1
|
Adamczyk K, Zuzda K, Jankowski M, Świerczyński R, Chudziński K, Czapski B, Szułdrzyński K. Effects of Opioids in Cancer Pain: An Interplay Among Genetic Factors, Immune Response, and Clinical Outcomes-A Scoping Review. Cancers (Basel) 2025; 17:863. [PMID: 40075716 PMCID: PMC11899605 DOI: 10.3390/cancers17050863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/10/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objectives: Managing cancer-related pain presents complex challenges involving the interplay between analgesic efficacy, immune system responses, and patient outcomes. Methods: Following the Scale for the Assessment of Narrative Review Articles (SANRA) criteria, we conducted a comprehensive literature search in Medline, Scopus, and Web of Science databases. The review synthesized evidence regarding opioid pain management modalities, genetic variations affecting pain perception, and associated drug metabolism. Results: The literature reveals significant associations between opioid administration and immune function, with potential implications for cancer progression and survival. Genetic polymorphisms in key genes influence individual responses to pain opioid metabolism and, finally, pain management strategies. The immunosuppressive effects of opioids emerge as a critical consideration in cancer pain management, potentially influencing disease progression and treatment outcomes. Conclusions: Genetic variants influence analgesic efficacy, while the interaction between opioid-induced immunosuppression and genetic factors impacts both pain control and survival outcomes. This emphasizes the need for personalized treatment approaches considering individual genetic profiles and immune function.
Collapse
Affiliation(s)
- Kamil Adamczyk
- Department of Anesthesiology and Intensive Care, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Konrad Zuzda
- Department of Anesthesiology and Intensive Care, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Miłosz Jankowski
- Department of Anesthesiology and Intensive Care, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Rafał Świerczyński
- Department of Anesthesiology and Intensive Care, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Kamil Chudziński
- Department of Anesthesiology and Intensive Care, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Bartosz Czapski
- Department of Neurosurgery, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Konstanty Szułdrzyński
- Department of Anesthesiology and Intensive Care, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| |
Collapse
|
2
|
Kakani P, Dhamdhere SG, Pant D, Joshi R, Mishra S, Pandey A, Notani D, Shukla S. Hypoxia-induced CTCF mediates alternative splicing via coupling chromatin looping and RNA Pol II pause to promote EMT in breast cancer. Cell Rep 2025; 44:115267. [PMID: 39913285 DOI: 10.1016/j.celrep.2025.115267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/16/2024] [Accepted: 01/15/2025] [Indexed: 02/28/2025] Open
Abstract
Hypoxia influences the epithelial-mesenchymal transition (EMT) through the remodeling of the chromatin structure, epigenetics, and alternative splicing. Hypoxia drives CCCTC-binding factor (CTCF) induction through hypoxia-inducible factor 1-alpha (HIF1α), which promotes EMT, although the underlying mechanisms remain unclear. We find that hypoxia significantly increases CTCF occupancy at various EMT-related genes. We present a CTCF-mediated intricate mechanism promoting EMT wherein CTCF binding at the collagen type V alpha 1 chain (COL5A1) promoter is crucial for COL5A1 upregulation under hypoxia. Additionally, hypoxia drives exon64A inclusion in a mutually exclusive alternative splicing event of COL5A1exon64 (exon64A/64B). Notably, CTCF mediates COL5A1 promoter-alternatively spliced exon upstream looping that regulates DNA demethylation at distal exon64A. This further regulates the CTCF-mediated RNA polymerase II pause at COL5A1exon64A, leading to its inclusion in promoting the EMT under hypoxia. Genome-wide study indicates the association of gained CTCF occupancy with the alternative splicing of many cancer-related genes, similar to the proposed model. Specifically, disrupting the HIF1α-CTCF-COL5A1exon64A axis through the dCas9-DNMT3A system alleviates the EMT in hypoxic cancer cells and may represent a novel therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Parik Kakani
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Shruti Ganesh Dhamdhere
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Deepak Pant
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Rushikesh Joshi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Sachin Mishra
- National Center for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, Karnataka 560065, India
| | - Anchala Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Dimple Notani
- National Center for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, Karnataka 560065, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India.
| |
Collapse
|
3
|
Wei X, Browning JL, Olsen ML. Neuron and astrocyte specific 5mC and 5hmC signatures of BDNF's receptor, TrkB. Front Mol Neurosci 2024; 17:1463437. [PMID: 39268252 PMCID: PMC11390696 DOI: 10.3389/fnmol.2024.1463437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Brain derived neurotrophic factor (BDNF) is the most studied trophic factor in the central nervous system (CNS), and its role in the maturation of neurons, including synapse development and maintenance has been investigated intensely for over three decades. The primary receptor for BDNF is the tropomyosin receptor kinase B (TrkB), which is broadly expressed as two primary isoforms in the brain; the full length TrkB (TrkB.FL) receptor, expressed mainly in neurons and the truncated TrkB (TrkB.T1) receptor. We recently demonstrated that TrkB.T1 is predominately expressed in astrocytes, and appears critical for astrocyte morphological maturation. Given the critical role of BDNF/TrkB pathway in healthy brain development and mature CNS function, we aimed to identify molecular underpinnings of cell-type specific expression of each TrkB isoform. Using Nanopore sequencing which enables direct, long read sequencing of native DNA, we profiled DNA methylation patterns of the entire TrkB gene, Ntrk2, in both neurons and astrocytes. Here, we identified robust differences in cell-type specific isoform expression associated with significantly different methylation patterns of the Ntrk2 gene in each cell type. Notably, astrocytes demonstrated lower 5mC methylation, and higher 5hmC across the entire gene when compared to neurons, including differentially methylated sites (DMSs) found in regions flanking the unique TrkB.T1 protein coding sequence (CDS). These data suggest DNA methylation patterns may provide instruction for isoform specific TrkB expression across unique CNS cell types.
Collapse
Affiliation(s)
- Xiaoran Wei
- Biomedical and Veterinary Sciences Graduate Program, Virginia Tech, Blacksburg, VA, United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| | - Jack L. Browning
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
- Genetics, Bioinformatics and Computational Biology Graduate Program, Virginia Tech, Blacksburg, VA, United States
| | - Michelle L. Olsen
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
4
|
Roth GV, Gengaro IR, Qi LS. Precision epigenetic editing: Technological advances, enduring challenges, and therapeutic applications. Cell Chem Biol 2024; 31:S2451-9456(24)00309-X. [PMID: 39137782 PMCID: PMC11799355 DOI: 10.1016/j.chembiol.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/31/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024]
Abstract
The epigenome is a complex framework through which gene expression is precisely and flexibly modulated to incorporate heritable memory and responses to environmental stimuli. It governs diverse cellular processes, including cell fate, disease, and aging. The need to understand this system and precisely control gene expression outputs for therapeutic purposes has precipitated the development of a diverse set of epigenetic editing tools. Here, we review the existing toolbox for targeted epigenetic editing, technical considerations of the current technologies, and opportunities for future development. We describe applications of therapeutic epigenetic editing and their potential for treating disease, with a discussion of ongoing delivery challenges that impede certain clinical interventions, particularly in the brain. With simultaneous advancements in available engineering tools and appropriate delivery technologies, we predict that epigenetic editing will increasingly cement itself as a powerful approach for safely treating a wide range of disorders in all tissues of the body.
Collapse
Affiliation(s)
- Goldie V Roth
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Isabella R Gengaro
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Lei S Qi
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
5
|
Liu L, Nguyen H, Das U, Ogunsola S, Yu J, Lei L, Kung M, Pejhan S, Rastegar M, Xie J. Epigenetic control of adaptive or homeostatic splicing during interval-training activities. Nucleic Acids Res 2024; 52:7211-7224. [PMID: 38661216 PMCID: PMC11229381 DOI: 10.1093/nar/gkae311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/03/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024] Open
Abstract
Interval-training activities induce adaptive cellular changes without altering their fundamental identity, but the precise underlying molecular mechanisms are not fully understood. In this study, we demonstrate that interval-training depolarization (ITD) of pituitary cells triggers distinct adaptive or homeostatic splicing responses of alternative exons. This occurs while preserving the steady-state expression of the Prolactin and other hormone genes. The nature of these splicing responses depends on the exon's DNA methylation status, the methyl-C-binding protein MeCP2 and its associated CA-rich motif-binding hnRNP L. Interestingly, the steady expression of the Prolactin gene is also reliant on MeCP2, whose disruption leads to exacerbated multi-exon aberrant splicing and overexpression of the hormone gene transcripts upon ITD, similar to the observed hyperprolactinemia or activity-dependent aberrant splicing in Rett Syndrome. Therefore, epigenetic control is crucial for both adaptive and homeostatic splicing and particularly the steady expression of the Prolactin hormone gene during ITD. Disruption in this regulation may have significant implications for the development of progressive diseases.
Collapse
Affiliation(s)
- Ling Liu
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Hai Nguyen
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Urmi Das
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Samuel Ogunsola
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jiankun Yu
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Lei Lei
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Matthew Kung
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Shervin Pejhan
- Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Mojgan Rastegar
- Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jiuyong Xie
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
6
|
Kirk A, Graham SV. The human papillomavirus late life cycle and links to keratinocyte differentiation. J Med Virol 2024; 96:e29461. [PMID: 38345171 DOI: 10.1002/jmv.29461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 01/25/2024] [Indexed: 02/15/2024]
Abstract
Regulation of human papillomavirus (HPV) gene expression is tightly linked to differentiation of the keratinocytes the virus infects. HPV late gene expression is confined to the cells in the upper layers of the epithelium where the virus capsid proteins are synthesized. As these proteins are highly immunogenic, and the upper epithelium is an immune-privileged site, this spatial restriction aids immune evasion. Many decades of work have contributed to the current understanding of how this restriction occurs at a molecular level. This review will examine what is known about late gene expression in HPV-infected lesions and will dissect the intricacies of late gene regulation. Future directions for novel antiviral approaches will be highlighted.
Collapse
Affiliation(s)
- Anna Kirk
- Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Sheila V Graham
- Centre for Virus Research, University of Glasgow, Glasgow, UK
| |
Collapse
|
7
|
Zhai M, Huang J, Yang S, Li N, Zeng J, Zheng Y, Sun W, Wu B. Transcriptomic analysis of differentially alternative splicing patterns in mice with inflammatory and neuropathic pain. Mol Pain 2024; 20:17448069241249455. [PMID: 38597175 PMCID: PMC11084985 DOI: 10.1177/17448069241249455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024] Open
Abstract
Although the molecular mechanisms of chronic pain have been extensively studied, a global picture of alternatively spliced genes and events in the peripheral and central nervous systems of chronic pain is poorly understood. The current study analyzed the changing pattern of alternative splicing (AS) in mouse brain, dorsal root ganglion, and spinal cord tissue under inflammatory and neuropathic pain. In total, we identified 6495 differentially alternatively spliced (DAS) genes. The molecular functions of shared DAS genes between these two models are mainly enriched in calcium signaling pathways, synapse organization, axon regeneration, and neurodegeneration disease. Additionally, we identified 509 DAS in differentially expressed genes (DEGs) shared by these two models, accounting for a small proportion of total DEGs. Our findings supported the hypothesis that the AS has an independent regulation pattern different from transcriptional regulation. Taken together, these findings indicate that AS is one of the important molecular mechanisms of chronic pain in mammals. This study presents a global description of AS profile changes in the full path of neuropathic and inflammatory pain models, providing new insights into the underlying mechanisms of chronic pain and guiding genomic clinical diagnosis methods and rational medication.
Collapse
Affiliation(s)
- Mingzhu Zhai
- Southern University of Science and Technology Yantian Hospital, Shenzhen, China
- Benqing Laboratory, Shenzhen Guangming District People’s Hospital, Shenzhen, China
| | - Jiabin Huang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Shaomin Yang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Na Li
- Southern University of Science and Technology Yantian Hospital, Shenzhen, China
| | - Jun Zeng
- Center for Medical Experiments (CME), Shenzhen Guangming District People’s Hospital, Shenzhen, China
| | - Yi Zheng
- Center for Medical Experiments (CME), Shenzhen Guangming District People’s Hospital, Shenzhen, China
| | - Wuping Sun
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Benqing Wu
- Benqing Laboratory, Shenzhen Guangming District People’s Hospital, Shenzhen, China
| |
Collapse
|
8
|
Hamilton PJ, Lim CJ, Nestler EJ, Heller EA. Neuroepigenetic Editing. Methods Mol Biol 2024; 2842:129-152. [PMID: 39012593 PMCID: PMC11520296 DOI: 10.1007/978-1-0716-4051-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Epigenetic regulation is intrinsic to basic neurobiological function as well as neurological disease. Regulation of chromatin-modifying enzymes in the brain is critical during both development and adulthood and in response to external stimuli. Biochemical studies are complemented by numerous next-generation sequencing (NGS) studies that quantify global changes in gene expression, chromatin accessibility, histone and DNA modifications in neurons and glial cells. Neuroepigenetic editing tools are essential to distinguish between the mere presence and functional relevance of histone and DNA modifications to gene transcription in the brain and animal behavior. This review discusses current advances in neuroepigenetic editing, highlighting methodological considerations pertinent to neuroscience, such as delivery methods and the spatiotemporal specificity of editing and it demonstrates the enormous potential of epigenetic editing for basic neurobiological research and therapeutic application.
Collapse
Affiliation(s)
- Peter J Hamilton
- Department of Anatomy & Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Carissa J Lim
- Department of Systems Pharmacology and Translational Therapeutics, The University of Pennsylvania, Philadelphia, PA, USA
| | - Eric J Nestler
- The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elizabeth A Heller
- Department of Systems Pharmacology and Translational Therapeutics, The University of Pennsylvania, Philadelphia, PA, USA.
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Translational Medicine and Therapeutics, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Wu X, Wu C, Zhou T. No significant change of N 6 -methyladenosine modification landscape in mouse brain after morphine exposure. Brain Behav 2024; 14:e3350. [PMID: 38376052 PMCID: PMC10757896 DOI: 10.1002/brb3.3350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/12/2023] [Accepted: 11/20/2023] [Indexed: 02/21/2024] Open
Abstract
OBJECTIVES N6 -methyladenosine (m6 A) plays a crucial role in regulating neuroplasticity and different brain functions at the posttranscriptional level. However, it remains unknown whether m6 A modification is involved in acute and chronic morphine exposure. MATERIALS AND METHODS In this study, we conducted a direct comparison of m6 A levels and mRNA expression of m6 A-associated factors between morphine-treated and nontreated C57BL/6 wild-type mice. We established animal models of both acute and chronic morphine treatment and confirmed the rewarding effects of chronic morphine treatment using the conditioned place preference (CPP) assay. The activation status of different brain regions in response to morphine was assessed by c-fos staining. To assess overall m6 A modification levels, we employed the m6 A dot blot assay, while mRNA levels of m6 A-associated proteins were measured using a quantitative polymerase chain reaction (qPCR) assay. These analyses were performed to investigate whether and how m6 A modification and m6 A-associated protein expression will change following morphine exposure. RESULTS The overall m6 A methylation and mRNA levels of m6 A-associated proteins were not significantly altered in brain regions that were either activated or not activated during acute morphine stimulation. Similarly, the overall m6 A modification and mRNA levels of m6 A-associated proteins remained unaffected in several key brain regions associated with reward following chronic morphine exposure. CONCLUSION This study showed that the overall m6 A modification level and mRNA expression levels of m6 A-associated factors were not affected after acute and chronic morphine exposure in different brain regions, indicating m6 A modification may not be involved in brain response to morphine exposure.
Collapse
Affiliation(s)
- Xiaoli Wu
- Shenzhen Neher Neural Plasticity Laboratory, Shenzhen Key Laboratory of Drug Addiction, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
- Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenChina
| | - Cuiting Wu
- Shenzhen Neher Neural Plasticity Laboratory, Shenzhen Key Laboratory of Drug Addiction, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
- Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenChina
| | - Tao Zhou
- Shenzhen Neher Neural Plasticity Laboratory, Shenzhen Key Laboratory of Drug Addiction, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenChina
- CAS Key Laboratory of Brain Connectome and Manipulation, Faculty of Life and Health Sciences, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| |
Collapse
|
10
|
Yadav P, Pandey A, Kakani P, Mutnuru SA, Samaiya A, Mishra J, Shukla S. Hypoxia-induced loss of SRSF2-dependent DNA methylation promotes CTCF-mediated alternative splicing of VEGFA in breast cancer. iScience 2023; 26:106804. [PMID: 37235058 PMCID: PMC10206493 DOI: 10.1016/j.isci.2023.106804] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/21/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Alternative splicing of vascular endothelial growth factor A (VEGFA) generates numerous isoforms with unique roles in tumor angiogenesis, and investigating the underlying mechanism during hypoxia necessitates diligent pursuance. Our research systematically demonstrated that the splicing factor SRSF2 causes the inclusion of exon-8b, leading to the formation of the anti-angiogenic VEGFA-165b isoform under normoxic conditions. Additionally, SRSF2 interacts with DNMT3A and maintains methylation on exon-8a, inhibiting CCCTC-binding factor (CTCF) recruitment and RNA polymerase II (pol II) occupancy, causing exon-8a exclusion and decreased expression of pro-angiogenic VEGFA-165a. Conversely, SRSF2 is downregulated by HIF1α-induced miR-222-3p under hypoxic conditions, which prevents exon-8b inclusion and reduces VEGFA-165b expression. Furthermore, reduced SRSF2 under hypoxia promotes hydroxymethylation on exon-8a, increasing CTCF recruitment, pol II occupancy, exon-8a inclusion, and VEGFA-165a expression. Overall, our findings unveil a specialized dual mechanism of VEGFA-165 alternative splicing, instrumented by the cross-talk between SRSF2 and CTCF, which promotes angiogenesis under hypoxic conditions.
Collapse
Affiliation(s)
- Pooja Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| | - Anchala Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| | - Parik Kakani
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| | - Srinivas Abhishek Mutnuru
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| | - Atul Samaiya
- Department of Surgical Oncology, BH, Bhopal, Madhya Pradesh 462016, India
| | - Jharna Mishra
- Department of Pathology, Bansal Hospital (BH), Bhopal, Madhya Pradesh 462016, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
11
|
Elucidation of the Landscape of Alternatively Spliced Genes and Features in the Dorsal Striatum of Aggressive/Aggression-Deprived Mice in the Model of Chronic Social Conflicts. Genes (Basel) 2023; 14:genes14030599. [PMID: 36980872 PMCID: PMC10048575 DOI: 10.3390/genes14030599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Both aggressive and aggression-deprived (AD) individuals represent pathological cases extensively studied in psychiatry and substance abuse disciplines. We employed the animal model of chronic social conflicts curated in our laboratory for over 30 years. In the study, we pursued the task of evaluation of the key events in the dorsal striatum transcriptomes of aggression-experienced mice and AD species, as compared with the controls, using RNA-seq profiling. We evaluated the alternative splicing-mediated transcriptome dynamics based on the RNA-seq data. We confined our attention to the exon skipping (ES) events as the major AS type for animals. We report the concurrent posttranscriptional and posttranslational regulation of the ES events observed in the phosphorylation cycles (in phosphoproteins and their targets) in the neuron-specific genes of the striatum. Strikingly, we found that major neurospecific splicing factors (Nova1, Ptbp1, 2, Mbnl1, 2, and Sam68) related to the alternative splicing regulation of cAMP genes (Darpp-32, Grin1, Ptpn5, Ppp3ca, Pde10a, Prkaca, Psd95, and Adora1) are upregulated specifically in aggressive individuals as compared with the controls and specifically AD animals, assuming intense switching between isoforms in the cAMP-mediated (de)phosphorylation signaling cascade. We found that the coding alternative splicing events were mostly attributed to synaptic plasticity and neural development-related proteins, while the nonsense-mediated decay-associated splicing events are mostly attributed to the mRNA processing of genes, including the spliceosome and splicing factors. In addition, considering the gene families, the transporter (Slc) gene family manifested most of the ES events. We found out that the major molecular systems employing AS for their plasticity are the ‘spliceosome’, ‘chromatin rearrangement complex’, ‘synapse’, and ‘neural development/axonogenesis’ GO categories. Finally, we state that approximately 35% of the exon skipping variants in gene coding regions manifest the noncoding variants subject to nonsense-mediated decay, employed as a homeostasis-mediated expression regulation layer and often associated with the corresponding gene expression alteration.
Collapse
|
12
|
The methylome and cell-free DNA: current applications in medicine and pediatric disease. Pediatr Res 2023:10.1038/s41390-022-02448-3. [PMID: 36646885 PMCID: PMC9842217 DOI: 10.1038/s41390-022-02448-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/21/2022] [Accepted: 12/18/2022] [Indexed: 01/18/2023]
Abstract
DNA methylation is an epigenetic mechanism that contributes to cell regulation and development, and different methylation patterns allow for the identification of cell and tissue type. Cell-free DNA (cfDNA) is composed of small circulating fragments of DNA found in plasma and urine. Total cfDNA levels correlate with the presence of inflammation and tissue injury in a variety of disease states. Unfortunately, the utility of cfDNA is limited by its lack of tissue or cell-type specificity. However, methylome analysis of cfDNA allows the identification of the tissue or cell type from which cfDNA originated. Thus, methylation patterns in cfDNA from tissues isolated from direct study may provide windows into health and disease states, thereby serving as a "liquid biopsy". This review will discuss methylation and its role in establishing cellular identity, cfDNA as a biomarker and its pathophysiologic role in the inflammatory process, and the ways cfDNA and methylomics can be jointly applied in medicine. IMPACT: Cell-free DNA (cfDNA) is increasingly being used as a noninvasive diagnostic and disease-monitoring tool in pediatric medicine. However, the lack of specificity of cfDNA limits its utility. Identification of cell type-specific methylation signatures can help overcome the limited specificity of cfDNA. As knowledge of the cfDNA methylome improves, cfDNA will be more broadly applied in medicine, such that clinicians will need to understand the methods and applications of its use.
Collapse
|
13
|
Adverse maternal environment affects hippocampal HTR2c variant expression and epigenetic characteristics in mouse offspring. Pediatr Res 2022; 92:1299-1308. [PMID: 35121849 DOI: 10.1038/s41390-022-01962-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND An adverse maternal environment (AME) predisposes progeny towards cognitive impairment in humans and mice. Cognitive impairment associates with hippocampal dysfunction. An important regulator of hippocampal function is the hippocampal serotonergic system. Dysregulation of hippocampal serotonin receptor 2c (HTR2c) expression is linked with cognitive impairment. HTR2c contains multiple mRNA variants and isoforms that are epigenetically regulated including DNA methylation, histone modifications, and small nucleolar RNA MBII-52. We tested the hypotheses that AME increases HTR2c variant expression and alters epigenetic modifications along the HTR2c gene locus. METHODS We create an AME through maternal Western diet and prenatal environmental stress in the mouse. We analyzed hippocampal HTR2c and variants' expression, DNA methylation and histone modifications along the gene locus, and MBII-52 levels in postnatal day 21 offspring. RESULTS AME significantly increased the expressions of total HTR2c and full-length variants (V201 and V202) concurrently with an altered epigenetic profile along the HTR2c gene locus in male offspring hippocampi. Moreover, increased full-length variants' expression in AME males was in line with increased MBII-52 levels. CONCLUSIONS AME affects male offspring hippocampal expression of HTR2c and full-length variants via epigenetic mechanisms. Altered hippocampal HTR2c expression may contribute to cognitive impairment seen in adult males in this model. IMPACT The key message of our article is that an adverse maternal environment increases expression of total HTR2c mRNA and protein, alters proportions of HTR2c mRNA variants, and impacts HTR2c epigenetic modifications in male offspring hippocampi relative to controls. Our findings add to the literature by providing the first report of altered HTR2c mRNA variant expression in association with altered epigenetic modifications in the hippocampus of offspring mice exposed to an adverse maternal environment. Our findings suggest that an adverse maternal environment affects the expression of genes previously determined to regulate cognitive function through an epigenetic mechanism in a sex-specific manner.
Collapse
|
14
|
Transcriptome-Wide Detection of Intron/Exon Definition in the Endogenous Pre-mRNA Transcripts of Mammalian Cells and Its Regulation by Depolarization. Int J Mol Sci 2022; 23:ijms231710157. [PMID: 36077555 PMCID: PMC9456152 DOI: 10.3390/ijms231710157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
Pairing of splice sites across an intron or exon is the central point of intron or exon definition in pre-mRNA splicing with the latter mode proposed for most mammalian exons. However, transcriptome-wide pairing within endogenous transcripts has not been examined for the prevalence of each mode in mammalian cells. Here we report such pairings in rat GH3 pituitary cells by measuring the relative abundance of nuclear RNA-Seq reads at the intron start or end (RISE). Interestingly, RISE indexes are positively correlated between 5′ and 3′ splice sites specifically across introns or exons but inversely correlated with the usage of adjacent exons. Moreover, the ratios between the paired indexes were globally modulated by depolarization, which was disruptible by 5-aza-Cytidine. The nucleotide matrices of the RISE-positive splice sites deviate significantly from the rat consensus, and short introns or exons are enriched with the cross-intron or -exon RISE pairs, respectively. Functionally, the RISE-positive genes cluster for basic cellular processes including RNA binding/splicing, or more specifically, hormone production if regulated by depolarization. Together, the RISE analysis identified the transcriptome-wide regulation of either intron or exon definition between weak splice sites of short introns/exons in mammalian cells. The analysis also provides a way to further track the splicing intermediates and intron/exon definition during the dynamic regulation of alternative splicing by extracellular factors.
Collapse
|
15
|
Terrone S, Valat J, Fontrodona N, Giraud G, Claude JB, Combe E, Lapendry A, Polvèche H, Ameur LB, Duvermy A, Modolo L, Bernard P, Mortreux F, Auboeuf D, Bourgeois C. RNA helicase-dependent gene looping impacts messenger RNA processing. Nucleic Acids Res 2022; 50:9226-9246. [PMID: 36039747 PMCID: PMC9458439 DOI: 10.1093/nar/gkac717] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 07/25/2022] [Accepted: 08/25/2022] [Indexed: 12/24/2022] Open
Abstract
DDX5 and DDX17 are DEAD-box RNA helicase paralogs which regulate several aspects of gene expression, especially transcription and splicing, through incompletely understood mechanisms. A transcriptome analysis of DDX5/DDX17-depleted human cells confirmed the large impact of these RNA helicases on splicing and revealed a widespread deregulation of 3' end processing. In silico analyses and experiments in cultured cells showed the binding and functional contribution of the genome organizing factor CTCF to chromatin sites at or near a subset of DDX5/DDX17-dependent exons that are characterized by a high GC content and a high density of RNA Polymerase II. We propose the existence of an RNA helicase-dependent relationship between CTCF and the dynamics of transcription across DNA and/or RNA structured regions, that contributes to the processing of internal and terminal exons. Moreover, local DDX5/DDX17-dependent chromatin loops spatially connect RNA helicase-regulated exons with their cognate promoter, and we provide the first direct evidence that de novo gene looping modifies alternative splicing and polyadenylation. Overall our findings uncover the impact of DDX5/DDX17-dependent chromatin folding on pre-messenger RNA processing.
Collapse
Affiliation(s)
| | | | - Nicolas Fontrodona
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | | | - Jean-Baptiste Claude
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | | | - Audrey Lapendry
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | - Hélène Polvèche
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France,CECS/AFM, I-STEM, 28 rue Henri Desbruères, F-91100, Corbeil-Essonnes, France
| | - Lamya Ben Ameur
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | - Arnaud Duvermy
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | - Laurent Modolo
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | - Pascal Bernard
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | - Franck Mortreux
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | - Didier Auboeuf
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | - Cyril F Bourgeois
- To whom correspondence should be addressed. Tel: +33 47272 8663; Fax: +33 47272 8674;
| |
Collapse
|
16
|
Rosenberg T, Marco A, Kisliouk T, Haron A, Shinder D, Druyan S, Meiri N. Embryonic heat conditioning in chicks induces transgenerational heat/immunological resilience via methylation on regulatory elements. FASEB J 2022; 36:e22406. [PMID: 35713935 DOI: 10.1096/fj.202101948r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/18/2022] [Accepted: 05/28/2022] [Indexed: 11/11/2022]
Abstract
The question of whether behavioral traits are heritable is under debate. An obstacle in demonstrating transgenerational inheritance in mammals originates from the maternal environment's effect on offspring phenotype. Here, we used in ovo embryonic heat conditioning (EHC) of first-generation chicks, demonstrating heredity of both heat and immunological resilience, confirmed by a reduced fibril response in their untreated offspring to either heat or LPS challenge. Concordantly, transcriptome analysis confirmed that EHC induces changes in gene expression in the anterior preoptic hypothalamus (APH) that contribute to these phenotypes in the offspring. To study the association between epigenetic mechanisms and trait heritability, DNA-methylation patterns in the APH of offspring of control versus EHC fathers were evaluated. Genome-wide analysis revealed thousands of differentially methylated sites (DMSs), which were highly enriched in enhancers and CCCTC-binding factor (CTCF) sites. Overlap analysis revealed 110 differentially expressed genes that were associated with altered methylation, predominantly on enhancers. Gene-ontology analysis shows pathways associated with immune response, chaperone-mediated protein folding, and stress response. For the proof of concept, we focused on HSP25 and SOCS3, modulators of heat and immune responses, respectively. Chromosome conformational capture (3C) assay identified interactions between their promoters and methylated enhancers, with the strongest frequency on CTCF binding sites. Furthermore, gene expression corresponded with the differential methylation patterns, and presented increased CTCF binding in both hyper- and hypomethylated DMSs. Collectively, we demonstrate that EHC induces transgenerational thermal and immunological resilience traits. We propose that one of the mechanisms underlying inheritance depends on three-dimensional (3D) chromatin reorganization.
Collapse
Affiliation(s)
- Tali Rosenberg
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Asaf Marco
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tatiana Kisliouk
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Amit Haron
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Dmitry Shinder
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Shelly Druyan
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Noam Meiri
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
17
|
Pengelly RJ, Bakhtiar D, Borovská I, Královičová J, Vořechovský I. Exonic splicing code and protein binding sites for calcium. Nucleic Acids Res 2022; 50:5493-5512. [PMID: 35474482 PMCID: PMC9177970 DOI: 10.1093/nar/gkac270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 11/12/2022] Open
Abstract
Auxilliary splicing sequences in exons, known as enhancers (ESEs) and silencers (ESSs), have been subject to strong selection pressures at the RNA and protein level. The protein component of this splicing code is substantial, recently estimated at ∼50% of the total information within ESEs, but remains poorly understood. The ESE/ESS profiles were previously associated with the Irving-Williams (I-W) stability series for divalent metals, suggesting that the ESE/ESS evolution was shaped by metal binding sites. Here, we have examined splicing activities of exonic sequences that encode protein binding sites for Ca2+, a weak binder in the I-W affinity order. We found that predicted exon inclusion levels for the EF-hand motifs and for Ca2+-binding residues in nonEF-hand proteins were higher than for average exons. For canonical EF-hands, the increase was centred on the EF-hand chelation loop and, in particular, on Ca2+-coordinating residues, with a 1>12>3∼5>9 hierarchy in the 12-codon loop consensus and usage bias at codons 1 and 12. The same hierarchy but a lower increase was observed for noncanonical EF-hands, except for S100 proteins. EF-hand loops preferentially accumulated exon splits in two clusters, one located in their N-terminal halves and the other around codon 12. Using splicing assays and published crosslinking and immunoprecipitation data, we identify candidate trans-acting factors that preferentially bind conserved GA-rich motifs encoding negatively charged amino acids in the loops. Together, these data provide evidence for the high capacity of codons for Ca2+-coordinating residues to be retained in mature transcripts, facilitating their exon-level expansion during eukaryotic evolution.
Collapse
Affiliation(s)
- Reuben J Pengelly
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Dara Bakhtiar
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Ivana Borovská
- Slovak Academy of Sciences, Centre of Biosciences, 840 05 Bratislava, Slovak Republic
| | - Jana Královičová
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
- Slovak Academy of Sciences, Centre of Biosciences, 840 05 Bratislava, Slovak Republic
- Slovak Academy of Sciences, Institute of Zoology, 845 06 Bratislava, Slovak Republic
| | - Igor Vořechovský
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| |
Collapse
|
18
|
Peggion C, Scalcon V, Massimino ML, Nies K, Lopreiato R, Rigobello MP, Bertoli A. SOD1 in ALS: Taking Stock in Pathogenic Mechanisms and the Role of Glial and Muscle Cells. Antioxidants (Basel) 2022; 11:614. [PMID: 35453299 PMCID: PMC9032988 DOI: 10.3390/antiox11040614] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 12/04/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the loss of motor neurons in the brain and spinal cord. While the exact causes of ALS are still unclear, the discovery that familial cases of ALS are related to mutations in the Cu/Zn superoxide dismutase (SOD1), a key antioxidant enzyme protecting cells from the deleterious effects of superoxide radicals, suggested that alterations in SOD1 functionality and/or aberrant SOD1 aggregation strongly contribute to ALS pathogenesis. A new scenario was opened in which, thanks to the generation of SOD1 related models, different mechanisms crucial for ALS progression were identified. These include excitotoxicity, oxidative stress, mitochondrial dysfunctions, and non-cell autonomous toxicity, also implicating altered Ca2+ metabolism. While most of the literature considers motor neurons as primary target of SOD1-mediated effects, here we mainly discuss the effects of SOD1 mutations in non-neuronal cells, such as glial and skeletal muscle cells, in ALS. Attention is given to the altered redox balance and Ca2+ homeostasis, two processes that are strictly related with each other. We also provide original data obtained in primary myocytes derived from hSOD1(G93A) transgenic mice, showing perturbed expression of Ca2+ transporters that may be responsible for altered mitochondrial Ca2+ fluxes. ALS-related SOD1 mutants are also responsible for early alterations of fundamental biological processes in skeletal myocytes that may impinge on skeletal muscle functions and the cross-talk between muscle cells and motor neurons during disease progression.
Collapse
Affiliation(s)
- Caterina Peggion
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (C.P.); (V.S.); (K.N.); (R.L.)
| | - Valeria Scalcon
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (C.P.); (V.S.); (K.N.); (R.L.)
| | | | - Kelly Nies
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (C.P.); (V.S.); (K.N.); (R.L.)
- Department of Radiology, CARIM School for Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Raffaele Lopreiato
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (C.P.); (V.S.); (K.N.); (R.L.)
| | - Maria Pia Rigobello
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (C.P.); (V.S.); (K.N.); (R.L.)
| | - Alessandro Bertoli
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (C.P.); (V.S.); (K.N.); (R.L.)
- CNR—Neuroscience Institute, 35131 Padova, Italy;
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| |
Collapse
|
19
|
Bunda A, Andrade A. BaseScope™ Approach to Visualize Alternative Splice Variants in Tissue. Methods Mol Biol 2022; 2537:185-196. [PMID: 35895265 DOI: 10.1007/978-1-0716-2521-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Defining the cell-specific alternative splicing landscape in complex tissues is an important goal to gain functional insights. Deep-sequencing techniques coupled to genetic strategies for cell identification has provided important cues on cell-specific exon usage in complex tissues like the nervous system. BaseScope™ has emerged as a powerful and highly sensitive alternative to in situ hybridization to determine exon composition in tissue with spatial and morphological context. In this protocol, we will review how BaseScope was utilized to detect the e37a-Cacna1b splice variant of the presynaptic calcium channel CaV2.2 or N-type. This splice variant arises from a pair of mutually exclusive exons (e37a and e37b). E37a-Cacna1b is heavily underrepresented relative to e37b-Cacna1b and both exons share 60% of their sequence. By using BaseScope™, we were able to discover that e37a-Cacna1b is expressed in excitatory pyramidal neurons of hippocampus and cortex, as well as motor neurons of the ventral horn of the spinal cord.
Collapse
Affiliation(s)
- Alexandra Bunda
- Department of Biological Sciences, College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH, USA
| | - Arturo Andrade
- Department of Biological Sciences, College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH, USA.
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| |
Collapse
|
20
|
Lipscombe D, Lopez-Soto EJ. Epigenetic control of ion channel expression and cell-specific splicing in nociceptors: Chronic pain mechanisms and potential therapeutic targets. Channels (Austin) 2021; 15:156-164. [PMID: 33323031 PMCID: PMC7808434 DOI: 10.1080/19336950.2020.1860383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022] Open
Abstract
Ion channels underlie all forms for electrical signaling including the transmission of information about harmful events. Voltage-gated calcium ion channels have dual function, they support electrical signaling as well as intracellular calcium signaling through excitation-dependent calcium entry across the plasma membrane. Mechanisms that regulate ion channel forms and actions are essential for myriad cell functions and these are targeted by drugs and therapeutics. When disrupted, the cellular mechanisms that control ion channel activity can contribute to disease pathophysiology. For example, alternative pre-mRNA splicing is a major step in defining the precise composition of the transcriptome across different cell types from early cellular differentiation to programmed apoptosis. An estimated 30% of disease-causing mutations are associated with altered alternative splicing, and mis-splicing is a feature of numerous highly prevalent diseases including neurodegenerative, cancer, and chronic pain. Here we discuss the important role of epigenetic regulation of gene expression and cell-specific alternative splicing of calcium ion channels in nociceptors, with emphasis on how these processes are disrupted in chronic pain, the potential therapeutic benefit of correcting or compensating for aberrant ion channel splicing in chronic pain.
Collapse
Affiliation(s)
- Diane Lipscombe
- The Robert J and Nancy D Carney Institute for Brain Science & Department of Neuroscience, Brown University, Providence, RI, USA
| | - E. Javier Lopez-Soto
- The Robert J and Nancy D Carney Institute for Brain Science & Department of Neuroscience, Brown University, Providence, RI, USA
| |
Collapse
|
21
|
Ferguson J, Campos-León K, Pentland I, Stockton JD, Günther T, Beggs AD, Grundhoff A, Roberts S, Noyvert B, Parish JL. The chromatin insulator CTCF regulates HPV18 transcript splicing and differentiation-dependent late gene expression. PLoS Pathog 2021; 17:e1010032. [PMID: 34735550 PMCID: PMC8594839 DOI: 10.1371/journal.ppat.1010032] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/16/2021] [Accepted: 10/13/2021] [Indexed: 11/18/2022] Open
Abstract
The ubiquitous host protein, CCCTC-binding factor (CTCF), is an essential regulator of cellular transcription and functions to maintain epigenetic boundaries, stabilise chromatin loops and regulate splicing of alternative exons. We have previously demonstrated that CTCF binds to the E2 open reading frame (ORF) of human papillomavirus (HPV) 18 and functions to repress viral oncogene expression in undifferentiated keratinocytes by co-ordinating an epigenetically repressed chromatin loop within HPV episomes. Keratinocyte differentiation disrupts CTCF-dependent chromatin looping of HPV18 episomes promoting induction of enhanced viral oncogene expression. To further characterise CTCF function in HPV transcription control we utilised direct, long-read Nanopore RNA-sequencing which provides information on the structure and abundance of full-length transcripts. Nanopore analysis of primary human keratinocytes containing HPV18 episomes before and after synchronous differentiation allowed quantification of viral transcript species, including the identification of low abundance novel transcripts. Comparison of transcripts produced in wild type HPV18 genome-containing cells to those identified in CTCF-binding deficient genome-containing cells identifies CTCF as a key regulator of differentiation-dependent late promoter activation, required for efficient E1^E4 and L1 protein expression. Furthermore, our data show that CTCF binding at the E2 ORF promotes usage of the downstream weak splice donor (SD) sites SD3165 and SD3284, to the dominant E4 splice acceptor site at nucleotide 3434. These findings demonstrate that in the HPV life cycle both early and late virus transcription programmes are facilitated by recruitment of CTCF to the E2 ORF. Oncogenic human papillomavirus (HPV) infection is the cause of a subset of epithelial cancers of the uterine cervix, other anogenital areas and the oropharynx. HPV infection is established in the basal cells of epithelia where a restricted programme of viral gene expression is required for replication and maintenance of the viral episome. Completion of the HPV life cycle is dependent on the maturation (differentiation) of infected cells which induces enhanced viral gene expression and induction of capsid production. We previously reported that the host cell transcriptional regulator, CTCF, is hijacked by HPV to control viral gene expression. In this study, we use long-read mRNA sequencing to quantitatively map the variety and abundance of HPV transcripts produced in early and late stages of the HPV life cycle and to dissect the function of CTCF in controlling HPV gene expression and transcript processing.
Collapse
Affiliation(s)
- Jack Ferguson
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Karen Campos-León
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Ieisha Pentland
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Joanne D. Stockton
- Genomics Birmingham, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Thomas Günther
- Heinrich-Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Andrew D. Beggs
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
- Genomics Birmingham, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Adam Grundhoff
- Heinrich-Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Sally Roberts
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Boris Noyvert
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
- CRUK Birmingham Centre and Centre for Computational Biology, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Joanna L. Parish
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Xu SJ, Lombroso SI, Fischer DK, Carpenter MD, Marchione DM, Hamilton PJ, Lim CJ, Neve RL, Garcia BA, Wimmer ME, Pierce RC, Heller EA. Chromatin-mediated alternative splicing regulates cocaine-reward behavior. Neuron 2021; 109:2943-2966.e8. [PMID: 34480866 PMCID: PMC8454057 DOI: 10.1016/j.neuron.2021.08.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/14/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Neuronal alternative splicing is a key gene regulatory mechanism in the brain. However, the spliceosome machinery is insufficient to fully specify splicing complexity. In considering the role of the epigenome in activity-dependent alternative splicing, we and others find the histone modification H3K36me3 to be a putative splicing regulator. In this study, we found that mouse cocaine self-administration caused widespread differential alternative splicing, concomitant with the enrichment of H3K36me3 at differentially spliced junctions. Importantly, only targeted epigenetic editing can distinguish between a direct role of H3K36me3 in splicing and an indirect role via regulation of splice factor expression elsewhere on the genome. We targeted Srsf11, which was both alternatively spliced and H3K36me3 enriched in the brain following cocaine self-administration. Epigenetic editing of H3K36me3 at Srsf11 was sufficient to drive its alternative splicing and enhanced cocaine self-administration, establishing the direct causal relevance of H3K36me3 to alternative splicing of Srsf11 and to reward behavior.
Collapse
Affiliation(s)
- Song-Jun Xu
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sonia I Lombroso
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Delaney K Fischer
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marco D Carpenter
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dylan M Marchione
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter J Hamilton
- Department of Brain and Cognitive Sciences, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Carissa J Lim
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel L Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, Cambridge, MA 02139, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mathieu E Wimmer
- Department of Psychology, Temple University, Philadelphia, PA 19121, USA
| | - R Christopher Pierce
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Elizabeth A Heller
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA,19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
23
|
Shah S, Richter JD. Do Fragile X Syndrome and Other Intellectual Disorders Converge at Aberrant Pre-mRNA Splicing? Front Psychiatry 2021; 12:715346. [PMID: 34566717 PMCID: PMC8460907 DOI: 10.3389/fpsyt.2021.715346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
Fragile X Syndrome is a neuro-developmental disorder caused by the silencing of the FMR1 gene, resulting in the loss of its protein product, FMRP. FMRP binds mRNA and represses general translation in the brain. Transcriptome analysis of the Fmr1-deficient mouse hippocampus reveals widespread dysregulation of alternative splicing of pre-mRNAs. Many of these aberrant splicing changes coincide with those found in post-mortem brain tissue from individuals with autism spectrum disorders (ASDs) as well as in mouse models of intellectual disability such as PTEN hamartoma syndrome (PHTS) and Rett Syndrome (RTT). These splicing changes could result from chromatin modifications (e.g., in FXS, RTT) and/or splicing factor alterations (e.g., PTEN, autism). Based on the identities of the RNAs that are mis-spliced in these disorders, it may be that they are at least partly responsible for some shared pathophysiological conditions. The convergence of splicing aberrations among these autism spectrum disorders might be crucial to understanding their underlying cognitive impairments.
Collapse
Affiliation(s)
| | - Joel D. Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
24
|
Alharbi AB, Schmitz U, Bailey CG, Rasko JEJ. CTCF as a regulator of alternative splicing: new tricks for an old player. Nucleic Acids Res 2021; 49:7825-7838. [PMID: 34181707 PMCID: PMC8373115 DOI: 10.1093/nar/gkab520] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
Three decades of research have established the CCCTC-binding factor (CTCF) as a ubiquitously expressed chromatin organizing factor and master regulator of gene expression. A new role for CTCF as a regulator of alternative splicing (AS) has now emerged. CTCF has been directly and indirectly linked to the modulation of AS at the individual transcript and at the transcriptome-wide level. The emerging role of CTCF-mediated regulation of AS involves diverse mechanisms; including transcriptional elongation, DNA methylation, chromatin architecture, histone modifications, and regulation of splicing factor expression and assembly. CTCF thereby appears to not only co-ordinate gene expression regulation but contributes to the modulation of transcriptomic complexity. In this review, we highlight previous discoveries regarding the role of CTCF in AS. In addition, we summarize detailed mechanisms by which CTCF mediates AS regulation. We propose opportunities for further research designed to examine the possible fate of CTCF-mediated alternatively spliced genes and associated biological consequences. CTCF has been widely acknowledged as the 'master weaver of the genome'. Given its multiple connections, further characterization of CTCF's emerging role in splicing regulation might extend its functional repertoire towards a 'conductor of the splicing orchestra'.
Collapse
Affiliation(s)
- Adel B Alharbi
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
- Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Ulf Schmitz
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
| | - Charles G Bailey
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
- Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
| | - John E J Rasko
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
- Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| |
Collapse
|
25
|
Murthy M, Cheng YY, Holton JL, Bettencourt C. Neurodegenerative movement disorders: An epigenetics perspective and promise for the future. Neuropathol Appl Neurobiol 2021; 47:897-909. [PMID: 34318515 PMCID: PMC9291277 DOI: 10.1111/nan.12757] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/12/2021] [Indexed: 02/02/2023]
Abstract
Neurodegenerative movement disorders (NMDs) are age‐dependent disorders that are characterised by the degeneration and loss of neurons, typically accompanied by pathological accumulation of different protein aggregates in the brain, which lead to motor symptoms. NMDs include Parkinson's disease, multiple system atrophy, progressive supranuclear palsy, and Huntington's disease, among others. Epigenetic modifications are responsible for functional gene regulation during development, adult life and ageing and have progressively been implicated in complex diseases such as cancer and more recently in neurodegenerative diseases, such as NMDs. DNA methylation is by far the most widely studied epigenetic modification and consists of the reversible addition of a methyl group to the DNA without changing the DNA sequence. Although this research field is still in its infancy in relation to NMDs, an increasing number of studies point towards a role for DNA methylation in disease processes. This review addresses recent advances in epigenetic and epigenomic research in NMDs, with a focus on human brain DNA methylation studies. We discuss the current understanding of the DNA methylation changes underlying these disorders, the potential for use of these DNA modifications in peripheral tissues as biomarkers in early disease detection, classification and progression as well as a promising role in future disease management and therapy.
Collapse
Affiliation(s)
- Megha Murthy
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.,Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Yun Yung Cheng
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Janice L Holton
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.,Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Conceição Bettencourt
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
26
|
陈 兰, 赫 纹, 刘 玲. [Autosomal dominant intellectual disability type 21 in a neonate]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23:306-309. [PMID: 33691927 PMCID: PMC7969196 DOI: 10.7499/j.issn.1008-8830.2010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
This is a case report on a 1-day-old male neonate admitted due to a weak cry for 1 day and recurrent circumoral cyanosis for 2 hours. He had unusual facial features at birth, with a single transverse palmar crease on both hands, flat feet, weak cry, feeding difficulties, congenital heart disease, and abnormality on cerebral MRI. Whole exome sequencing showed a de novo mutation, c.778_781delAAAG(p.Lys260ValfsTer2), in exon 3 of the CTCF gene, which was considered a pathogenic mutation by protein function prediction and might damage the function of CTCF protein. He was diagnosed with autosomal dominant intellectual disability type 21 based on the clinical manifestations and genetic analysis results. This case suggests that genetic analysis should be performed as early as possible for neonates with feeding difficulties which cannot be explained by infection or hypoxia, so as to help with early diagnosis and genetic counselling.
Collapse
Affiliation(s)
- 兰 陈
- />贵阳市妇幼保健院新生儿科, 贵州贵阳 550003Guiyang Maternity and Child Health Care Hospital, Guiyang 550003, China
| | - 纹 赫
- />贵阳市妇幼保健院新生儿科, 贵州贵阳 550003Guiyang Maternity and Child Health Care Hospital, Guiyang 550003, China
| | - 玲 刘
- />贵阳市妇幼保健院新生儿科, 贵州贵阳 550003Guiyang Maternity and Child Health Care Hospital, Guiyang 550003, China
| |
Collapse
|
27
|
Thalhammer A, Jaudon F, Cingolani LA. Emerging Roles of Activity-Dependent Alternative Splicing in Homeostatic Plasticity. Front Cell Neurosci 2020; 14:104. [PMID: 32477067 PMCID: PMC7235277 DOI: 10.3389/fncel.2020.00104] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/06/2020] [Indexed: 12/25/2022] Open
Abstract
Homeostatic plasticity refers to the ability of neuronal networks to stabilize their activity in the face of external perturbations. Most forms of homeostatic plasticity ultimately depend on changes in the expression or activity of ion channels and synaptic proteins, which may occur at the gene, transcript, or protein level. The most extensively investigated homeostatic mechanisms entail adaptations in protein function or localization following activity-dependent posttranslational modifications. Numerous studies have also highlighted how homeostatic plasticity can be achieved by adjusting local protein translation at synapses or transcription of specific genes in the nucleus. In comparison, little attention has been devoted to whether and how alternative splicing (AS) of pre-mRNAs underlies some forms of homeostatic plasticity. AS not only expands proteome diversity but also contributes to the spatiotemporal dynamics of mRNA transcripts. Prominent in the brain where it can be regulated by neuronal activity, it is a flexible process, tightly controlled by a multitude of factors. Given its extensive use and versatility in optimizing the function of ion channels and synaptic proteins, we argue that AS is ideally suited to achieve homeostatic control of neuronal output. We support this thesis by reviewing emerging evidence linking AS to various forms of homeostatic plasticity: homeostatic intrinsic plasticity, synaptic scaling, and presynaptic homeostatic plasticity. Further, we highlight the relevance of this connection for brain pathologies.
Collapse
Affiliation(s)
- Agnes Thalhammer
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Fanny Jaudon
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lorenzo A Cingolani
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Genoa, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|