1
|
Karpouzas GA, Ormseth SR, Van Riel P, Myasoedova E, Gonzalez-Gay MA, Corrales A, Rantapaa-Dahlqvist S, Sfikakis P, Dessein P, Hitchon CA, Pascual-Ramos V, Yanez IC, Colunga-Pedraza IJ, Galarza-Delgado DA, Azpiri-Lopez J, Semb AG, Misra DP, Kitas GD, Hauge EM. Methotrexate associates with ischemic cardiovascular risk reduction in males but not females: a transatlantic cardiovascular consortium for people with rheumatoid arthritis observational study. Rheumatol Int 2025; 45:106. [PMID: 40249410 DOI: 10.1007/s00296-025-05838-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/18/2025] [Indexed: 04/19/2025]
Abstract
OBJECTIVE Patients with rheumatoid arthritis (RA) experience higher cardiovascular risk. Methotrexate may decrease this risk, although it is unclear whether males and females similarly benefit. We explored the influence of sex on the effect of methotrexate use on cardiovascular risk in RA. METHODS An observational cohort of 4362 patients, 3223 (73.9%) females, without cardiovascular disease were included from an international cardiovascular consortium for RA. Outcomes were (a) major adverse cardiovascular events (MACE) including cardiovascular death, myocardial infarction, or stroke and (b) any ischemic cardiovascular events (iCVE) including MACE, angina, revascularization, transient ischemic attack, and peripheral arterial disease. The effects of sex, prevalent methotrexate use at enrollment visit and their interaction on MACE and iCVE were assessed with multivariable Cox regression models, reporting adjusted hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS There were 237 first MACE and 358 first iCVE. The sex by methotrexate interaction was significant for MACE (p = 0.005) and iCVE (p = 0.006), suggesting the effect of methotrexate use on cardiovascular risk differed among males and females. In males, methotrexate use associated with lower risk of MACE (HR 0.32, [95% CI 0.12-0.83]) and iCVE (HR 0.43 [95% CI 0.21-0.85]). In females, methotrexate use was not associated with MACE (p = 0.267) or iCVE (p = 0.407). In sensitivity analyses, models with inverse probability of treatment weighting and models additionally adjusting for inflammation yielded similar results. CONCLUSION Methotrexate use associated with cardiovascular benefit in males but not females with RA and the effect was independent of inflammation.
Collapse
Affiliation(s)
- George A Karpouzas
- Department of Rheumatology, Harbor-UCLA Medical Center, 1124 West Carson Street, Building E4- R17, 90502, Torrance, California, USA.
| | - Sarah R Ormseth
- Department of Rheumatology, Harbor-UCLA Medical Center, 1124 West Carson Street, Building E4- R17, 90502, Torrance, California, USA
| | - Piet Van Riel
- Radboud University Medical Centre, Nijmegen, the Netherlands
| | | | | | | | | | | | | | | | - Virginia Pascual-Ramos
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Irazu Contreras Yanez
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | | | | | - Anne Grete Semb
- Department of Rheumatology, Diakonhjemmet Hospital, Oslo, Norway
| | - Durga Prasanna Misra
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - George D Kitas
- The Dudley Group National Health Institutes Foundation Trust, Birmingham, UK
| | - Ellen M Hauge
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Ni H, Ge Y, Zhuge Y, Liu X, Chen H, Liu J, Li W, Wang X, Shen G, Wang Q, Zhuang R, Feinberg MW, Wang F. LncRNA MIR181A1HG Deficiency Attenuates Vascular Inflammation and Atherosclerosis. Circ Res 2025; 136:862-883. [PMID: 40047069 PMCID: PMC11985291 DOI: 10.1161/circresaha.124.325196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 02/09/2025] [Accepted: 02/24/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Endothelial cell (EC) dysfunction and vascular inflammation are critical in the initiation and progression of atherosclerosis. Long noncoding RNAs play a critical role in vascular pathology, but relatively little is known about their involvement in controlling vascular inflammation. MIR181A1HG is a conserved long noncoding RNA located in juxtaposition with miR-181a1 and miR-181b1, both involved in vascular inflammation. The study aims to investigate the role of MIR181A1HG in regulating vascular inflammation. METHODS We examined the expression of MIR181A1HG in both human and mouse atherosclerotic lesions. Loss-of-function and gain-of-function studies, and multiple RNA-protein interaction assays were used to investigate the role and molecular mechanisms of MIR181A1HG in vascular inflammation and atherosclerosis. The atherosclerotic phenotypes of MIR181A1HG-/-ApoE-/- mice were analyzed in combination with single-cell RNA sequencing. The transcriptional regulation of MIR181A1HG was verified through luciferase reporter and chromatin immunoprecipitation assays. RESULTS MIR181A1HG expression was abundant in ECs and significantly increased in both human and mouse atherosclerotic lesions. MIR181A1HG-/-ApoE-/- mice had reduced NLRP (NLR family pyrin domain containing) 3 inflammasome signaling, EC activation, monocyte infiltration, and atherosclerotic lesion formation. Genetic deletion of MIR181A1HG in myeloid sells did not alter the progression of atherosclerosis. Single-cell RNA sequencing analysis revealed that MIR181A1HG deficiency reduced the proportion of immune cells and enriched anti-inflammation pathways in EC clusters in atherosclerotic lesions. In contrast, EC-specific MIR181A1HG overexpression promoted NLRP3 inflammasome signaling, EC activation, and atherosclerotic lesion formation, effects that were reversed by pharmacological inhibition of NLRP3 (MCC950). MIR181A1HG was transcriptionally activated via an NF-κB (nuclear factor kappa B)/p65-dependent pathway. Mechanistically, MIR181A1HG mediated these effects on regulating NLRP3 inflammasome and EC activation in part through decoying Foxp1 (forkhead box transcription factor 1) away from the promoters of target genes, which was independent of the miR-181a1/b1 cluster. Finally, EC-specific Foxp1 silencing reversed the antiatherosclerotic effect mediated by MIR181A1HG-deletion in vivo. CONCLUSIONS These findings identify MIR181A1HG as a central driver of vascular inflammation in atherosclerosis by its ability to decoy Foxp1 away from target gene promoters and activate NLRP3 inflammasome in the vascular endothelium. Our study suggests MIR181A1HG as a future therapeutic target for vascular inflammatory disease states.
Collapse
Affiliation(s)
- Huaner Ni
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yulong Ge
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Ying Zhuge
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiaoqiang Liu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Hangwei Chen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Junyi Liu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Weifeng Li
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiang Wang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Gu Shen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Qiuling Wang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Rulin Zhuang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Mark W. Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Fang Wang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| |
Collapse
|
3
|
Meles DK, Khairullah AR, Mustofa I, Wurlina W, Akintunde AO, Suwasanti N, Mustofa RI, Putra SW, Moses IB, Kusala MKJ, Raissa R, Fauzia KA, Aryaloka S, Fauziah I, Yanestria SM, Wibowo S. Navigating Q fever: Current perspectives and challenges in outbreak preparedness. Open Vet J 2024; 14:2509-2524. [PMID: 39545195 PMCID: PMC11560256 DOI: 10.5455/ovj.2024.v14.i10.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/02/2024] [Indexed: 11/17/2024] Open
Abstract
Q fever, also known as query fever, is a zoonotic illness brought on by the Coxiella burnetii bacteria. This disease was first discovered in 1935 in Queensland, Australia. Worldwide, Q fever is a disease that requires notification, and certain nations classify it as a national health concern. A feature of C. burnetii is known as cell wall phase fluctuation. Serological testing is the main method used to diagnose Q fever illnesses. Inhalation is the primary method of C. burnetii transmission in both people and animals, with smaller amounts occurring through milk and milk product ingestion. The bacterial strain that is causing the infection determines how severe it is. Q fever is a significant zoonosis that can be dangerous for personnel working in veterinary laboratories, livestock breeding operations, and slaughterhouses due to its high human contagiousness. Coxiella burnetii is a biological weapon that can be sprayed on food, water, or even mail. It can also be employed as an aerosol. Antibiotics work well against this disease's acute form, but as the infection develops into a chronic form, treatment becomes more difficult and the illness frequently returns, which can result in a high death rate. Vaccination has been demonstrated to lower the incidence of animal infections, C. burnetii shedding, and abortion. Several hygienic precautions should be put in place during an outbreak to lessen the spread of disease to animals.
Collapse
Affiliation(s)
- Dewa Ketut Meles
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Imam Mustofa
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Wurlina Wurlina
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Adeyinka Oye Akintunde
- Department of Agriculture and Industrial Technology, Babcock University, Ilishan Remo, Nigeria
| | - Niluh Suwasanti
- Department of Clinical Pathology, Faculty of Medicine, Universitas Katolik Widya Mandala Surabaya, Surabaya, Indonesia
| | | | | | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | | | - Ricadonna Raissa
- Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Kartika Afrida Fauzia
- Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Suhita Aryaloka
- Master Program of Veterinary Agribusiness, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ima Fauziah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | | | - Syahputra Wibowo
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| |
Collapse
|
4
|
Godbole S, Solomon JL, Johnson M, Srivastava A, Carsons SE, Belilos E, De Leon J, Reiss AB. Treating Cardiovascular Disease in the Inflammatory Setting of Rheumatoid Arthritis: An Ongoing Challenge. Biomedicines 2024; 12:1608. [PMID: 39062180 PMCID: PMC11275112 DOI: 10.3390/biomedicines12071608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Despite progress in treating rheumatoid arthritis, this autoimmune disorder confers an increased risk of developing cardiovascular disease (CVD). Widely used screening protocols and current clinical guidelines are inadequate for the early detection of CVD in persons with rheumatoid arthritis. Traditional CVD risk factors alone cannot be applied because they underestimate CVD risk in rheumatoid arthritis, missing the window of opportunity for prompt intervention to decrease morbidity and mortality. The lipid profile is insufficient to assess CVD risk. This review delves into the connection between systemic inflammation in rheumatoid arthritis and the premature onset of CVD. The shared inflammatory and immunologic pathways between the two diseases that result in subclinical atherosclerosis and disrupted cholesterol homeostasis are examined. The treatment armamentarium for rheumatoid arthritis is summarized, with a particular focus on each medication's cardiovascular effect, as well as the mechanism of action, risk-benefit profile, safety, and cost. A clinical approach to CVD screening and treatment for rheumatoid arthritis patients is proposed based on the available evidence. The mortality gap between rheumatoid arthritis and non-rheumatoid arthritis populations due to premature CVD represents an urgent research need in the fields of cardiology and rheumatology. Future research areas, including risk assessment tools and novel immunotherapeutic targets, are highlighted.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (J.L.S.); (M.J.); (A.S.); (S.E.C.); (E.B.); (J.D.L.)
| |
Collapse
|
5
|
Lv B, He S, Li P, Jiang S, Li D, Lin J, Feinberg MW. MicroRNA-181 in cardiovascular disease: Emerging biomarkers and therapeutic targets. FASEB J 2024; 38:e23635. [PMID: 38690685 PMCID: PMC11068116 DOI: 10.1096/fj.202400306r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. MicroRNAs (MiRNAs) have attracted considerable attention for their roles in several cardiovascular disease states, including both the physiological and pathological processes. In this review, we will briefly describe microRNA-181 (miR-181) transcription and regulation and summarize recent findings on the roles of miR-181 family members as biomarkers or therapeutic targets in different cardiovascular-related conditions, including atherosclerosis, myocardial infarction, hypertension, and heart failure. Lessons learned from these studies may provide new theoretical foundations for CVD.
Collapse
Affiliation(s)
- Bingjie Lv
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shaolin He
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peixin Li
- Second Clinical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shijiu Jiang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Cardiology, The First Affiliated Hospital, Shihezi University, Shihezi, 832000, China
| | - Dazhu Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jibin Lin
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mark W. Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Mohammed OA, Alghamdi M, Adam MIE, BinAfif WF, Alfaifi J, Alamri MMS, Alqarni AA, Alhalafi AH, Bahashwan E, AlQahtani AAJ, Ayed A, Hassan RH, Abdel-Reheim MA, Abdel Mageed SS, Rezigalla AA, Doghish AS. miRNAs dysregulation in ankylosing spondylitis: A review of implications for disease mechanisms, and diagnostic markers. Int J Biol Macromol 2024; 268:131814. [PMID: 38677679 DOI: 10.1016/j.ijbiomac.2024.131814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
Epigenetic processes, including non-coding RNA, histone modifications, and DNA methylation, play a vital role in connecting the environment to the development of a disorder, especially when there is a favorable genetic background. Ankylosing Spondylitis (AS) is a chronic type of spinal arthritis that highlights the significance of epigenetics in diseases related to autoimmunity and inflammation. MicroRNAs (miRNAs) are small non-coding RNAs that are involved in both normal and aberrant pathological and physiological gene expression. This study focuses on the pathophysiological pathways to clarify the role of miRNAs in AS. We have conducted a thorough investigation of the involvement of miRNAs in several processes, including inflammation, the production of new bone, T-cell activity, and the regulation of pathways such as BMP, Wnt, and TGFβ signaling. Undoubtedly, miRNAs play a crucial role in enhancing our comprehension of the pathophysiology of AS, and their promise as a therapeutic strategy is quickly expanding.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mushabab Alghamdi
- Department of Internal Medicine, Division of Rheumatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Masoud I E Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Waad Fuad BinAfif
- Department of Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohannad Mohammad S Alamri
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah Ali Alqarni
- Department of Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah Hassan Alhalafi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Emad Bahashwan
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - AbdulElah Al Jarallah AlQahtani
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah Ayed
- Department of Surgery, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Rania H Hassan
- Dermatology Clinic, Abbasseya Psychiatric Hospital, Abbasseya, Cairo 11517, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Assad Ali Rezigalla
- Department of Anatomy, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
7
|
Jiang RY, Yao LW, Lv YH, Guo ZT, Wang FF, Cui HH, Cheng YY, Wang F. Stytontriterpenes A-C, three unusual oleanane-derived triterpenoids from the resin of Styrax tonkinensis as potential immunosuppressive agents in atherosclerosis. PHYTOCHEMISTRY 2024; 217:113905. [PMID: 37913836 DOI: 10.1016/j.phytochem.2023.113905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
Three unusual oleanane-derived triterpenoids, stytontriterpenes A-C (1-3), were isolated from the resin of Styrax tonkinensis together with an oleanane-lactone (stytontriterpene D, 4). Their structures and absolute configurations were characterised using a combination of spectroscopic analysis, electronic circular dichroism, and theoretical calculations. 1 and 2 belong to nor-oleanane with rare spiro D/E rings and 3 contains one infrequent C32 scaffold. 1 considerably suppressed the number of adhered leukemic monocytes (THP-1) to human umbilical vein endothelial cells and attenuated the upregulations of mRNA and protein levels of intracellular adhesion molecule-1 and vascular cell adhesion molecule-1 at 5 μM, suggesting that 1 might be a promising anti-vascular inflammatory chemical for atherosclerosis therapy. Plausible biosynthetic pathways for 1-4 are also proposed.
Collapse
Affiliation(s)
- Rui-Yan Jiang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ling-Wen Yao
- National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Yin-Hong Lv
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhong-Tian Guo
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Fei-Fei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Hong-Hua Cui
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yuan-Yuan Cheng
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, And International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Feng Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
8
|
The Clinical Significance of Salusins in Systemic Sclerosis-A Cross-Sectional Study. Diagnostics (Basel) 2023; 13:diagnostics13050848. [PMID: 36899991 PMCID: PMC10001236 DOI: 10.3390/diagnostics13050848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Background: Systemic sclerosis (SSc) is a connective tissue disease manifesting with progressive fibrosis of the skin and internal organs. Its pathogenesis is strictly associated with vascular disfunction and damage. Salusin-α and salusin-β, endogenous peptides regulating secretion of pro-inflammatory cytokines and vascular smooth muscle proliferation, may potentially play a role in SSc pathogenesis. Objectives: The aim of this study was to assess the concentration of salusins in sera of patients with SSc and healthy controls and to evaluate correlations between the salusins levels and selected clinical parameters within the study group. Materials and methods: 48 patients with SSc (44 women; mean age, 56.4, standard deviation, 11.4) and 25 adult healthy volunteers (25 women; mean age, 55.2, standard deviation, 11.2) were enrolled. All patients with SSc were treated with vasodilators and twenty-seven of them (56%) also received immunosuppressive therapy. Results: Circulating salusin-α was significantly elevated in patients with SSc in comparison to healthy controls (U = 350.5, p = 0.004). Patients with SSc receiving immunosuppression had higher serum salusin-α concentrations compared with those without immunosuppressive therapy (U = 176.0, p = 0.026). No correlation was observed between salusins concentrations and skin or internal organ involvement parameters. Conclusions: Salusin-α, a bioactive peptide mitigating the endothelial disfunction, was elevated in patients with systemic sclerosis receiving vasodilators and immunosuppressants. Increased salusin-α concertation may be associated with the initiation of atheroprotective processes in patients with SSc managed pharmacologically, which requires verification in future studies.
Collapse
|
9
|
Tsioufis P, Theofilis P, Tsioufis K, Tousoulis D. The Impact of Cytokines in Coronary Atherosclerotic Plaque: Current Therapeutic Approaches. Int J Mol Sci 2022; 23:15937. [PMID: 36555579 PMCID: PMC9788180 DOI: 10.3390/ijms232415937] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Coronary atherosclerosis is a chronic pathological process that involves inflammation together with endothelial dysfunction and lipoprotein dysregulation. Experimental studies during the past decades have established the role of inflammatory cytokines in coronary artery disease, namely interleukins (ILs), tumor necrosis factor (TNF)-α, interferon-γ, and chemokines. Moreover, their value as biomarkers in disease development and progression further enhance the validity of this interaction. Recently, cytokine-targeted treatment approaches have emerged as potential tools in the management of atherosclerotic disease. IL-1β, based on the results of the CANTOS trial, remains the most validated option in reducing the residual cardiovascular risk. Along the same line, colchicine was also proven efficacious in preventing major adverse cardiovascular events in large clinical trials of patients with acute and chronic coronary syndrome. Other commercially available agents targeting IL-6 (tocilizumab), TNF-α (etanercept, adalimumab, infliximab), or IL-1 receptor antagonist (anakinra) have mostly been assessed in the setting of other inflammatory diseases and further testing in atherosclerosis is required. In the future, potential targeting of the NLRP3 inflammasome, anti-inflammatory IL-10, or atherogenic chemokines could represent appealing options, provided that patient safety is proven to be of no concern.
Collapse
Affiliation(s)
| | | | | | - Dimitris Tousoulis
- First Department of Cardiology, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| |
Collapse
|
10
|
Serum microRNAs in Systemic Sclerosis, Associations with Digital Vasculopathy and Lung Involvement. Int J Mol Sci 2022; 23:ijms231810731. [PMID: 36142646 PMCID: PMC9503032 DOI: 10.3390/ijms231810731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Background and aims: Systemic sclerosis (SSc) is an autoimmune, rare multisystem chronic disease that is still not well-understood aetiologically and is challenging diagnostically. In the literature, there are ever-increasing assumptions regarding the epigenetic mechanisms involved in SSc development; one of them is circulating microRNAs. Many of them regulate TLR pathways and are significant in autoimmune balance. The aim of this study was to determine profile expression of selected microRNAs in SSc patients, including miR-126, -132, -143, -145, -155, -181a, -29a and -3148, in comparison to healthy controls. Methods: Serum microRNAs were isolated from 45 patients with SSc and 57 healthy donors (HC). Additionally, SSc patients were considered in the aspect of disease subtype, including diffuse systemic sclerosis (dcSSc) and limited systemic sclerosis (lcSSc). Results: miR-3148 was detected neither in the serum of HC nor in SSc patients. All of the rest of the analyzed microRNAs, excluding miR-126, miR-29a and miR-181a, were significantly upregulated in SSc patients in comparison to HC. However, miR-181a has been revealed only in the serum of patients with lcSSc but not dcSSc. Moderate positive correlations between the transfer factor of the lung for carbon monoxide (TLCO) and miR-126 and miR-145 were observed. A significant correlation has been found between serum miR-143 level and forced vital capacity (FVC). SSc patients with FVC ≤ 70% were characterized by significantly lower levels of miR-143 compared to patients with normal FVC. Additionally, the expression of miR-132 was significantly higher in dcSSc subgroup with detected active lung lesions compared to dcSSc patients with fibrotic lesions. Patients with an early scleroderma pattern of microangiopathy seen on nailfold video-capillaroscopy (NVC) revealed higher expression of miR-155 in serum than those with a late pattern. Conclusions: The expression profile of circulating cell-free miRNAs is significantly changed in the serum of SSc patients compared to healthy individuals. Downregulation of miRNA-181a and overexpression of miR-132, miR-143, miR-145 and miR-155 in serum may be significant in SSc in the context of biomarkers.
Collapse
|
11
|
Yang D, Haemmig S, Chen J, McCoy M, Cheng HS, Zhou H, Pérez-Cremades D, Cheng X, Sun X, Haneo-Mejia J, Vellarikkal SK, Gupta RM, Barrera V, Feinberg MW. Endothelial cell-specific deletion of a microRNA accelerates atherosclerosis. Atherosclerosis 2022; 350:9-18. [PMID: 35462240 PMCID: PMC10165557 DOI: 10.1016/j.atherosclerosis.2022.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Chronic vascular endothelial inflammation predisposes to atherosclerosis; however, the cell-autonomous roles for endothelial-expressing microRNAs (miRNAs) are poorly understood in this process. MiR-181b is expressed in several cellular constituents relevant to lesion formation. The aim of this study is to examine the role of genetic deficiency of the miR-181b locus in endothelial cells during atherogenesis. METHODS AND RESULTS Using a proprotein convertase subtilisin/kexin type 9 (PCSK9)-induced atherosclerosis mouse model, we demonstrated that endothelial cell (EC)-specific deletion of miR-181a2b2 significantly promoted atherosclerotic lesion formation, cell adhesion molecule expression, and the influx of lesional macrophages in the vessel wall. Yet, endothelium deletion of miR-181a2b2 did not affect body weight, lipid metabolism, anti-inflammatory Ly6Clow or the pro-inflammatory Ly6Cinterm and Ly6Chigh fractions in circulating peripheral blood mononuclear cells (PBMCs), and pro-inflammatory or anti-inflammatory mediators in both bone marrow (BM) and PBMCs. Mechanistically, bulk RNA-seq and gene set enrichment analysis of ECs enriched from the aortic arch intima, as well as single cell RNA-seq from atherosclerotic lesions, revealed that endothelial miR-181a2b2 serves as a critical regulatory hub in controlling endothelial inflammation, cell adhesion, cell cycle, and immune response during atherosclerosis. CONCLUSIONS Our study establishes that deficiency of a miRNA specifically in the vascular endothelium is sufficient to profoundly impact atherogenesis. Endothelial miR-181a2b2 deficiency regulates multiple key pathways related to endothelial inflammation, cell adhesion, cell cycle, and immune response involved in the development of atherosclerosis.
Collapse
Affiliation(s)
- Dafeng Yang
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Stefan Haemmig
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jingshu Chen
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael McCoy
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Henry S Cheng
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Haoyang Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Daniel Pérez-Cremades
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiao Cheng
- Department of Biochemistry, University of Nebraska - Lincoln, Lincoln, NE, 68588, USA
| | - Xinghui Sun
- Department of Biochemistry, University of Nebraska - Lincoln, Lincoln, NE, 68588, USA
| | - Jorge Haneo-Mejia
- Department of Pathology and Laboratory Medicine and Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - Shamsudheen K Vellarikkal
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rajat M Gupta
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Victor Barrera
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Mark W Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Cafaro G, Petito E, Bistoni O, Falcinelli E, Cipriani S, Borghi MC, Bonifacio AF, Giglio E, Alunno A, Perricone C, Gerli R, Gresele P, Bartoloni E. Methotrexate improves endothelial function in early rheumatoid arthritis patients after 3 months of treatment. Arthritis Res Ther 2022; 24:236. [PMID: 36280849 PMCID: PMC9590167 DOI: 10.1186/s13075-022-02930-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Background Endothelial dysfunction contributes to increased cardiovascular (CV) disease in rheumatoid arthritis (RA). Angiogenic T cells (Tang) are a key regulator of vascular function via their interaction with endothelial progenitor cells (EPCs). Methotrexate (MTX) has been associated to reduced CV disease risk, but its effects on endothelial homeostasis have been poorly explored. We investigated MTX effects on endothelial homeostasis in early, treatment-naïve RA patients. Methods Fifteen untreated, early RA patients and matched healthy controls (HC) were enrolled. RA patients with long-standing disease in remission or low disease activity treated with MTX for at least 6 months were selected as controls. Circulating CD28+ and CD28null Tang cell, endothelial microparticle (EMP), EPC and soluble vascular cell adhesion molecule (sVCAM)-1 levels were measured. Results Tang percentage was higher in early RA than in HCs and significantly increased after 3-month MTX treatment. Tang cells in RA were characterized by higher percentage of CD28null and lower CD28-positive cells than HCs. MTX restored a Tang cell phenotype similar to HCs. Altered sVCAM-1, EMP and EPC were restored to levels similar to HCs after a 3-month MTX. Biomarker levels after 3 months of MTX were not different to those of patients with long-standing treatment. Conclusions MTX has a positive effect on Tang, sVCAM-1, EPCs and EMPs in RA. Restoration of imbalance between CD28 + and CD28null Tang by MTX may be one of the mechanisms underlying its favourable effects on endothelial dysfunction. These effects seem to be long-lasting and independent from systemic inflammation reduction, suggesting a direct effect of MTX on the endothelium.
Collapse
Affiliation(s)
- Giacomo Cafaro
- grid.9027.c0000 0004 1757 3630Rheumatology Unit, University of Perugia, Perugia, Italy
| | - Eleonora Petito
- grid.9027.c0000 0004 1757 3630Section of Internal and Cardiovascular Medicine, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Onelia Bistoni
- grid.9027.c0000 0004 1757 3630Rheumatology Unit, University of Perugia, Perugia, Italy
| | - Emanuela Falcinelli
- grid.9027.c0000 0004 1757 3630Section of Internal and Cardiovascular Medicine, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Sabrina Cipriani
- grid.9027.c0000 0004 1757 3630Rheumatology Unit, University of Perugia, Perugia, Italy
| | - Maria Chiara Borghi
- grid.9027.c0000 0004 1757 3630Section of Internal and Cardiovascular Medicine, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Angelo F. Bonifacio
- grid.9027.c0000 0004 1757 3630Rheumatology Unit, University of Perugia, Perugia, Italy
| | - Elisa Giglio
- grid.9027.c0000 0004 1757 3630Section of Internal and Cardiovascular Medicine, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Alessia Alunno
- grid.9027.c0000 0004 1757 3630Rheumatology Unit, University of Perugia, Perugia, Italy ,grid.158820.60000 0004 1757 2611Internal Medicine and Nephrology Unit, Department of Life, Health & Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Carlo Perricone
- grid.9027.c0000 0004 1757 3630Rheumatology Unit, University of Perugia, Perugia, Italy
| | - Roberto Gerli
- grid.9027.c0000 0004 1757 3630Rheumatology Unit, University of Perugia, Perugia, Italy
| | - Paolo Gresele
- grid.9027.c0000 0004 1757 3630Section of Internal and Cardiovascular Medicine, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elena Bartoloni
- grid.9027.c0000 0004 1757 3630Rheumatology Unit, University of Perugia, Perugia, Italy
| |
Collapse
|
13
|
Baraban JM, Tuday E, Berkowitz DE, Das S. Deciphering the Role of microRNAs in Large-Artery Stiffness Associated With Aging: Focus on miR-181b. Front Physiol 2021; 12:747789. [PMID: 34646165 PMCID: PMC8504676 DOI: 10.3389/fphys.2021.747789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Large artery stiffness (LAS) is a major, independent risk factor underlying cardiovascular disease that increases with aging. The emergence of microRNA signaling as a key regulator of vascular structure and function has stimulated interest in assessing its role in the pathophysiology of LAS. Identification of several microRNAs that display age-associated changes in expression in aorta has focused attention on defining their molecular targets and deciphering their role in age-associated arterial stiffening. Inactivation of the microRNA-degrading enzyme, translin/trax, which reverses the age-dependent decline in miR-181b, confers protection from aging-associated arterial stiffening, suggesting that inhibitors targeting this enzyme may have translational potential. As LAS poses a major public health challenge, we anticipate that future studies based on these advances will yield innovative strategies to combat aging-associated arterial stiffening.
Collapse
Affiliation(s)
- Jay M Baraban
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, ML, United States
| | - Eric Tuday
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT, United States.,Geriatric Research, Education and Clinical Center, VA Salt Lake City Health Care System, Salt Lake City, UT, United States
| | - Dan E Berkowitz
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sam Das
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, ML, United States.,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Medicine, Baltimore, ML, United States
| |
Collapse
|
14
|
Vega-Tapia F, Bustamante M, Valenzuela RA, Urzua CA, Cuitino L. miRNA Landscape in Pathogenesis and Treatment of Vogt-Koyanagi-Harada Disease. Front Cell Dev Biol 2021; 9:658514. [PMID: 34041239 PMCID: PMC8141569 DOI: 10.3389/fcell.2021.658514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
miRNAs, one of the members of the noncoding RNA family, are regulators of gene expression in inflammatory and autoimmune diseases. Changes in miRNA pool expression have been associated with differentiation of CD4+ T cells toward an inflammatory phenotype and with loss of self-tolerance in autoimmune diseases. Vogt–Koyanagi–Harada (VKH) disease is a chronic multisystemic pathology, affecting the uvea, inner ear, central nervous system, and skin. Several lines of evidence support an autoimmune etiology for VKH, with loss of tolerance against retinal pigmented epithelium-related self-antigens. This deleterious reaction is characterized by exacerbated inflammation, due to an aberrant TH1 and TH17 polarization and secretion of their proinflammatory hallmark cytokines interleukin 6 (IL-6), IL-17, interferon γ, and tumor necrosis factor α, and an impaired CD4+ CD25high FoxP3+ regulatory T cell function. To restrain inflammation, VKH is pharmacologically treated with corticosteroids and immunosuppressive drugs as first and second line of therapy, respectively. Changes in the expression of miRNAs related to immunoregulatory pathways have been associated with VKH development, whereas some genetic variants of miRNAs have been found to be risk modifiers of VKH. Furthermore, the drugs commonly used in VKH treatment have great influence on miRNA expression, including those miRNAs associated to VKH disease. This relationship between response to therapy and miRNA regulation suggests that these small noncoding molecules might be therapeutic targets for the development of more effective and specific pharmacological therapy for VKH. In this review, we discuss the latest evidence regarding regulation and alteration of miRNA associated with VKH disease and its treatment.
Collapse
Affiliation(s)
- Fabian Vega-Tapia
- Laboratory of Ocular and Systemic Autoimmune Diseases, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Mario Bustamante
- Laboratory of Ocular and Systemic Autoimmune Diseases, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Núcleo de Ciencias Biológicas, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago, Chile
| | - Rodrigo A Valenzuela
- Department de Health Science, Universidad de Aysén, Coyhaique, Chile.,Department of Chemical and Biological Sciences, Faculty of Health, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Cristhian A Urzua
- Laboratory of Ocular and Systemic Autoimmune Diseases, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Department of Ophthalmology, University of Chile, Santiago, Chile.,Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Loreto Cuitino
- Laboratory of Ocular and Systemic Autoimmune Diseases, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Servicio de Oftalmología, Hospital Clínico Universidad de Chile, Santiago, Chile
| |
Collapse
|