1
|
Banaie Boroujeni K, Helfrich RF, Fiebelkorn IC, Bentley N, Lin JJ, Knight RT, Kastner S. Fast Attentional Information Routing via High-Frequency Bursts in the Human Brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.11.612548. [PMID: 39314423 PMCID: PMC11419049 DOI: 10.1101/2024.09.11.612548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Brain-wide communication supporting flexible behavior requires coordination between sensory and associative regions but how brain networks route sensory information at fast timescales to guide action remains unclear. Using spiking neural networks and human intracranial electrophysiology during spatial attention tasks, where participants detected targets at cued locations, we show that high-frequency activity bursts (HFAb) serve as information-carrying events, facilitating fast, long-range communications. HFAbs were evoked by sensory cues and targets, dynamically linked to low-frequency rhythms. Notably, both HFAb responses following cues and their decoupling from slow rhythms predicted performance accuracy. HFAbs were synchronized at the network-level, identifying distinct cue- and target-activated subnetworks. These subnetworks exhibited a temporal lead-lag organization following target onset, with cue-sactivated subnetworks preceding target-activated subnetworks when the cue provided relevant target information. Computational modeling indicated that HFAbs reflect transitions to coherent population spiking and are coordinated across networks through distinct mechanisms. Together, these findings establish HFAbs as neural mechanisms for fast, large-scale communication supporting attentional performance.
Collapse
|
2
|
Tu CA, Parviainen T, Hämäläinen JA, Hsu YF. Alpha oscillations protect auditory working memory against distractors in the encoding phase. Neuropsychologia 2025; 207:109058. [PMID: 39615830 DOI: 10.1016/j.neuropsychologia.2024.109058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Alpha oscillations are proposed to serve the function of inhibition to protect items in working memory from intruding information. In a modified Sternberg paradigm, alpha power was initially found to increase at the anticipation of strong compared to weak distractors, reflecting the active gating of distracting information from interfering with the memory trace. However, there was a lack of evidence supporting the inhibition account of alpha oscillations in later studies using similar experimental design with greater temporal disparity between the encoding phase and the presentation of the distractors. This temporal disparity might have dampened the demands for inhibition. To test the hypothesis that alpha inhibition takes place when distractors are temporally close to the encoding phase, here we designed a modified Sternberg paradigm where distractors were sandwiched between targets in the encoding phase to ensure that they compete for working memory resources. Using electroencephalography (EEG), we replicated the finding that alpha power increased for strong compared to weak distractors. The effect was present throughout the encoding phase, not only upon the presentation of distractors but also before and after the presentation of distractors, providing evidence for both proactive and reactive inhibition of distractors at the neuronal level. Meanwhile, the effect was restricted to the context of high but not low target-to-distractor ratio. The results suggest that the distractors being temporally close to the encoding phase of more targets might be a boundary condition of the generation of alpha oscillations for gating.
Collapse
Affiliation(s)
- Chia-An Tu
- Department of Educational Psychology and Counselling, National Taiwan Normal University, Taipei, 106308, Taiwan.
| | - Tiina Parviainen
- Jyväskylä Centre for Interdisciplinary Brain Research, Department of Psychology, University of Jyväskylä, Jyväskylä, 40014, Finland.
| | - Jarmo A Hämäläinen
- Jyväskylä Centre for Interdisciplinary Brain Research, Department of Psychology, University of Jyväskylä, Jyväskylä, 40014, Finland.
| | - Yi-Fang Hsu
- Department of Educational Psychology and Counselling, National Taiwan Normal University, Taipei, 106308, Taiwan; Institute for Research Excellence in Learning Sciences, National Taiwan Normal University, Taipei, 106308, Taiwan.
| |
Collapse
|
3
|
Alain C, Göke K, Shen D, Bidelman GM, Bernstein LJ, Snyder JS. Neural alpha oscillations index context-driven perception of ambiguous vowel sequences. iScience 2023; 26:108457. [PMID: 38058304 PMCID: PMC10696458 DOI: 10.1016/j.isci.2023.108457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/05/2023] [Accepted: 11/11/2023] [Indexed: 12/08/2023] Open
Abstract
Perception of bistable stimuli is influenced by prior context. In some cases, the interpretation matches with how the preceding stimulus was perceived; in others, it tends to be the opposite of the previous stimulus percept. We measured high-density electroencephalography (EEG) while participants were presented with a sequence of vowels that varied in formant transition, promoting the perception of one or two auditory streams followed by an ambiguous bistable sequence. For the bistable sequence, participants were more likely to report hearing the opposite percept of the one heard immediately before. This auditory contrast effect coincided with changes in alpha power localized in the left angular gyrus and left sensorimotor and right sensorimotor/supramarginal areas. The latter correlated with participants' perception. These results suggest that the contrast effect for a bistable sequence of vowels may be related to neural adaptation in posterior auditory areas, which influences participants' perceptual construal level of ambiguous stimuli.
Collapse
Affiliation(s)
- Claude Alain
- Rotman Research Institute, Toronto, ON M6A 2E1, Canada
- Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada
| | | | - Dawei Shen
- Rotman Research Institute, Toronto, ON M6A 2E1, Canada
| | - Gavin M. Bidelman
- Department of Speech, Language and Hearing Sciences and Program in Neuroscience, Indiana University, Bloomington, IN 47408, USA
| | - Lori J. Bernstein
- Department of Psychiatry, University of Toronto and University Health Network, Toronto, ON M5G 2C4, Canada
| | - Joel S. Snyder
- Department of Psychology, University of Nevada, Las Vegas, NV 89154, USA
| |
Collapse
|
4
|
Ou S, Cao Y, Xie T, Jiang T, Li J, Luo W, Ma N. Effect of homeostatic pressure and circadian arousal on the storage and executive components of working memory: Evidence from EEG power spectrum. Biol Psychol 2023; 184:108721. [PMID: 37952693 DOI: 10.1016/j.biopsycho.2023.108721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/08/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Diurnal fluctuations in working memory (WM) performance, characterized by task-specific peaks and troughs, are likely attributed to the differential regulation of WM subcomponents by interactions between circadian and homeostatic processes. The current study aimed to investigate the independent effects of circadian and homeostatic processes on the storage and executive subcomponents of WM. We assessed the change in frontal-midline theta (FMT) power supporting WM executive component and posterior alpha/beta power supporting WM storage during N-back tasks in the morning, midafternoon with and without a nap from 31 healthy adults. The results suggested that when the accumulated sleep homeostasis was alleviated in the midafternoon by a daytime nap, higher ACC, less number of omissions, and a stronger increase in FMT power from the no nap to nap conditions. Compared to the morning, a stronger decrease in posterior alpha power, and posterior beta power (only in the 3-back task), was observed in the no-nap condition because of circadian arousal regulation. These findings suggest that the circadian process primarily influences the storage aspect of WM supported by posterior alpha and beta activity, while sleep homeostasis has a greater impact on the execution aspect supported by FMT activity.
Collapse
Affiliation(s)
- Simei Ou
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Yixuan Cao
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Tian Xie
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Tianxiang Jiang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Jiahui Li
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Wei Luo
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Ning Ma
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
5
|
Pomper U, Curetti LZ, Chait M. Neural dynamics underlying successful auditory short-term memory performance. Eur J Neurosci 2023; 58:3859-3878. [PMID: 37691137 PMCID: PMC10946728 DOI: 10.1111/ejn.16140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/12/2023]
Abstract
Listeners often operate in complex acoustic environments, consisting of many concurrent sounds. Accurately encoding and maintaining such auditory objects in short-term memory is crucial for communication and scene analysis. Yet, the neural underpinnings of successful auditory short-term memory (ASTM) performance are currently not well understood. To elucidate this issue, we presented a novel, challenging auditory delayed match-to-sample task while recording MEG. Human participants listened to 'scenes' comprising three concurrent tone pip streams. The task was to indicate, after a delay, whether a probe stream was present in the just-heard scene. We present three key findings: First, behavioural performance revealed faster responses in correct versus incorrect trials as well as in 'probe present' versus 'probe absent' trials, consistent with ASTM search. Second, successful compared with unsuccessful ASTM performance was associated with a significant enhancement of event-related fields and oscillatory activity in the theta, alpha and beta frequency ranges. This extends previous findings of an overall increase of persistent activity during short-term memory performance. Third, using distributed source modelling, we found these effects to be confined mostly to sensory areas during encoding, presumably related to ASTM contents per se. Parietal and frontal sources then became relevant during the maintenance stage, indicating that effective STM operation also relies on ongoing inhibitory processes suppressing task-irrelevant information. In summary, our results deliver a detailed account of the neural patterns that differentiate successful from unsuccessful ASTM performance in the context of a complex, multi-object auditory scene.
Collapse
Affiliation(s)
- Ulrich Pomper
- Ear InstituteUniversity College LondonLondonUK
- Faculty of PsychologyUniversity of ViennaViennaAustria
| | | | - Maria Chait
- Ear InstituteUniversity College LondonLondonUK
| |
Collapse
|
6
|
Sandhaeger F, Siegel M. Testing the generalization of neural representations. Neuroimage 2023; 278:120258. [PMID: 37429371 PMCID: PMC10443234 DOI: 10.1016/j.neuroimage.2023.120258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/27/2023] [Accepted: 06/28/2023] [Indexed: 07/12/2023] Open
Abstract
Multivariate analysis methods are widely used in neuroscience to investigate the presence and structure of neural representations. Representational similarities across time or contexts are often investigated using pattern generalization, e.g. by training and testing multivariate decoders in different contexts, or by comparable pattern-based encoding methods. It is however unclear what conclusions can be validly drawn on the underlying neural representations when significant pattern generalization is found in mass signals such as LFP, EEG, MEG, or fMRI. Using simulations, we show how signal mixing and dependencies between measurements can drive significant pattern generalization even though the true underlying representations are orthogonal. We suggest that, using an accurate estimate of the expected pattern generalization given identical representations, it is nonetheless possible to test meaningful hypotheses about the generalization of neural representations. We offer such an estimate of the expected magnitude of pattern generalization and demonstrate how this measure can be used to assess the similarity and differences of neural representations across time and contexts.
Collapse
Affiliation(s)
- Florian Sandhaeger
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; Centre for Integrative Neuroscience, University of Tübingen, Germany; MEG Center, University of Tübingen, Germany; IMPRS for Cognitive and Systems Neuroscience, University of Tübingen, Germany.
| | - Markus Siegel
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; Centre for Integrative Neuroscience, University of Tübingen, Germany; MEG Center, University of Tübingen, Germany.
| |
Collapse
|
7
|
Govani V, Shastry A, Iosifescu D, Govil P, Mayer M, Sobeih T, Choo T, Wall M, Sehatpour P, Kantrowitz J. Augmentation of learning in schizophrenia by D-serine is related to auditory and frontally-generated biomarkers: A randomized, double-blind, placebo-controlled study. RESEARCH SQUARE 2023:rs.3.rs-2943290. [PMID: 37293030 PMCID: PMC10246259 DOI: 10.21203/rs.3.rs-2943290/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Auditory cognition is impaired in schizophrenia, and typically engages a complex, distributed, hierarchical network, including both auditory and frontal input. We recently demonstrated proof of principle for the target engagement of an N-methyl-D-aspartate-type glutamate receptor (NMDAR) agonist + auditory targeted remediation (d-serine+AudRem) combination, showing significant improvement in auditory-learning induced plasticity and mismatch negativity. In this secondary analysis, we report on frontal EEG outcomes, assessing for both generalized effects and the mechanism of auditory plasticity. 21 schizophrenia or schizoaffective disorder participants were randomized to three 1x weekly AudRem + double-blind d-serine (100 mg/kg) visits. In AudRem, participants indicated which paired tone was higher in pitch. The focus of this secondary analysis was a frontally (premotor) mediated EEG outcome- event-related desynchronization in the b band (b-ERD), which was shown to be sensitive to AudRem in previous studies. d-Serine+AudRem led to significant improvement in b-ERD power across the retention and motor preparation intervals (F 1,18 =6.0, p=0.025) vs. AudRem alone. b-ERD was significantly related to baseline cognition, but not auditory-learning induced plasticity. The principal finding of this prespecified secondary analysis are that in addition to improving auditory based biomarkers, the d-serine+AudRem combination led to significant improvement in biomarkers thought to represent frontally mediated dysfunction, suggesting potential generalization of effects. Changes in auditory-learning induced plasticity were independent of these frontally mediated biomarkers. Ongoing work will assess whether d-serine+AudRem is sufficient to remediate cognition or whether targeting frontal NMDAR deficits with higher-level remediation may also be required. Trial Registration: NCT03711500.
Collapse
|
8
|
Lui TKY, Obleser J, Wöstmann M. Slow neural oscillations explain temporal fluctuations in distractibility. Prog Neurobiol 2023; 226:102458. [PMID: 37088261 DOI: 10.1016/j.pneurobio.2023.102458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/06/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
Human environments comprise various sources of distraction, which often occur unexpectedly in time. The proneness to distraction (i.e., distractibility) is posited to be independent of attentional sampling of targets, but its temporal dynamics and neurobiological basis are largely unknown. Brain oscillations in the theta band (3 - 8Hz) have been associated with fluctuating neural excitability, which is hypothesised here to explain rhythmic modulation of distractibility. In a pitch discrimination task (N = 30) with unexpected auditory distractors, we show that distractor-evoked neural responses in the electroencephalogram and perceptual susceptibility to distraction were co-modulated and cycled approximately 3 - 5 times per second. Pre-distractor neural phase in left inferior frontal and insular cortex regions explained fluctuating distractibility. Thus, human distractibility is not constant but fluctuates on a subsecond timescale. Furthermore, slow neural oscillations subserve the behavioural consequences of a hitherto largely unexplained but ever-increasing phenomenon in modern environments - distraction by unexpected sound.
Collapse
Affiliation(s)
- Troby Ka-Yan Lui
- Department of Psychology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; Center of Brain, Behavior and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; Center of Brain, Behavior and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Malte Wöstmann
- Department of Psychology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; Center of Brain, Behavior and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.
| |
Collapse
|
9
|
Clements GM, Gyurkovics M, Low KA, Kramer AF, Beck DM, Fabiani M, Gratton G. Dynamics of alpha suppression index both modality specific and general attention processes. Neuroimage 2023; 270:119956. [PMID: 36863549 PMCID: PMC10037550 DOI: 10.1016/j.neuroimage.2023.119956] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/06/2023] [Accepted: 02/17/2023] [Indexed: 03/04/2023] Open
Abstract
EEG alpha power varies under many circumstances requiring visual attention. However, mounting evidence indicates that alpha may not only serve visual processing, but also the processing of stimuli presented in other sensory modalities, including hearing. We previously showed that alpha dynamics during an auditory task vary as a function of competition from the visual modality (Clements et al., 2022) suggesting that alpha may be engaged in multimodal processing. Here we assessed the impact of allocating attention to the visual or auditory modality on alpha dynamics at parietal and occipital electrodes, during the preparatory period of a cued-conflict task. In this task, bimodal precues indicated the modality (vision, hearing) relevant to a subsequent reaction stimulus, allowing us to assess alpha during modality-specific preparation and while switching between modalities. Alpha suppression following the precue occurred in all conditions, indicating that it may reflect general preparatory mechanisms. However, we observed a switch effect when preparing to attend to the auditory modality, in which greater alpha suppression was elicited when switching to the auditory modality compared to repeating. No switch effect was evident when preparing to attend to visual information (although robust suppression did occur in both conditions). In addition, waning alpha suppression preceded error trials, irrespective of sensory modality. These findings indicate that alpha can be used to monitor the level of preparatory attention to process both visual and auditory information, and support the emerging view that alpha band activity may index a general attention control mechanism used across modalities.
Collapse
Affiliation(s)
- Grace M Clements
- Psychology Department, University of Illinois at Urbana, Champaign, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana, Champaign, USA.
| | - Mate Gyurkovics
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana, Champaign, USA; School of Psychology & Neuroscience, University of Glasgow, Scotland
| | - Kathy A Low
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana, Champaign, USA
| | - Arthur F Kramer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana, Champaign, USA; Center for Cognitive & Brain Health, Northeastern University, USA
| | - Diane M Beck
- Psychology Department, University of Illinois at Urbana, Champaign, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana, Champaign, USA
| | - Monica Fabiani
- Psychology Department, University of Illinois at Urbana, Champaign, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana, Champaign, USA
| | - Gabriele Gratton
- Psychology Department, University of Illinois at Urbana, Champaign, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana, Champaign, USA.
| |
Collapse
|
10
|
Guttesen AÁV, Gaskell MG, Madden EV, Appleby G, Cross ZR, Cairney SA. Sleep loss disrupts the neural signature of successful learning. Cereb Cortex 2023; 33:1610-1625. [PMID: 35470400 PMCID: PMC9977378 DOI: 10.1093/cercor/bhac159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Sleep supports memory consolidation as well as next-day learning. The influential "Active Systems" account of offline consolidation suggests that sleep-associated memory processing paves the way for new learning, but empirical evidence in support of this idea is scarce. Using a within-subjects (n = 30), crossover design, we assessed behavioral and electrophysiological indices of episodic encoding after a night of sleep or total sleep deprivation in healthy adults (aged 18-25 years) and investigated whether behavioral performance was predicted by the overnight consolidation of episodic associations from the previous day. Sleep supported memory consolidation and next-day learning as compared to sleep deprivation. However, the magnitude of this sleep-associated consolidation benefit did not significantly predict the ability to form novel memories after sleep. Interestingly, sleep deprivation prompted a qualitative change in the neural signature of encoding: Whereas 12-20 Hz beta desynchronization-an established marker of successful encoding-was observed after sleep, sleep deprivation disrupted beta desynchrony during successful learning. Taken together, these findings suggest that effective learning depends on sleep but not necessarily on sleep-associated consolidation.
Collapse
Affiliation(s)
- Anna á V Guttesen
- Department of Psychology, University of York, Heslington, York, YO10 5DD, UK
| | - M Gareth Gaskell
- Department of Psychology, University of York, Heslington, York, YO10 5DD, UK
- York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| | - Emily V Madden
- Department of Psychology, University of York, Heslington, York, YO10 5DD, UK
| | - Gabrielle Appleby
- Department of Psychology, University of York, Heslington, York, YO10 5DD, UK
| | - Zachariah R Cross
- Cognitive Neuroscience Laboratory, Australian Research Centre for Interactive and Virtual Environments, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Scott A Cairney
- Department of Psychology, University of York, Heslington, York, YO10 5DD, UK
- York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
11
|
Mirjalili M, Zomorrodi R, Daskalakis ZJ, Hill SL, Kumar S, Blumberger DM, Fischer CE, Flint AJ, Herrmann N, Lanctôt KL, Mah L, Mulsant BH, Pollock BG, Rajji TK. Cognitive control, interference inhibition, and ordering of information during working memory in younger and older healthy adults. GeroScience 2022; 44:2291-2303. [PMID: 35553346 PMCID: PMC9616976 DOI: 10.1007/s11357-022-00577-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/19/2022] [Indexed: 11/04/2022] Open
Abstract
Investigating effects of aging on neurophysiological mechanisms underlying working memory provides a better understanding of potential targets for brain intervention to prevent cognitive decline. Theta-gamma coupling (TGC) indexes the ability to order information processed during working memory tasks. Frontal theta event-related synchronization (ERS) and parietal alpha event-related desynchronization (ERD) index cognitive control and interference inhibition, respectively. Relative contributions of TGC, theta ERS, and alpha ERD in relation to stimulus presentation are not characterized. Further, differential effect of normal aging on pre- or post-stimulus processes is unknown. Electroencephalography was recorded in 66 younger and 41 older healthy participants while performing 3-back working memory task. We assessed relationships between 3-back task performance and each of post-stimulus TGC, pre-stimulus parietal alpha ERD, and pre-stimulus frontal theta ERS in each age group. While older adults performed worse on 3-back task than younger adults, TGC, alpha ERD, or theta ERS did not differ between the two groups. TGC was positively associated with 3-back performance in both age groups; pre-stimulus alpha ERD was associated with performance among younger adults; and pre-stimulus theta ERS was not associated with performance in either group. Our findings suggest that both pre-stimulus interference inhibition and post-stimulus ordering of information are important for working memory in younger adults. In contrast, performance in older adults appears to depend only on post-stimulus ordering of information. These specific contributions of neurophysiological resources may explain the poorer performance of older adults and suggest different targets to enhance working memory in age groups.
Collapse
Affiliation(s)
- Mina Mirjalili
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Vector Institute for Artificial Intelligence, Toronto, Canada
| | - Reza Zomorrodi
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Canada
| | - Zafiris J Daskalakis
- Department of Psychiatry, School of Medicine, University of California, San Diego, USA
| | - Sean L Hill
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Vector Institute for Artificial Intelligence, Toronto, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Sanjeev Kumar
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Toronto Dementia Research Alliance, University of Toronto, Toronto, Canada
| | - Daniel M Blumberger
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Canada
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Corinne E Fischer
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - Alastair J Flint
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Centre for Mental Health, University Health Network, Toronto, Canada
| | - Nathan Herrmann
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Hurvitz Brain Sciences Research Program and Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Krista L Lanctôt
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Toronto Dementia Research Alliance, University of Toronto, Toronto, Canada
- Hurvitz Brain Sciences Research Program and Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Linda Mah
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Rotman Research Institute, Baycrest Health Sciences Centre, Toronto, Canada
| | - Benoit H Mulsant
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Bruce G Pollock
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Toronto Dementia Research Alliance, University of Toronto, Toronto, Canada
| | - Tarek K Rajji
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.
- Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Canada.
- Institute of Medical Science, University of Toronto, Toronto, Canada.
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
- Toronto Dementia Research Alliance, University of Toronto, Toronto, Canada.
| |
Collapse
|
12
|
Soltanparast S, Toufan R, Talebian S, Pourbakht A. Regularity of background auditory scene and selective attention: a brain oscillatory study. Neurosci Lett 2022; 772:136465. [DOI: 10.1016/j.neulet.2022.136465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/29/2021] [Accepted: 01/14/2022] [Indexed: 11/27/2022]
|
13
|
Decoding Object-Based Auditory Attention from Source-Reconstructed MEG Alpha Oscillations. J Neurosci 2021; 41:8603-8617. [PMID: 34429378 DOI: 10.1523/jneurosci.0583-21.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 11/21/2022] Open
Abstract
How do we attend to relevant auditory information in complex naturalistic scenes? Much research has focused on detecting which information is attended, without regarding underlying top-down control mechanisms. Studies investigating attentional control generally manipulate and cue specific features in simple stimuli. However, in naturalistic scenes it is impossible to dissociate relevant from irrelevant information based on low-level features. Instead, the brain has to parse and select auditory objects of interest. The neural underpinnings of object-based auditory attention remain not well understood. Here we recorded MEG while 15 healthy human subjects (9 female) prepared for the repetition of an auditory object presented in one of two overlapping naturalistic auditory streams. The stream containing the repetition was prospectively cued with 70% validity. Crucially, this task could not be solved by attending low-level features, but only by processing the objects fully. We trained a linear classifier on the cortical distribution of source-reconstructed oscillatory activity to distinguish which auditory stream was attended. We could successfully classify the attended stream from alpha (8-14 Hz) activity in anticipation of repetition onset. Importantly, attention could only be classified from trials in which subjects subsequently detected the repetition, but not from miss trials. Behavioral relevance was further supported by a correlation between classification accuracy and detection performance. Decodability was not sustained throughout stimulus presentation, but peaked shortly before repetition onset, suggesting that attention acted transiently according to temporal expectations. We thus demonstrate anticipatory alpha oscillations to underlie top-down control of object-based auditory attention in complex naturalistic scenes.SIGNIFICANCE STATEMENT In everyday life, we often find ourselves bombarded with auditory information, from which we need to select what is relevant to our current goals. Previous research has highlighted how we attend to specific highly controlled aspects of the auditory input. Although invaluable, it is still unclear how this relates to attentional control in naturalistic auditory scenes. Here we used the high precision of magnetoencephalography in space and time to investigate the brain mechanisms underlying top-down control of object-based attention in ecologically valid sound scenes. We show that rhythmic activity in auditory association cortex at a frequency of ∼10 Hz (alpha waves) controls attention to currently relevant segments within the auditory scene and predicts whether these segments are subsequently detected.
Collapse
|
14
|
Fan Y, Han Q, Guo S, Luo H. Distinct Neural Representations of Content and Ordinal Structure in Auditory Sequence Memory. J Neurosci 2021; 41:6290-6303. [PMID: 34088795 PMCID: PMC8287991 DOI: 10.1523/jneurosci.0320-21.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/25/2021] [Accepted: 05/26/2021] [Indexed: 11/21/2022] Open
Abstract
Two forms of information, frequency (content) and ordinal position (structure), have to be stored when retaining a sequence of auditory tones in working memory (WM). However, the neural representations and coding characteristics of content and structure, particularly during WM maintenance, remain elusive. Here, in two EEG studies in human participants (both sexes), by transiently perturbing the "activity-silent" WM retention state and decoding the reactivated WM information, we demonstrate that content and structure are stored in a dissociative manner with distinct characteristics throughout WM process. First, each tone in the sequence is associated with two codes in parallel, characterizing its frequency and ordinal position, respectively. Second, during retention, a structural retrocue successfully reactivates structure but not content, whereas a following white noise triggers content but not structure. Third, structure representation remains stable, whereas content code undergoes a dynamic transformation through memory progress. Finally, the noise-triggered content reactivations during retention correlate with subsequent WM behavior. Overall, our results support distinct content and structure representations in auditory WM and provide an efficient approach to access the silently stored WM information in the human brain. The dissociation of content and structure could facilitate efficient memory formation via generalizing stable structure to new auditory contents.SIGNIFICANCE STATEMENT In memory experiences, contents do not exist independently but are linked with each other via ordinal structure. For instance, recalling a piece of favorite music relies on correct ordering (sequence structure) of musical tones (content). How are the structure and content for an auditory temporally structured experience maintained in working memory? Here, by using impulse-response approach and time-resolved representational dissimilarity analysis on human EEG recordings in an auditory working memory task, we reveal that content and structure are stored in a dissociated way, which would facilitate efficient and rapid memory formation through generalizing stable structure knowledge to new auditory inputs.
Collapse
Affiliation(s)
- Ying Fan
- School of Psychological and Cognitive Sciences, Peking University, Beijing, 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
- Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China
| | - Qiming Han
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
- Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Simeng Guo
- Yuanpei College, Peking University, Beijing, 100871, China
| | - Huan Luo
- School of Psychological and Cognitive Sciences, Peking University, Beijing, 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
- Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China
| |
Collapse
|
15
|
Alpha/beta power decreases during episodic memory formation predict the magnitude of alpha/beta power decreases during subsequent retrieval. Neuropsychologia 2021; 153:107755. [PMID: 33515568 DOI: 10.1016/j.neuropsychologia.2021.107755] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 01/02/2023]
Abstract
Episodic memory retrieval is characterised by the vivid reinstatement of information about a personally-experienced event. Growing evidence suggests that this reinstatement is supported by reductions in the spectral power of alpha/beta activity. Given that the amount of information that can be recalled depends on the amount of information that was originally encoded, information-based accounts of alpha/beta activity would suggest that retrieval-related alpha/beta power decreases similarly depend upon decreases in alpha/beta power during encoding. To test this hypothesis, seventeen human participants completed a sequence-learning task while undergoing concurrent MEG recordings. Regression-based analyses were then used to estimate how alpha/beta power decreases during encoding predicted alpha/beta power decreases during retrieval on a trial-by-trial basis. When subjecting these parameter estimates to group-level analysis, we find evidence to suggest that retrieval-related alpha/beta (7-15Hz) power decreases fluctuate as a function of encoding-related alpha/beta power decreases. These results suggest that retrieval-related alpha/beta power decreases are contingent on the decrease in alpha/beta power that arose during encoding. Subsequent analysis uncovered no evidence to suggest that these alpha/beta power decreases reflect stimulus identity, indicating that the contingency between encoding- and retrieval-related alpha/beta power reflects the reinstatement of a neurophysiological operation, rather than neural representation, during episodic memory retrieval.
Collapse
|
16
|
Weisz N, Kraft NG, Demarchi G. Auditory cortical alpha/beta desynchronization prioritizes the representation of memory items during a retention period. eLife 2020; 9:55508. [PMID: 32378513 PMCID: PMC7242024 DOI: 10.7554/elife.55508] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
To-be-memorized information in working-memory could be protected against distracting influences by processes of functional inhibition or prioritization. Modulations of oscillations in the alpha to beta range in task-relevant sensory regions have been suggested to play an important role for both mechanisms. We adapted a Sternberg task variant to the auditory modality, with a strong or a weak distracting sound presented at a predictable time during the retention period. Using a time-generalized decoding approach, relatively decreased strength of memorized information was found prior to strong distractors, paralleled by decreased pre-distractor alpha/beta power in the left superior temporal gyrus (lSTG). Over the entire group, reduced beta power in lSTG was associated with relatively increased strength of memorized information. The extent of alpha power modulations within participants was negatively correlated with strength of memorized information. Overall, our results are compatible with a prioritization account, but point to nuanced differences between alpha and beta oscillations.
Collapse
Affiliation(s)
- Nathan Weisz
- Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron Universität Salzburg, Salzburg, Austria
| | - Nadine Gabriele Kraft
- Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron Universität Salzburg, Salzburg, Austria
| | - Gianpaolo Demarchi
- Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron Universität Salzburg, Salzburg, Austria
| |
Collapse
|