1
|
Alalam H, Šafhauzer M, Sunnerhagen P. New reporters for monitoring cellular NMD. RNA (NEW YORK, N.Y.) 2025; 31:600-611. [PMID: 39880586 PMCID: PMC11912909 DOI: 10.1261/rna.080272.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
Nonsense-mediated decay (NMD) is a eukaryotic surveillance pathway that controls degradation of cytoplasmic transcripts with aberrant features. NMD-controlled RNA degradation acts to regulate a large fraction of the mRNA population. It has been implicated in cellular responses to infections and environmental stress, as well as in deregulation of tumor-promoting genes. NMD is executed by a set of three core factors conserved in evolution, UPF1-3, as well as additional influencing proteins such as kinases. Monitoring NMD activity is challenging due to the difficulties in quantitating RNA decay rates in vivo, and consequently, it has also been problematic to identify new factors influencing NMD. Here, we developed a genetic selection system in yeast to capture new components affecting NMD status. The reporter constructs link NMD target sequences with nutrient-selectable genetic markers. By crossing these reporters into a genome-wide library of deletion mutants and quantitating colony growth on a selective medium, we robustly detect previously known NMD components in a high-throughput fashion. In addition, we identify novel mutations influencing NMD status and implicate ribosome recycling as important for NMD. By using our constructed combinations of promoters, NMD target sequences, and selectable markers, the system can also efficiently detect mutations with a minor effect, or in special environments. Furthermore, it can be used to explore how NMD acts on targets of different structures.
Collapse
Affiliation(s)
- Hanna Alalam
- Department of Chemistry and Molecular Biology, University of Gothenburg, 413 90 Göteborg, Sweden
| | - Monika Šafhauzer
- Department of Chemistry and Molecular Biology, University of Gothenburg, 413 90 Göteborg, Sweden
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, 413 90 Göteborg, Sweden
| |
Collapse
|
2
|
Das R, Panigrahi GK. Messenger RNA Surveillance: Current Understanding, Regulatory Mechanisms, and Future Implications. Mol Biotechnol 2025; 67:393-409. [PMID: 38411790 DOI: 10.1007/s12033-024-01062-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/02/2024] [Indexed: 02/28/2024]
Abstract
Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved surveillance mechanism in eukaryotes primarily deployed to ensure RNA quality control by eliminating aberrant transcripts and also involved in modulating the expression of several physiological transcripts. NMD, the mRNA surveillance pathway, is a major form of gene regulation in eukaryotes. NMD serves as one of the most significant quality control mechanisms as it primarily scans the newly synthesized transcripts and differentiates the aberrant and non-aberrant transcripts. The synthesis of truncated proteins is restricted, which would otherwise lead to cellular dysfunctions. The up-frameshift factors (UPFs) play a central role in executing the NMD event, largely by recognizing and recruiting multiple protein factors that result in the decay of non-physiological mRNAs. NMD exhibits astounding variability in its ability across eukaryotes in an array of pathological and physiological contexts. The detailed understanding of NMD and the underlying molecular mechanisms remains blurred. This review outlines our current understanding of NMD, in regulating multifaceted cellular events during development and disease. It also attempts to identify unanswered questions that deserve further investigation.
Collapse
Affiliation(s)
- Rutupurna Das
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Jatni, Khordha, Odisha, India
| | - Gagan Kumar Panigrahi
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Jatni, Khordha, Odisha, India.
| |
Collapse
|
3
|
Dowdle ME, Lykke-Andersen J. Cytoplasmic mRNA decay and quality control machineries in eukaryotes. Nat Rev Genet 2025:10.1038/s41576-024-00810-1. [PMID: 39870755 DOI: 10.1038/s41576-024-00810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 01/29/2025]
Abstract
mRNA degradation pathways have key regulatory roles in gene expression. The intrinsic stability of mRNAs in the cytoplasm of eukaryotic cells varies widely in a gene- and isoform-dependent manner and can be regulated by cellular cues, such as kinase signalling, to control mRNA levels and spatiotemporal dynamics of gene expression. Moreover, specialized quality control pathways exist to rid cells of non-functional mRNAs produced by errors in mRNA processing or mRNA damage that negatively impact translation. Recent advances in structural, single-molecule and genome-wide methods have provided new insights into the central machineries that carry out mRNA turnover, the mechanisms by which mRNAs are targeted for degradation and the general principles that govern mRNA stability at a global level. This improved understanding of mRNA degradation in the cytoplasm of eukaryotic cells is finding practical applications in the design of therapeutic mRNAs.
Collapse
Affiliation(s)
- Megan E Dowdle
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Jens Lykke-Andersen
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Behera A, Panigrahi GK, Sahoo A. Nonsense-Mediated mRNA Decay in Human Health and Diseases: Current Understanding, Regulatory Mechanisms and Future Perspectives. Mol Biotechnol 2024:10.1007/s12033-024-01267-7. [PMID: 39264527 DOI: 10.1007/s12033-024-01267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/24/2024] [Indexed: 09/13/2024]
Abstract
Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism that is conserved across all eukaryotes ensuring the quality of transcripts by targeting messenger RNA (mRNA) harbouring premature stop codons. It regulates the gene expression by targeting aberrant mRNA carrying pre-termination codons (PTCs) and eliminates C-terminal truncated proteins. NMD distinguishes aberrant and non-aberrant transcript by looking after long 3' UTRs and exon-junction complex (EJC) downstream of stop codon that indicate the presence of PTC. Therefore, NMD modulates cellular surveillance and eliminates the truncated proteins but if the PTC escapes the surveillance pathway it can lead to potential negative phenotype resulting in genetic diseases. The alternative splicing also contributes in formation of NMD-sensitive isoforms by introducing PTC. NMD plays a complex role in cancer, it can either aggravate or downregulates the tumour. Some tumours agitate NMD to deteriorate mRNAs encoding tumour suppressor proteins, stress response proteins and neoantigens. In other case, tumours suppress the NMD to encourage the expression of oncoproteins for tumour growth and survival. This mechanism augmented in the development of new therapeutics by PTC read-through mechanism and personalized medicine. Detailed studies on NMD surveillance will possibly lead towards development of strategies for improving human health aligning with United Nations sustainable development goals (SDG 3: Good health and well-being). The potential therapeutic applications of NMD pose a challenge in terms of safe and effective modulation. Understanding the complexities of NMD regulation and its interaction with other cellular processes can lead to the development of new interventions for various diseases.
Collapse
Affiliation(s)
- Amrita Behera
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Jatni, Khordha, Odisha, India
| | - Gagan Kumar Panigrahi
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Jatni, Khordha, Odisha, India.
| | - Annapurna Sahoo
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Jatni, Khordha, Odisha, India.
| |
Collapse
|
5
|
Zeng W, Lin J, Xie J, Fu Y, Lin Y, Chen T, Li B, Yu X, Chen W, Jiang D, Cheng J. RNA-dependent RNA polymerases regulate ascospore discharge through the exonic-sRNA-mediated RNAi pathway. mBio 2024; 15:e0037724. [PMID: 38752738 PMCID: PMC11237814 DOI: 10.1128/mbio.00377-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/10/2024] [Indexed: 06/13/2024] Open
Abstract
Ascospores, forcibly released into the air from perithecia, are the primary inoculum for Fusarium head blight. In Fusarium graminearum, the biological functions of four RNA-dependent RNA polymerases (RdRPs) (Fgrdrp1-4) have been reported, but their regulatory mechanisms are poorly understood and the function of Fgrdrp5 is still unknown. In this study, we found that in addition to Fgrdrp1 and Fgrdrp2, Fgrdrp5 also plays an important role in ascospore discharge, and they all participate in the generation of turgor pressure in a polyol-dependent manner. Moreover, these three genes all affect the maturation of ascospores. Deep sequencing and co-analysis of small RNA and mRNA certified that Fgrdrp1, Fgrdrp2, and Fgrdrp5 partly share their functions in the biogenesis and accumulation of exonic small interference RNA (ex-siRNA), and these three RdRPs negatively regulate the expression levels of ex-siRNA corresponding genes, including certain genes associated with ascospore development or discharge. Furthermore, the differentially expressed genes of deletion mutants, those involved in lipid and sugar metabolism or transport as well as sexual development-related transcription factors, may also contribute to the defects in ascospore maturation or ascospore discharge. In conclusion, our study suggested that the components of the dicer-dependent ex-siRNA-mediated RNA interference pathway include at least Fgrdrp1, Fgrdrp2, and Fgrdrp5. IMPORTANCE We found that in addition to Fgrdrp1 and Fgrdrp2, Fgrdrp5 also plays important roles in ascospore maturation and ascospore discharge of Fusarium graminearum. These three RNA-dependent RNA polymerases participate in the biogenesis and accumulation of exonic small interference RNA and then regulate ascospore discharge.
Collapse
Affiliation(s)
- Wenping Zeng
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, China
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Jing Lin
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiatao Xie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tao Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bo Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiao Yu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weidong Chen
- USA Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, Washington, USA
| | - Daohong Jiang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiasen Cheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Chapman JH, Youle AM, Grimme AL, Neuman K, Hogg J. UPF1 ATPase autoinhibition and activation modulate RNA binding kinetics and NMD efficiency. Nucleic Acids Res 2024; 52:5376-5391. [PMID: 38412299 PMCID: PMC11109973 DOI: 10.1093/nar/gkae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 02/29/2024] Open
Abstract
The RNA helicase UPF1 interacts with mRNAs, mRNA decay machinery, and the terminating ribosome to promote nonsense-mediated mRNA decay (NMD). Structural and biochemical data have revealed that UPF1 exists in an enzymatically autoinhibited 'closed' state. Upon binding the NMD protein UPF2, UPF1 undergoes an extensive conformational change into a more enzymatically active 'open' state, which exhibits enhanced ATPase and helicase activity. However, mechanically deficient UPF1 mutants (i.e. poorly processive, slow, and mechanochemically uncoupled) can support efficient NMD, bringing into question the roles of UPF1 enzymatic autoinhibition and activation in NMD. Here, we identify two additional important features of the activated open state: slower RNA binding kinetics and enhanced ATP-stimulated RNA dissociation kinetics. Computational modeling based on empirical measurements of UPF1, UPF2 and RNA interaction kinetics predicts that the majority of UPF1-RNA binding and dissociation events in cells occur independently of UPF2 binding. We find that UPF1 mutants with either reduced or accelerated dissociation from RNA have NMD defects, whereas UPF1 mutants that are more dependent on UPF2 for catalytic activity remain active on well-established NMD targets. These findings support a model in which the kinetics of UPF1-mRNA interactions are important determinants of cellular NMD efficiency.
Collapse
Affiliation(s)
- Joseph H Chapman
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alice M Youle
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Acadia L Grimme
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keir C Neuman
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - J Robert Hogg
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Andjus S, Szachnowski U, Vogt N, Gioftsidi S, Hatin I, Cornu D, Papadopoulos C, Lopes A, Namy O, Wery M, Morillon A. Pervasive translation of Xrn1-sensitive unstable long noncoding RNAs in yeast. RNA (NEW YORK, N.Y.) 2024; 30:662-679. [PMID: 38443115 PMCID: PMC11098462 DOI: 10.1261/rna.079903.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/15/2024] [Indexed: 03/07/2024]
Abstract
Despite being predicted to lack coding potential, cytoplasmic long noncoding (lnc)RNAs can associate with ribosomes. However, the landscape and biological relevance of lncRNA translation remain poorly studied. In yeast, cytoplasmic Xrn1-sensitive unstable transcripts (XUTs) are targeted by nonsense-mediated mRNA decay (NMD), suggesting a translation-dependent degradation process. Here, we report that XUTs are pervasively translated, which impacts their decay. We show that XUTs globally accumulate upon translation elongation inhibition, but not when initial ribosome loading is impaired. Ribo-seq confirmed ribosomes binding to XUTs and identified ribosome-associated 5'-proximal small ORFs. Mechanistically, the NMD-sensitivity of XUTs mainly depends on the 3'-untranslated region length. Finally, we show that the peptide resulting from the translation of an NMD-sensitive XUT reporter exists in NMD-competent cells. Our work highlights the role of translation in the posttranscriptional metabolism of XUTs. We propose that XUT-derived peptides could be exposed to natural selection, while NMD restricts XUT levels.
Collapse
Affiliation(s)
- Sara Andjus
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, PSL University, Sorbonne Université, CNRS UMR3244, F-75248 Paris Cedex 05, France
| | - Ugo Szachnowski
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne Université, CNRS UMR3244, F-75248 Paris Cedex 05, France
| | - Nicolas Vogt
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne Université, CNRS UMR3244, F-75248 Paris Cedex 05, France
| | - Stamatia Gioftsidi
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne Université, CNRS UMR3244, F-75248 Paris Cedex 05, France
| | - Isabelle Hatin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - David Cornu
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Chris Papadopoulos
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Anne Lopes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Olivier Namy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Maxime Wery
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne Université, CNRS UMR3244, F-75248 Paris Cedex 05, France
| | - Antonin Morillon
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne Université, CNRS UMR3244, F-75248 Paris Cedex 05, France
| |
Collapse
|
8
|
Bell RT, Sahakyan H, Makarova KS, Wolf YI, Koonin EV. CoCoNuTs: A diverse subclass of Type IV restriction systems predicted to target RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.31.551357. [PMID: 37790407 PMCID: PMC10542128 DOI: 10.1101/2023.07.31.551357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote CoCoNuTs (coiled-coil nuclease tandems) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with 3 distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.
Collapse
Affiliation(s)
- Ryan T. Bell
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Harutyun Sahakyan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
9
|
Chapman JH, Youle AM, Grimme AL, Neuman KC, Hogg JR. UPF1 ATPase autoinhibition and activation modulate RNA binding kinetics and NMD efficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565554. [PMID: 38076847 PMCID: PMC10705565 DOI: 10.1101/2023.11.03.565554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The RNA helicase UPF1 interacts with mRNAs, mRNA decay machinery, and the terminating ribosome to promote nonsense-mediated mRNA decay (NMD). Structural and biochemical data have revealed that UPF1 exists in an enzymatically autoinhibited "closed" state. Upon binding the NMD protein UPF2, UPF1 undergoes an extensive conformational change into a more enzymatically active "open" state, which exhibits enhanced ATPase and helicase activity. However, mechanically deficient UPF1 mutants can support efficient NMD, bringing into question the roles of UPF1 enzymatic autoinhibition and activation in NMD. Here, we identify two additional important features of the activated open state: slower nucleic acid binding kinetics and enhanced ATP-stimulated nucleic acid dissociation kinetics. Computational modeling based on empirical measurements of UPF1, UPF2, and RNA interaction kinetics predicts that the majority of UPF1-RNA binding and dissociation events in cells occur independently of UPF2 binding. We find that UPF1 mutants with either reduced or accelerated dissociation from RNA have NMD defects, whereas UPF1 mutants that are more dependent on UPF2 for catalytic activity remain active on well-established NMD targets. These findings support a model in which the kinetics of UPF1-mRNA interactions are important determinants of cellular NMD efficiency.
Collapse
Affiliation(s)
- Joseph H. Chapman
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Alice M. Youle
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Acadia L. Grimme
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Keir C. Neuman
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - J. Robert Hogg
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| |
Collapse
|
10
|
Sun L, Mailliot J, Schaffitzel C. Nonsense-Mediated mRNA Decay Factor Functions in Human Health and Disease. Biomedicines 2023; 11:722. [PMID: 36979701 PMCID: PMC10045457 DOI: 10.3390/biomedicines11030722] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a cellular surveillance mechanism that degrades mRNAs with a premature stop codon, avoiding the synthesis of C-terminally truncated proteins. In addition to faulty mRNAs, NMD recognises ~10% of endogenous transcripts in human cells and downregulates their expression. The up-frameshift proteins are core NMD factors and are conserved from yeast to human in structure and function. In mammals, NMD diversified into different pathways that target different mRNAs employing additional NMD factors. Here, we review our current understanding of molecular mechanisms and cellular roles of NMD pathways and the involvement of more specialised NMD factors. We describe the consequences of mutations in NMD factors leading to neurodevelopmental diseases, and the role of NMD in cancer. We highlight strategies of RNA viruses to evade recognition and decay by the NMD machinery.
Collapse
Affiliation(s)
- Lingling Sun
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Justine Mailliot
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
- Bristol Engineering Biology Centre BrisEngBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| |
Collapse
|
11
|
Ganesan R, Mangkalaphiban K, Baker RE, He F, Jacobson A. Ribosome-bound Upf1 forms distinct 80S complexes and conducts mRNA surveillance. RNA (NEW YORK, N.Y.) 2022; 28:1621-1642. [PMID: 36192133 PMCID: PMC9670811 DOI: 10.1261/rna.079416.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Upf1, Upf2, and Upf3, the central regulators of nonsense-mediated mRNA decay (NMD), appear to exercise their NMD functions while bound to elongating ribosomes, and evidence for this conclusion is particularly compelling for Upf1. Hence, we used selective profiling of yeast Upf1:ribosome association to define that step in greater detail, understand whether the nature of the mRNA being translated influences Upf1:80S interaction, and elucidate the functions of ribosome-associated Upf1. Our approach has allowed us to clarify the timing and specificity of Upf1 association with translating ribosomes, obtain evidence for a Upf1 mRNA surveillance function that precedes the activation of NMD, identify a unique ribosome state that generates 37-43 nt ribosome footprints whose accumulation is dependent on Upf1's ATPase activity, and demonstrate that a mutated form of Upf1 can interfere with normal translation termination and ribosome release. In addition, our results strongly support the existence of at least two distinct functional Upf1 complexes in the NMD pathway.
Collapse
Affiliation(s)
- Robin Ganesan
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts 01655, USA
| | - Kotchaphorn Mangkalaphiban
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts 01655, USA
| | - Richard E Baker
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts 01655, USA
| | - Feng He
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts 01655, USA
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts 01655, USA
| |
Collapse
|
12
|
Chapman JH, Craig JM, Wang CD, Gundlach JH, Neuman K, Hogg J. UPF1 mutants with intact ATPase but deficient helicase activities promote efficient nonsense-mediated mRNA decay. Nucleic Acids Res 2022; 50:11876-11894. [PMID: 36370101 PMCID: PMC9723629 DOI: 10.1093/nar/gkac1026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/12/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
Abstract
The conserved RNA helicase UPF1 coordinates nonsense-mediated mRNA decay (NMD) by engaging with mRNAs, RNA decay machinery and the terminating ribosome. UPF1 ATPase activity is implicated in mRNA target discrimination and completion of decay, but the mechanisms through which UPF1 enzymatic activities such as helicase, translocase, RNP remodeling, and ATPase-stimulated dissociation influence NMD remain poorly defined. Using high-throughput biochemical assays to quantify UPF1 enzymatic activities, we show that UPF1 is only moderately processive (<200 nt) in physiological contexts and undergoes ATPase-stimulated dissociation from RNA. We combine an in silico screen with these assays to identify and characterize known and novel UPF1 mutants with altered helicase, ATPase, and RNA binding properties. We find that UPF1 mutants with substantially impaired processivity (E797R, G619K/A546H), faster (G619K) or slower (K547P, E797R, G619K/A546H) unwinding rates, and/or reduced mechanochemical coupling (i.e. the ability to harness ATP hydrolysis for work; K547P, R549S, G619K, G619K/A546H) can still support efficient NMD of well-characterized targets in human cells. These data are consistent with a central role for UPF1 ATPase activity in driving cycles of RNA binding and dissociation to ensure accurate NMD target selection.
Collapse
Affiliation(s)
- Joseph H Chapman
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan M Craig
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Clara D Wang
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jens H Gundlach
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Keir C Neuman
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - J Robert Hogg
- To whom correspondence should be addressed. Tel: +1 301 827 0724; Fax: +1 301 451 5459;
| |
Collapse
|
13
|
Kim JH, Modena MS, Sehgal E, Courney A, Neudorf C, Arribere J. SMG-6 mRNA cleavage stalls ribosomes near premature stop codons in vivo. Nucleic Acids Res 2022; 50:8852-8866. [PMID: 35950494 PMCID: PMC9410879 DOI: 10.1093/nar/gkac681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 07/26/2022] [Indexed: 12/24/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) protects cells from the toxic and potentially dominant effects of truncated proteins. Targeting of mRNAs with early stop codons is mediated by the ribosome and spatiotemporally aligned with translation termination. Previously we identified a novel NMD intermediate: ribosomes stalled on cleaved stop codons, raising the possibility that NMD begins even prior to ribosome removal from the stop codon. Here we show that this intermediate is the result of mRNA cleavage by the endonuclease SMG-6. Our work supports a model in which ribosomes stall secondary to SMG-6 mRNA cleavage in Caenorhabditis elegans and humans, i.e. that the novel NMD intermediate occurs after a prior ribosome elicits NMD. Our genetic analysis of C. elegans' SMG-6 supports a central role for SMG-6 in metazoan NMD, and provides a context for evaluating its function in other metazoans.
Collapse
Affiliation(s)
- John H Kim
- Department of MCD Biology, UC Santa Cruz, California, USA
| | | | - Enisha Sehgal
- Department of MCD Biology, UC Santa Cruz, California, USA
| | - Annie Courney
- Department of MCD Biology, UC Santa Cruz, California, USA
| | - Celine W Neudorf
- Department of Biomolecular Engineering, UC Santa Cruz, California, USA
| | | |
Collapse
|
14
|
Mailliot J, Vivoli-Vega M, Schaffitzel C. No-nonsense: insights into the functional interplay of nonsense-mediated mRNA decay factors. Biochem J 2022; 479:973-993. [PMID: 35551602 PMCID: PMC9162471 DOI: 10.1042/bcj20210556] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022]
Abstract
Nonsense-mediated messenger RNA decay (NMD) represents one of the main surveillance pathways used by eukaryotic cells to control the quality and abundance of mRNAs and to degrade viral RNA. NMD recognises mRNAs with a premature termination codon (PTC) and targets them to decay. Markers for a mRNA with a PTC, and thus NMD, are a long a 3'-untranslated region and the presence of an exon-junction complex (EJC) downstream of the stop codon. Here, we review our structural understanding of mammalian NMD factors and their functional interplay leading to a branched network of different interconnected but specialised mRNA decay pathways. We discuss recent insights into the potential impact of EJC composition on NMD pathway choice. We highlight the coexistence and function of different isoforms of up-frameshift protein 1 (UPF1) with an emphasis of their role at the endoplasmic reticulum and during stress, and the role of the paralogs UPF3B and UPF3A, underscoring that gene regulation by mammalian NMD is tightly controlled and context-dependent being conditional on developmental stage, tissue and cell types.
Collapse
Affiliation(s)
- Justine Mailliot
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - Mirella Vivoli-Vega
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, U.K
| |
Collapse
|
15
|
Shirokikh NE. Translation complex stabilization on messenger RNA and footprint profiling to study the RNA responses and dynamics of protein biosynthesis in the cells. Crit Rev Biochem Mol Biol 2021; 57:261-304. [PMID: 34852690 DOI: 10.1080/10409238.2021.2006599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
During protein biosynthesis, ribosomes bind to messenger (m)RNA, locate its protein-coding information, and translate the nucleotide triplets sequentially as codons into the corresponding sequence of amino acids, forming proteins. Non-coding mRNA features, such as 5' and 3' untranslated regions (UTRs), start sites or stop codons of different efficiency, stretches of slower or faster code and nascent polypeptide interactions can alter the translation rates transcript-wise. Most of the homeostatic and signal response pathways of the cells converge on individual mRNA control, as well as alter the global translation output. Among the multitude of approaches to study translational control, one of the most powerful is to infer the locations of translational complexes on mRNA based on the mRNA fragments protected by these complexes from endonucleolytic hydrolysis, or footprints. Translation complex profiling by high-throughput sequencing of the footprints allows to quantify the transcript-wise, as well as global, alterations of translation, and uncover the underlying control mechanisms by attributing footprint locations and sizes to different configurations of the translational complexes. The accuracy of all footprint profiling approaches critically depends on the fidelity of footprint generation and many methods have emerged to preserve certain or multiple configurations of the translational complexes, often in challenging biological material. In this review, a systematic summary of approaches to stabilize translational complexes on mRNA for footprinting is presented and major findings are discussed. Future directions of translation footprint profiling are outlined, focusing on the fidelity and accuracy of inference of the native in vivo translation complex distribution on mRNA.
Collapse
Affiliation(s)
- Nikolay E Shirokikh
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
16
|
Lu YY, Krebber H. Nuclear mRNA Quality Control and Cytoplasmic NMD Are Linked by the Guard Proteins Gbp2 and Hrb1. Int J Mol Sci 2021; 22:ijms222011275. [PMID: 34681934 PMCID: PMC8541090 DOI: 10.3390/ijms222011275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 12/23/2022] Open
Abstract
Pre-mRNA splicing is critical for cells, as defects in this process can lead to altered open reading frames and defective proteins, potentially causing neurodegenerative diseases and cancer. Introns are removed in the nucleus and splicing is documented by the addition of exon-junction-complexes (EJCs) at exon-exon boundaries. This “memory” of splicing events is important for the ribosome, which translates the RNAs in the cytoplasm. In case a stop codon was detected before an EJC, translation is blocked and the RNA is eliminated by the nonsense-mediated decay (NMD). In the model organism Saccharomyces cerevisiae, two guard proteins, Gbp2 and Hrb1, have been identified as nuclear quality control factors for splicing. In their absence, intron-containing mRNAs leak into the cytoplasm. Their presence retains transcripts until the process is completed and they release the mRNAs by recruitment of the export factor Mex67. On transcripts that experience splicing problems, these guard proteins recruit the nuclear RNA degradation machinery. Interestingly, they continue their quality control function on exported transcripts. They support NMD by inhibiting translation and recruiting the cytoplasmic degradation factors. In this way, they link the nuclear and cytoplasmic quality control systems. These discoveries are also intriguing for humans, as homologues of these guard proteins are present also in multicellular organisms. Here, we provide an overview of the quality control mechanisms of pre-mRNA splicing, and present Gbp2 and Hrb1, as well as their human counterparts, as important players in these pathways.
Collapse
|
17
|
Andjus S, Morillon A, Wery M. From Yeast to Mammals, the Nonsense-Mediated mRNA Decay as a Master Regulator of Long Non-Coding RNAs Functional Trajectory. Noncoding RNA 2021; 7:ncrna7030044. [PMID: 34449682 PMCID: PMC8395947 DOI: 10.3390/ncrna7030044] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 12/22/2022] Open
Abstract
The Nonsense-Mediated mRNA Decay (NMD) has been classically viewed as a translation-dependent RNA surveillance pathway degrading aberrant mRNAs containing premature stop codons. However, it is now clear that mRNA quality control represents only one face of the multiple functions of NMD. Indeed, NMD also regulates the physiological expression of normal mRNAs, and more surprisingly, of long non-coding (lnc)RNAs. Here, we review the different mechanisms of NMD activation in yeast and mammals, and we discuss the molecular bases of the NMD sensitivity of lncRNAs, considering the functional roles of NMD and of translation in the metabolism of these transcripts. In this regard, we describe several examples of functional micropeptides produced from lncRNAs. We propose that translation and NMD provide potent means to regulate the expression of lncRNAs, which might be critical for the cell to respond to environmental changes.
Collapse
Affiliation(s)
- Sara Andjus
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, PSL University, Sorbonne Université, CNRS UMR3244, 26 Rue d’Ulm, CEDEX 05, F-75248 Paris, France;
| | - Antonin Morillon
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne Université, CNRS UMR3244, 26 Rue d’Ulm, CEDEX 05, F-75248 Paris, France
- Correspondence: (A.M.); (M.W.)
| | - Maxime Wery
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne Université, CNRS UMR3244, 26 Rue d’Ulm, CEDEX 05, F-75248 Paris, France
- Correspondence: (A.M.); (M.W.)
| |
Collapse
|