1
|
Echevarría-Andino ML, Song JY, van Ginkel P, Chen S, Flynn CGK, Keles S, Allen BL, Wellik DM. Generation of Hoxa11-3XFLAG and Hoxd11-3XFLAG alleles to investigate Hox11 genome-wide binding. Dev Biol 2025:S0012-1606(25)00136-8. [PMID: 40389054 DOI: 10.1016/j.ydbio.2025.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 04/13/2025] [Accepted: 05/13/2025] [Indexed: 05/21/2025]
Abstract
Hox genes encode for evolutionary conserved transcription factors that direct the proper development of the body plan. Despite decades of research, little is known regarding their downstream target genes, especially in vertebrates. The strong evolutionary conservation of their DNA-binding homeodomain, their generic AT-rich binding sites, and the lack of specific antibodies has precluded rigorous examination. To circumvent these limitations, we have generated two mouse models in which a 3XFLAG epitope tag has been inserted into the 5' end of the coding sequence of both Hoxa11 and Hoxd11 loci via Cas9/CRISPR. The alleles have been validated by sequencing, PCR genotyping, western blotting, and protein expression analyses, demonstrating proper targeting and expression. Breeding these alleles in combination produces viable and fertile Hoxa11FLAG/FLAG; Hoxd11FLAG/FLAG animals, with no overt patterning defects unlike Hoxa11/Hoxd11 mutants that are infertile and have severe kidney and limb defects. By performing CUT&RUN and CUT&Tag analyses, we have confirmed DNA binding to a known Six2 enhancer in the developing kidney. These novel alleles will allow characterization of the genome-wide binding profile of HoxPG11 proteins in vivo.
Collapse
Affiliation(s)
- Martha L Echevarría-Andino
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Jane Y Song
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Paul van Ginkel
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Shuyang Chen
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Corey G K Flynn
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Sunduz Keles
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, 53706, USA; Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Deneen M Wellik
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
2
|
Brooks ER, Moorman AR, Bhattacharya B, Prudhomme IS, Land M, Alcorn HL, Sharma R, Pe'er D, Zallen JA. A single-cell atlas of spatial and temporal gene expression in the mouse cranial neural plate. eLife 2025; 13:RP102819. [PMID: 40192104 PMCID: PMC11975377 DOI: 10.7554/elife.102819] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
The formation of the mammalian brain requires regionalization and morphogenesis of the cranial neural plate, which transforms from an epithelial sheet into a closed tube that provides the structural foundation for neural patterning and circuit formation. Sonic hedgehog (SHH) signaling is important for cranial neural plate patterning and closure, but the transcriptional changes that give rise to the spatially regulated cell fates and behaviors that build the cranial neural tube have not been systematically analyzed. Here, we used single-cell RNA sequencing to generate an atlas of gene expression at six consecutive stages of cranial neural tube closure in the mouse embryo. Ordering transcriptional profiles relative to the major axes of gene expression predicted spatially regulated expression of 870 genes along the anterior-posterior and mediolateral axes of the cranial neural plate and reproduced known expression patterns with over 85% accuracy. Single-cell RNA sequencing of embryos with activated SHH signaling revealed distinct SHH-regulated transcriptional programs in the developing forebrain, midbrain, and hindbrain, suggesting a complex interplay between anterior-posterior and mediolateral patterning systems. These results define a spatiotemporally resolved map of gene expression during cranial neural tube closure and provide a resource for investigating the transcriptional events that drive early mammalian brain development.
Collapse
Affiliation(s)
- Eric R Brooks
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State UniversityRaleighUnited States
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Andrew R Moorman
- Howard Hughes Medical Institute and Computational and Systems Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Bhaswati Bhattacharya
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Ian S Prudhomme
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Max Land
- Howard Hughes Medical Institute and Computational and Systems Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Heather L Alcorn
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Roshan Sharma
- Howard Hughes Medical Institute and Computational and Systems Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Dana Pe'er
- Howard Hughes Medical Institute and Computational and Systems Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| |
Collapse
|
3
|
Nordin A, Zambanini G, Enar Jonasson M, Weiss T, van de Grift Y, Pagella P, Cantù C. Construction of an atlas of transcription factor binding during mouse development identifies popular regulatory regions. Development 2025; 152:dev204311. [PMID: 40013513 DOI: 10.1242/dev.204311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
Gene regulators physically associate with the genome, in a combinatorial fashion, to drive tissue-specific gene expression. Uncovering the genome-wide activity of all gene regulators across tissues is therefore needed to understand gene regulation during development. Here, we take a first step towards this goal. Using CUT&RUN, we systematically mapped genome-wide binding profiles of key transcription factors and co-factors that mediate ontogenetically relevant signaling pathways in select mouse tissues at two developmental stages. Computation of the datasets unveiled tissue- and time-specific activity for each gene regulator. We identified 'popular' regulatory regions that are bound by a multitude of regulators, which tend to be more evolutionarily conserved. Consistently, they lie near the transcription start site of genes for which dysregulation results in early embryonic lethality. Moreover, the human homologs of these regions are similarly bound by many gene regulators and are highly conserved, indicating a retained relevance for human development. This work constitutes a decisive step towards understanding how the genome is simultaneously read and used by gene regulators in a holistic fashion to drive embryonic development.
Collapse
Affiliation(s)
- Anna Nordin
- Wallenberg Centre for Molecular Medicine, Linköping University, 58185 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden
- Science for Life Laboratory - SciLifeLab, Linköping University, 58185 Linköping, Sweden
| | - Gianluca Zambanini
- Wallenberg Centre for Molecular Medicine, Linköping University, 58185 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden
| | - Mattias Enar Jonasson
- Wallenberg Centre for Molecular Medicine, Linköping University, 58185 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden
| | - Tamina Weiss
- Wallenberg Centre for Molecular Medicine, Linköping University, 58185 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden
- Science for Life Laboratory - SciLifeLab, Linköping University, 58185 Linköping, Sweden
| | - Yorick van de Grift
- Wallenberg Centre for Molecular Medicine, Linköping University, 58185 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden
- Science for Life Laboratory - SciLifeLab, Linköping University, 58185 Linköping, Sweden
| | - Pierfrancesco Pagella
- Wallenberg Centre for Molecular Medicine, Linköping University, 58185 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, 58185 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden
- Science for Life Laboratory - SciLifeLab, Linköping University, 58185 Linköping, Sweden
| |
Collapse
|
4
|
Brooks ER, Moorman AR, Bhattacharya B, Prudhomme IS, Land M, Alcorn HL, Sharma R, Pe’er D, Zallen JA. A single-cell atlas of spatial and temporal gene expression in the mouse cranial neural plate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.25.609458. [PMID: 39229123 PMCID: PMC11370589 DOI: 10.1101/2024.08.25.609458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The formation of the mammalian brain requires regionalization and morphogenesis of the cranial neural plate, which transforms from an epithelial sheet into a closed tube that provides the structural foundation for neural patterning and circuit formation. Sonic hedgehog (SHH) signaling is important for cranial neural plate patterning and closure, but the transcriptional changes that give rise to the spatially regulated cell fates and behaviors that build the cranial neural tube have not been systematically analyzed. Here we used single-cell RNA sequencing to generate an atlas of gene expression at six consecutive stages of cranial neural tube closure in the mouse embryo. Ordering transcriptional profiles relative to the major axes of gene expression predicted spatially regulated expression of 870 genes along the anterior-posterior and mediolateral axes of the cranial neural plate and reproduced known expression patterns with over 85% accuracy. Single-cell RNA sequencing of embryos with activated SHH signaling revealed distinct SHH-regulated transcriptional programs in the developing forebrain, midbrain, and hindbrain, suggesting a complex interplay between anterior-posterior and mediolateral patterning systems. These results define a spatiotemporally resolved map of gene expression during cranial neural tube closure and provide a resource for investigating the transcriptional events that drive early mammalian brain development.
Collapse
Affiliation(s)
- Eric R. Brooks
- HHMI and Developmental Biology Program, Sloan Kettering Institute
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University
| | - Andrew R. Moorman
- HHMI and Computational and Systems Biology Program, Sloan Kettering Institute
| | | | - Ian S. Prudhomme
- HHMI and Developmental Biology Program, Sloan Kettering Institute
| | - Max Land
- HHMI and Computational and Systems Biology Program, Sloan Kettering Institute
| | | | - Roshan Sharma
- HHMI and Computational and Systems Biology Program, Sloan Kettering Institute
| | - Dana Pe’er
- HHMI and Computational and Systems Biology Program, Sloan Kettering Institute
| | | |
Collapse
|
5
|
Brooks EC, Han SJY, Bonatto Paese CL, Lewis AA, Aarnio-Peterson M, Brugmann SA. The ciliary protein C2cd3 is required for mandibular musculoskeletal tissue patterning. Differentiation 2024; 138:100782. [PMID: 38810379 PMCID: PMC11227401 DOI: 10.1016/j.diff.2024.100782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
The mandible is composed of several musculoskeletal tissues including bone, cartilage, and tendon that require precise patterning to ensure structural and functional integrity. Interestingly, most of these tissues are derived from one multipotent cell population called cranial neural crest cells (CNCCs). How CNCCs are properly instructed to differentiate into various tissue types remains nebulous. To better understand the mechanisms necessary for the patterning of mandibular musculoskeletal tissues we utilized the avian mutant talpid2 (ta2) which presents with several malformations of the facial skeleton including dysplastic tendons, mispatterned musculature, and bilateral ectopic cartilaginous processes extending off Meckel's cartilage. We found an ectopic epithelial BMP signaling domain in the ta2 mandibular prominence (MNP) that correlated with the subsequent expansion of SOX9+ cartilage precursors. These findings were validated with conditional murine models suggesting an evolutionarily conserved mechanism for CNCC-derived musculoskeletal patterning. Collectively, these data support a model in which cilia are required to define epithelial signal centers essential for proper musculoskeletal patterning of CNCC-derived mesenchyme.
Collapse
Affiliation(s)
- Evan C Brooks
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA; Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Simon J Y Han
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA; Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA
| | - Christian Louis Bonatto Paese
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA
| | - Amya A Lewis
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA
| | - Megan Aarnio-Peterson
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA
| | - Samantha A Brugmann
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
| |
Collapse
|
6
|
Chen H, Ding Y, Wang Y, Sun Y. The Contribution of Meckel's Cartilage-Derived Type II Collagen-Positive Cells to the Jawbone Development and Repair. J Histochem Cytochem 2024; 72:221554241259059. [PMID: 38836522 PMCID: PMC11179589 DOI: 10.1369/00221554241259059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024] Open
Abstract
Jawbones and long bones, despite their shared skeletal lineage, frequently exhibit distinct origins and developmental pathways. Identifying specific progenitor subsets for mandibular osteogenesis remains challenging. Type II collagen is conventionally associated with cartilaginous structures, yet our investigation has identified the presence of type II collagen positive (Col2+) cells within the jawbone development and regeneration. The role of Col2+ cells in jawbone morphogenesis and repair has remained enigmatic. In this study, we analyze single-cell RNA sequencing data from mice jawbone at embryonic day 10.5. Through fate-mapping experiments, we have elucidated that Col2+ cells and their progeny are instrumental in mandibular osteogenesis across both fetal and postnatal stages. Furthermore, lineage tracing with a tamoxifen-inducible CreER system has established the pivotal role of Col2+ cells, marked by Col2-CreER and originating from the primordial Meckel's cartilage, in jawbone formation. Moreover, our research explored models simulating jawbone defects and tooth extraction, which underscored the osteogenic differentiation capabilities of postnatal Col2+ cells during repair. This finding not only highlights the regenerative potential of Col2+ cells but also suggests their versatility in contributing to skeletal healing and regeneration. In conclusion, our findings position Col2+ cells as essential in orchestrating osteogenesis throughout the continuum of mandibular development and repair.
Collapse
Affiliation(s)
- Hongli Chen
- Department of Oral Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yunpeng Ding
- Department of Oral Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yu Wang
- Department of Oral Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yao Sun
- Department of Oral Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
7
|
Chung E, Deacon P, Hu YC, Lim HW, Park JS. Hedgehog signaling is required for the maintenance of mesenchymal nephron progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.12.553098. [PMID: 37645929 PMCID: PMC10461989 DOI: 10.1101/2023.08.12.553098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Mesenchymal nephron progenitors (mNPs) give rise to all nephron tubules in the mammalian kidney. Since premature depletion of these cells leads to low nephron numbers, high blood pressure, and various renal diseases, it is critical that we understand how mNPs are maintained. While Fgf, Bmp, and Wnt signaling pathways are known to be required for the maintenance of these cells, it is unclear if any other signaling pathways also play roles. In this report, we explored the role of Hedgehog signaling in mNPs. We found that loss of either Shh in the collecting duct or Smo from the nephron lineage resulted in premature depletion of mNPs. Transcriptional profiling of mNPs with different Smo dosages suggested that Hedgehog signaling inhibited Notch signaling and upregulated the expression of Fox transcription factors such as Foxc1 and Foxp4. Consistent with these observations, we found that ectopic expression of Jag1 caused the premature depletion of mNPs as seen in the Smo mutant kidney. We also found that Foxc1 was capable of binding to mitotic condensed chromatin, a feature of a mitotic bookmarking factor. Our study demonstrates a previously unappreciated role of Hedgehog signaling in preventing premature depletion of mNPs by repressing Notch signaling and likely by activating the expression of Fox factors.
Collapse
Affiliation(s)
- Eunah Chung
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- The Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
- Division of Pediatric Urology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Patrick Deacon
- Division of Pediatric Urology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Yueh-Chiang Hu
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Hee-Woong Lim
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Joo-Seop Park
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- The Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
- Division of Pediatric Urology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
8
|
Kanai SM, Clouthier DE. Endothelin signaling in development. Development 2023; 150:dev201786. [PMID: 38078652 PMCID: PMC10753589 DOI: 10.1242/dev.201786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Since the discovery of endothelin 1 (EDN1) in 1988, the role of endothelin ligands and their receptors in the regulation of blood pressure in normal and disease states has been extensively studied. However, endothelin signaling also plays crucial roles in the development of neural crest cell-derived tissues. Mechanisms of endothelin action during neural crest cell maturation have been deciphered using a variety of in vivo and in vitro approaches, with these studies elucidating the basis of human syndromes involving developmental differences resulting from altered endothelin signaling. In this Review, we describe the endothelin pathway and its functions during the development of neural crest-derived tissues. We also summarize how dysregulated endothelin signaling causes developmental differences and how this knowledge may lead to potential treatments for individuals with gene variants in the endothelin pathway.
Collapse
Affiliation(s)
- Stanley M. Kanai
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David E. Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
9
|
Xu J, Iyyanar PPR, Lan Y, Jiang R. Sonic hedgehog signaling in craniofacial development. Differentiation 2023; 133:60-76. [PMID: 37481904 PMCID: PMC10529669 DOI: 10.1016/j.diff.2023.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Mutations in SHH and several other genes encoding components of the Hedgehog signaling pathway have been associated with holoprosencephaly syndromes, with craniofacial anomalies ranging in severity from cyclopia to facial cleft to midfacial and mandibular hypoplasia. Studies in animal models have revealed that SHH signaling plays crucial roles at multiple stages of craniofacial morphogenesis, from cranial neural crest cell survival to growth and patterning of the facial primordia to organogenesis of the palate, mandible, tongue, tooth, and taste bud formation and homeostasis. This article provides a summary of the major findings in studies of the roles of SHH signaling in craniofacial development, with emphasis on recent advances in the understanding of the molecular and cellular mechanisms regulating the SHH signaling pathway activity and those involving SHH signaling in the formation and patterning of craniofacial structures.
Collapse
Affiliation(s)
- Jingyue Xu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| | - Paul P R Iyyanar
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Yu Lan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Departments of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Departments of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
10
|
Elliott KH, Balchand SK, Bonatto Paese CL, Chang CF, Yang Y, Brown KM, Rasicci DT, He H, Thorner K, Chaturvedi P, Murray SA, Chen J, Porollo A, Peterson KA, Brugmann SA. Identification of a heterogeneous and dynamic ciliome during embryonic development and cell differentiation. Development 2023; 150:dev201237. [PMID: 36971348 PMCID: PMC10163354 DOI: 10.1242/dev.201237] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
Primary cilia are nearly ubiquitous organelles that transduce molecular and mechanical signals. Although the basic structure of the cilium and the cadre of genes that contribute to ciliary formation and function (the ciliome) are believed to be evolutionarily conserved, the presentation of ciliopathies with narrow, tissue-specific phenotypes and distinct molecular readouts suggests that an unappreciated heterogeneity exists within this organelle. Here, we provide a searchable transcriptomic resource for a curated primary ciliome, detailing various subgroups of differentially expressed genes within the ciliome that display tissue and temporal specificity. Genes within the differentially expressed ciliome exhibited a lower level of functional constraint across species, suggesting organism and cell-specific function adaptation. The biological relevance of ciliary heterogeneity was functionally validated by using Cas9 gene-editing to disrupt ciliary genes that displayed dynamic gene expression profiles during osteogenic differentiation of multipotent neural crest cells. Collectively, this novel primary cilia-focused resource will allow researchers to explore longstanding questions related to how tissue and cell-type specific functions and ciliary heterogeneity may contribute to the range of phenotypes associated with ciliopathies.
Collapse
Affiliation(s)
- Kelsey H. Elliott
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical, Cincinnati, OH 45229, USA
- University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, OH 45229, USA
| | - Sai K. Balchand
- University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, OH 45229, USA
| | - Christian Louis Bonatto Paese
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical, Cincinnati, OH 45229, USA
- University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, OH 45229, USA
| | - Ching-Fang Chang
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical, Cincinnati, OH 45229, USA
- University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, OH 45229, USA
| | - Yanfen Yang
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical, Cincinnati, OH 45229, USA
- University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, OH 45229, USA
| | - Kari M. Brown
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical, Cincinnati, OH 45229, USA
- University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, OH 45229, USA
| | | | - Hao He
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Konrad Thorner
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical, Cincinnati, OH 45229, USA
| | - Praneet Chaturvedi
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical, Cincinnati, OH 45229, USA
| | | | - Jing Chen
- University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, OH 45229, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical, Cincinnati, OH 45229, USA
| | - Aleksey Porollo
- University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, OH 45229, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical, Cincinnati, OH 45229, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical, Cincinnati, OH 45229, USA
| | | | - Samantha A. Brugmann
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical, Cincinnati, OH 45229, USA
- University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, OH 45229, USA
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
11
|
McLaughlin MT, Sun MR, Beames TG, Steward AC, Theisen JWM, Chung HM, Everson JL, Moskowitz IP, Sheets MD, Lipinski RJ. Frem1 activity is regulated by Sonic hedgehog signaling in the cranial neural crest mesenchyme during midfacial morphogenesis. Dev Dyn 2023; 252:483-494. [PMID: 36495293 PMCID: PMC10066825 DOI: 10.1002/dvdy.555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/01/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Frem1 has been linked to human face shape variation, dysmorphology, and malformation, but little is known about its regulation and biological role in facial development. RESULTS During midfacial morphogenesis in mice, we observed Frem1 expression in the embryonic growth centers that form the median upper lip, nose, and palate. Expansive spatial gradients of Frem1 expression in the cranial neural crest cell (cNCC) mesenchyme of these tissues suggested transcriptional regulation by a secreted morphogen. Accordingly, Frem1 expression paralleled that of the conserved Sonic Hedgehog (Shh) target gene Gli1 in the cNCC mesenchyme. Suggesting direct transcriptional regulation by Shh signaling, we found that Frem1 expression is induced by SHH ligand stimulation or downstream pathway activation in cNCCs and observed GLI transcription factor binding at the Frem1 transcriptional start site during midfacial morphogenesis. Finally, we found that FREM1 is sufficient to induce cNCC proliferation in a concentration-dependent manner and that Shh pathway antagonism reduces Frem1 expression during pathogenesis of midfacial hypoplasia. CONCLUSIONS By demonstrating that the Shh signaling pathway regulates Frem1 expression in cNCCs, these findings provide novel insight into the mechanisms underlying variation in midfacial morphogenesis.
Collapse
Affiliation(s)
- Matthew T. McLaughlin
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Miranda R. Sun
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Tyler G. Beames
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Austin C. Steward
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Joshua W. M. Theisen
- Department of Pediatrics, Pathology, Human Genetics and Genetic Medicine, The University of Chicago, Chicago, IL, United States
| | - Hannah M. Chung
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Joshua L. Everson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Ivan P. Moskowitz
- Department of Pediatrics, Pathology, Human Genetics and Genetic Medicine, The University of Chicago, Chicago, IL, United States
| | - Michael D. Sheets
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Robert J. Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
12
|
Lex RK, Vokes SA. Timing is everything: Transcriptional repression is not the default mode for regulating Hedgehog signaling. Bioessays 2022; 44:e2200139. [PMID: 36251875 PMCID: PMC9691524 DOI: 10.1002/bies.202200139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022]
Abstract
Hedgehog (HH) signaling is a conserved pathway that drives developmental growth and is essential for the formation of most organs. The expression of HH target genes is regulated by a dual switch mechanism where GLI proteins function as bifunctional transcriptional activators (in the presence of HH signaling) and transcriptional repressors (in the absence of HH signaling). This results in a tight control of GLI target gene expression during rapidly changing levels of pathway activity. It has long been presumed that GLI proteins also repress target genes prior to the initial expression of HH in a given tissue. This idea forms the basis for the limb bud pre-patterning model for regulating digit number. Recent findings indicate that GLI repressor proteins are indeed present prior to HH signaling but contrary to this model, GLI proteins are inert as they do not regulate transcriptional responses or enhancer chromatin modifications at this time. These findings suggest that GLI transcriptional repressor activity is not a default state as assumed, but is itself regulated in an unknown fashion. We discuss these findings and their implications for understanding pre-patterning, digit regulation, and HH-driven disease.
Collapse
Affiliation(s)
- Rachel K. Lex
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109 USA
| | - Steven A. Vokes
- Department of Molecular Bioscienc es, University of Texas at Austin, 100 E 24th Street Stop A5000, Austin, TX 78712 USA
| |
Collapse
|
13
|
Paulissen E, Martin BL. Myogenic regulatory factors Myod and Myf5 are required for dorsal aorta formation and angiogenic sprouting. Dev Biol 2022; 490:134-143. [PMID: 35917935 DOI: 10.1016/j.ydbio.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/14/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022]
Abstract
The vertebrate embryonic midline vasculature forms in close proximity to the developing skeletal muscle, which originates in the somites. Angioblasts migrate from bilateral positions along the ventral edge of the somites until they meet at the midline, where they sort and differentiate into the dorsal aorta and the cardinal vein. This migration occurs at the same time that myoblasts in the somites are beginning to differentiate into skeletal muscle, a process which requires the activity of the basic helix loop helix (bHLH) transcription factors Myod and Myf5. Here we examined vasculature formation in myod and myf5 mutant zebrafish. In the absence of skeletal myogenesis, angioblasts migrate normally to the midline but form only the cardinal vein and not the dorsal aorta. The phenotype is due to the failure to activate vascular endothelial growth factor ligand vegfaa expression in the somites, which in turn is required in the adjacent angioblasts for dorsal aorta specification. Myod and Myf5 cooperate with Hedgehog signaling to activate and later maintain vegfaa expression in the medial somites, which is required for angiogenic sprouting from the dorsal aorta. Our work reveals that the early embryonic skeletal musculature in teleosts evolved to organize the midline vasculature during development.
Collapse
Affiliation(s)
- Eric Paulissen
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5215, United States
| | - Benjamin L Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5215, United States.
| |
Collapse
|
14
|
GLI transcriptional repression is inert prior to Hedgehog pathway activation. Nat Commun 2022; 13:808. [PMID: 35145123 PMCID: PMC8831537 DOI: 10.1038/s41467-022-28485-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/28/2022] [Indexed: 12/28/2022] Open
Abstract
The Hedgehog (HH) pathway regulates a spectrum of developmental processes through the transcriptional mediation of GLI proteins. GLI repressors control tissue patterning by preventing sub-threshold activation of HH target genes, presumably even before HH induction, while lack of GLI repression activates most targets. Despite GLI repression being central to HH regulation, it is unknown when it first becomes established in HH-responsive tissues. Here, we investigate whether GLI3 prevents precocious gene expression during limb development. Contrary to current dogma, we find that GLI3 is inert prior to HH signaling. While GLI3 binds to most targets, loss of Gli3 does not increase target gene expression, enhancer acetylation or accessibility, as it does post-HH signaling. Furthermore, GLI repression is established independently of HH signaling, but after its onset. Collectively, these surprising results challenge current GLI pre-patterning models and demonstrate that GLI repression is not a default state for the HH pathway. GLI repression has been presumed to be the default transcriptional state and important for pre-patterning tissues. Challenging current models, the authors show that GLI3 repression is inert in the limb bud before the onset of Hedgehog signaling.
Collapse
|
15
|
Bonatto Paese CL, Brooks EC, Aarnio-Peterson M, Brugmann SA. Ciliopathic micrognathia is caused by aberrant skeletal differentiation and remodeling. Development 2021; 148:148/4/dev194175. [PMID: 33589509 DOI: 10.1242/dev.194175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
Ciliopathies represent a growing class of diseases caused by defects in microtubule-based organelles called primary cilia. Approximately 30% of ciliopathies are characterized by craniofacial phenotypes such as craniosynostosis, cleft lip/palate and micrognathia. Patients with ciliopathic micrognathia experience a particular set of difficulties, including impaired feeding and breathing, and have extremely limited treatment options. To understand the cellular and molecular basis for ciliopathic micrognathia, we used the talpid2 (ta2 ), a bona fide avian model for the human ciliopathy oral-facial-digital syndrome subtype 14. Histological analyses revealed that the onset of ciliopathic micrognathia in ta2 embryos occurred at the earliest stages of mandibular development. Neural crest-derived skeletal progenitor cells were particularly sensitive to a ciliopathic insult, undergoing unchecked passage through the cell cycle and subsequent increased proliferation. Furthermore, whereas neural crest-derived skeletal differentiation was initiated, osteoblast maturation failed to progress to completion. Additional molecular analyses revealed that an imbalance in the ratio of bone deposition and resorption also contributed to ciliopathic micrognathia in ta2 embryos. Thus, our results suggest that ciliopathic micrognathia is a consequence of multiple aberrant cellular processes necessary for skeletal development, and provide potential avenues for future therapeutic treatments.
Collapse
Affiliation(s)
- Christian Louis Bonatto Paese
- Division of Developmental Biology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Evan C Brooks
- Division of Developmental Biology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Megan Aarnio-Peterson
- Division of Developmental Biology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Samantha A Brugmann
- Division of Developmental Biology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA .,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Shriners Children's Hospital, Cincinnati, OH 45229, USA
| |
Collapse
|