological Security Strategy (2018) acknowledges the importance of research on biological security in the UK. Given the breadth of potential research, a targeted agenda identifying the questions most critical to effective and coordinated progress in different disciplines of biological security is required. We used expert elicitation to generate 80 policy-relevant research questions considered by participants to have the greatest impact on UK biological security. Drawing on a collaboratively-developed set of 450 questions, proposed by 41 experts from academia, industry and the UK government (consulting 168 additional experts) we subdivided the final 80 questions into six categories: bioengineering; communication and behaviour; disease threats (including pandemics); governance and policy; invasive alien species; and securing biological materials and securing against misuse. Initially, the questions were ranked through a voting process and then reduced and refined to 80 during a one-day workshop with 35 participants from a variety of disciplines. Consistently emerging themes included: the nature of current and potential biological security threats, the efficacy of existing management actions, and the most appropriate future options. The resulting questions offer a research agenda for biological security in the UK that can assist the targeting of research resources and inform the implementation of the UK Biological Security Strategy. These questions include research that could aid with the mitigation of Covid-19, and preparation for the next pandemic. We hope that our structured and rigorous approach to creating a biological security research agenda will be replicated in other countries and regions. The world, not just the UK, is in need of a thoughtful approach to directing biological security research to tackle the emerging issues.
Collapse
|
14
|
Kemp L, Adam L, Boehm CR, Breitling R, Casagrande R, Dando M, Djikeng A, Evans NG, Hammond R, Hills K, Holt LA, Kuiken T, Markotić A, Millett P, Napier JA, Nelson C, ÓhÉigeartaigh SS, Osbourn A, Palmer MJ, Patron NJ, Perello E, Piyawattanametha W, Restrepo-Schild V, Rios-Rojas C, Rhodes C, Roessing A, Scott D, Shapira P, Simuntala C, Smith RDJ, Sundaram LS, Takano E, Uttmark G, Wintle BC, Zahra NB, Sutherland WJ. Bioengineering horizon scan 2020. eLife 2020; 9:e54489. [PMID: 32479263 PMCID: PMC7259952 DOI: 10.7554/elife.54489] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/14/2020] [Indexed: 01/01/2023] Open
Abstract
Horizon scanning is intended to identify the opportunities and threats associated with technological, regulatory and social change. In 2017 some of the present authors conducted a horizon scan for bioengineering (Wintle et al., 2017). Here we report the results of a new horizon scan that is based on inputs from a larger and more international group of 38 participants. The final list of 20 issues includes topics spanning from the political (the regulation of genomic data, increased philanthropic funding and malicious uses of neurochemicals) to the environmental (crops for changing climates and agricultural gene drives). The early identification of such issues is relevant to researchers, policy-makers and the wider public.
Collapse
Affiliation(s)
- Luke Kemp
- Centre for the Study of Existential Risk (CSER), University of CambridgeCambridgeUnited Kingdom
- Biosecurity Research Initiative at St Catharine’s College, University of CambridgeCambridgeUnited Kingdom
| | | | - Christian R Boehm
- Centre for the Study of Existential Risk (CSER), University of CambridgeCambridgeUnited Kingdom
| | - Rainer Breitling
- Manchester Institute of Biotechnology, Faculty of Science and Bioengineering, University of ManchesterManchesterUnited Kingdom
| | | | - Malcolm Dando
- Division of Peace Studies and International Development, University of BradfordBradfordUnited Kingdom
| | - Appolinaire Djikeng
- Centre for Tropical Livestock Genetics and Health, Royal (Dick) School of Veterinary StudiesEdinburghUnited Kingdom
| | - Nicholas G Evans
- Department of Philosophy, University of MassachusettsLowellUnited States
- Rogue BioethicsLowellUnited States
| | | | | | - Lauren A Holt
- Centre for the Study of Existential Risk (CSER), University of CambridgeCambridgeUnited Kingdom
- Biosecurity Research Initiative at St Catharine’s College, University of CambridgeCambridgeUnited Kingdom
| | - Todd Kuiken
- Genetic Engineering and Society Center, North Carolina State UniversityRaleighUnited States
| | - Alemka Markotić
- University Hospital for Infectious DiseasesZagrebCroatia
- Medical School, University of RijekaRijekaCroatia
- Catholic University of CroatiaZagrebCroatia
| | - Piers Millett
- Future of Humanity Institute, University of OxfordOxfordUnited Kingdom
- iGem FoundationBostonUnited States
| | | | - Cassidy Nelson
- Future of Humanity Institute, University of OxfordOxfordUnited Kingdom
| | - Seán S ÓhÉigeartaigh
- Centre for the Study of Existential Risk (CSER), University of CambridgeCambridgeUnited Kingdom
- Biosecurity Research Initiative at St Catharine’s College, University of CambridgeCambridgeUnited Kingdom
| | | | - Megan J Palmer
- Center for International Security and Cooperation (CSIAC), Stanford UniversityStanfordUnited States
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | | | | | - Wibool Piyawattanametha
- Biomedical Engineering Department, Faculty of Engineering, King Mongkut's Institute of Technology LadkrabangBangkokThailand
- Institute for Quantitative Health Sciences and Engineering, Michigan State UniversityEast LansingUnited States
| | | | - Clarissa Rios-Rojas
- Centre for the Study of Existential Risk (CSER), University of CambridgeCambridgeUnited Kingdom
- Ekpa’Palek: Empowering Latin-American Young ProfessionalsLimaPeru
| | - Catherine Rhodes
- Centre for the Study of Existential Risk (CSER), University of CambridgeCambridgeUnited Kingdom
- Biosecurity Research Initiative at St Catharine’s College, University of CambridgeCambridgeUnited Kingdom
| | - Anna Roessing
- Department of Politics, Languages and International Studies, University of BathBathUnited Kingdom
| | - Deborah Scott
- Science, Technology & Innovation Studies, School of Social and Political Science, University of EdinburghEdinburghUnited Kingdom
| | - Philip Shapira
- Manchester Institute of Innovation Research, Alliance Manchester Business School, University of ManchesterManchesterUnited Kingdom
- SYNBIOCHEM, University of ManchesterManchesterUnited Kingdom
- School of Public Policy, Georgia Institute of TechnologyAtlantaUnited States
| | | | - Robert DJ Smith
- Science, Technology & Innovation Studies, School of Social and Political Science, University of EdinburghEdinburghUnited Kingdom
| | - Lalitha S Sundaram
- Centre for the Study of Existential Risk (CSER), University of CambridgeCambridgeUnited Kingdom
- Biosecurity Research Initiative at St Catharine’s College, University of CambridgeCambridgeUnited Kingdom
| | - Eriko Takano
- Manchester Institute of Biotechnology, Faculty of Science and Bioengineering, University of ManchesterManchesterUnited Kingdom
| | - Gwyn Uttmark
- Department of Chemistry, Stanford UniversityStanfordUnited States
| | - Bonnie C Wintle
- School of BioSciences, University of MelbourneMelbourneAustralia
| | - Nadia B Zahra
- Department of Biotechnology, Qarshi UniversityLahorePakistan
| | - William J Sutherland
- Biosecurity Research Initiative at St Catharine’s College, University of CambridgeCambridgeUnited Kingdom
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|