1
|
Hill PF, Ekstrom AD. A cognitive-motor framework for spatial navigation in aging and early-stage Alzheimer's disease. Cortex 2025; 185:133-150. [PMID: 40043550 DOI: 10.1016/j.cortex.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 12/19/2024] [Accepted: 02/13/2025] [Indexed: 04/13/2025]
Abstract
Spatial navigation is essential for wellbeing and independence and shows significant declines as part of age-related neurodegenerative disorders, such as Alzheimer's disease. Navigation is also one of the earliest behaviors impacted by this devastating disease. Neurobiological models of aging and spatial navigation have focused primarily on the cognitive factors that account for impaired navigation abilities during the course of healthy aging and early stages of preclinical and prodromal Alzheimer's disease. The contributions of physical factors that are essential to planning and executing movements during successful navigation, such as gait and dynamic balance, are often overlooked despite also being vulnerable to early stages of neurodegenerative disease. We review emerging evidence that spatial navigation and functional mobility each draw on highly overlapping sensory systems, cognitive processes, and brain structures that are susceptible to healthy and pathological aging processes. Based on this evidence, we provide an alternative to models that have focused primarily on spatial navigation as a higher order cognitive function dependent on brain areas such as the hippocampus and entorhinal cortex. Instead, we argue that spatial navigation may offer an ecologically valid cognitive-motor phenotype of age-related cognitive dysfunction. We propose that dual cognitive-motor deficits in spatial navigation may arise from early changes in neuromodulatory and peripheral sensory systems that precede changes in regions such as the entorhinal cortex.
Collapse
Affiliation(s)
- Paul F Hill
- Psychology Department, University of Arizona, USA.
| | - Arne D Ekstrom
- Psychology Department, University of Arizona, USA; McKnight Brain Institute, University of Arizona, USA
| |
Collapse
|
2
|
Colmant L, Quenon L, Huyghe L, Ivanoiu A, Gérard T, Lhommel R, Coppens P, Salman Y, Malotaux V, Dricot L, Kunz L, Axmacher N, Lefèvre P, Hanseeuw B. Rotation errors in path integration are associated with Alzheimer's disease tau pathology: a cross-sectional study. Alzheimers Res Ther 2025; 17:34. [PMID: 39893494 PMCID: PMC11786419 DOI: 10.1186/s13195-025-01679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/17/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Early Alzheimer's disease diagnosis is crucial for preventive therapy development. Standard neuropsychological evaluation does not identify clinically normal individuals with brain amyloidosis, the first stage of the pathology, defined as preclinical Alzheimer's disease. Spatial navigation assessment, in particular path integration, appears promising to detect preclinical symptoms, as the medial temporal lobe plays a key role in navigation and is the first cortical region affected by tau pathology. METHODS We have conducted a cross-sectional study. We related the path integration performance of 102 individuals without dementia, aged over 50, to amyloid and tau pathologies, measured using positron emission tomography. We included 75 clinically normal individuals (19 with brain amyloidosis, 56 without) and 27 individuals with mild cognitive impairment (18 with brain amyloidosis, 9 without). We fitted linear mixed models to predict the path integration performances according to amyloid status or tau pathology in the medial temporal lobal, adjusting for age, gender, cognitive status, education, and video game experience. We decomposed the error into rotation and distance errors. RESULTS We observed that clinically normal adults with brain amyloidosis (preclinical Alzheimer's disease) had spatial navigation deficits when relying only on self-motion cues. However, they were able to use a landmark to reduce their errors. Individuals with mild cognitive impairment had deficits in path integration that did not improve when a landmark was added in the environment. The amyloid status did not influence performance among individuals with mild cognitive impairment. Among all individuals, rotation, but not distance, errors increased with the level of tau pathology in the medial temporal lobe. CONCLUSION Our results suggest that path integration performance in an environment without external cues allows identifying individuals with preclinical Alzheimer's disease, before overt episodic memory impairment is noticeable. Specifically, we demonstrated that poor angular estimation is an early cognitive marker of tau pathology, whereas distance estimation relates to older ages, not to Alzheimer's disease. TRIAL REGISTRATION Eudra-CT 2018-003473-94.
Collapse
Affiliation(s)
- Lise Colmant
- Institute of Neuroscience, NEUR, UCLouvain, Avenue Mounier 53/B1.53.05, Brussels, 1200, Belgium.
- Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels, 1200, Belgium.
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, UCLouvain, Louvain-La-Neuve, 1348, Belgium.
| | - Lisa Quenon
- Institute of Neuroscience, NEUR, UCLouvain, Avenue Mounier 53/B1.53.05, Brussels, 1200, Belgium
- Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels, 1200, Belgium
| | - Lara Huyghe
- Institute of Neuroscience, NEUR, UCLouvain, Avenue Mounier 53/B1.53.05, Brussels, 1200, Belgium
| | - Adrian Ivanoiu
- Institute of Neuroscience, NEUR, UCLouvain, Avenue Mounier 53/B1.53.05, Brussels, 1200, Belgium
- Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels, 1200, Belgium
| | - Thomas Gérard
- Institute of Neuroscience, NEUR, UCLouvain, Avenue Mounier 53/B1.53.05, Brussels, 1200, Belgium
- Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels, 1200, Belgium
| | - Renaud Lhommel
- Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels, 1200, Belgium
| | - Pauline Coppens
- Institute of Neuroscience, NEUR, UCLouvain, Avenue Mounier 53/B1.53.05, Brussels, 1200, Belgium
| | - Yasmine Salman
- Institute of Neuroscience, NEUR, UCLouvain, Avenue Mounier 53/B1.53.05, Brussels, 1200, Belgium
| | - Vincent Malotaux
- Institute of Neuroscience, NEUR, UCLouvain, Avenue Mounier 53/B1.53.05, Brussels, 1200, Belgium
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Laurence Dricot
- Institute of Neuroscience, NEUR, UCLouvain, Avenue Mounier 53/B1.53.05, Brussels, 1200, Belgium
| | - Lukas Kunz
- Department of Epileptology, University Hospital Bonn, Bonn, 53127, Germany
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, 44780, Germany
| | - Philippe Lefèvre
- Institute of Neuroscience, NEUR, UCLouvain, Avenue Mounier 53/B1.53.05, Brussels, 1200, Belgium
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, UCLouvain, Louvain-La-Neuve, 1348, Belgium
| | - Bernard Hanseeuw
- Institute of Neuroscience, NEUR, UCLouvain, Avenue Mounier 53/B1.53.05, Brussels, 1200, Belgium
- Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels, 1200, Belgium
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
3
|
Rodriguez GA, Rothenberg EF, Shetler CO, Aoun A, Posani L, Vajram SV, Tedesco T, Fusi S, Hussaini SA. Impaired spatial coding and neuronal hyperactivity in the medial entorhinal cortex of aged App NL-G-F mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.624990. [PMID: 39651258 PMCID: PMC11623597 DOI: 10.1101/2024.11.26.624990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The progressive accumulation of amyloid beta (Aβ) pathology in the brain has been associated with aberrant neuronal network activity and poor cognitive performance in preclinical mouse models of Alzheimer's disease (AD). Presently, our understanding of the mechanisms driving pathology-associated neuronal dysfunction and impaired information processing in the brain remains incomplete. Here, we assessed the impact of advanced Aβ pathology on spatial information processing in the medial entorhinal cortex (MEC) of 18-month App NL-G-F/NL- G-F knock-in (APP KI) mice as they explored contextually novel and familiar open field arenas in a two-day, four-session recording paradigm. We tracked single unit firing activity across all sessions and found that spatial information scores were decreased in MEC neurons from APP KI mice versus those in age-matched C57BL/6J controls. MEC single unit spatial representations were also impacted in APP KI mice. Border cell firing preferences were unstable across sessions and spatial periodicity in putative grid cells was disrupted. In contrast, MEC border cells and grid cells in Control mice were intact and stable across sessions. We then quantified the stability of MEC spatial maps across sessions by utilizing a metric based on the Earth Mover's Distance (EMD). We found evidence for increased instability in spatially-tuned APP KI MEC neurons versus Controls when mice were re-exposed to familiar environments and exposed to a novel environment. Additionally, spatial decoding analysis of MEC single units revealed deficits in position and speed coding in APP KI mice in all session comparisons. Finally, MEC single unit analysis revealed a mild hyperactive phenotype in APP KI mice that appeared to be driven by narrow-spiking units (putative interneurons). These findings tie Aβ-associated dysregulation in neuronal firing to disruptions in spatial information processing that may underlie certain cognitive deficits associated with AD.
Collapse
|
4
|
Raghuraman R, Aoun A, Herman M, Shetler CO, Nahmani E, Hussaini SA. Lateral Entorhinal Cortex Dysfunction in Alzheimer's Disease Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589589. [PMID: 38659892 PMCID: PMC11042344 DOI: 10.1101/2024.04.15.589589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In Alzheimer's disease (AD), the formation of amyloid beta and neurofibrillary tangles (NFTs) leads to neuronal loss in entorhinal cortex (EC), a crucial brain region involved in memory and navigation. These pathological changes are concurrent with the onset of memory-related issues in AD patients with symptoms of forgetfulness such as misplacing items, disorientation in familiar environments etc. The lateral EC (LEC) is associated with non-spatial memory processing including object recognition. Since in LEC, neurons fire in response to objects (object cells) and at locations previously occupied by objects (trace cells), pathology in this region could lead to dysfunction in object location coding. In this paper we show that a transgenic mouse model, EC-App/Tau, which expresses both APP and tau primarily in the EC region, have deficits in LEC-specific memory tasks. Using in vivo single-unit electrophysiology recordings we show that the LEC neurons are hyperactive with low information content and high sparsity compared to the controls indicating poor firing fidelity. We finally show that object cells and trace cells fire less precisely in the EC-App/Tau mice compared to controls indicating poor encoding of objects. Overall, we show that AD pathology causes erratic firing of LEC neurons and object coding defects leading to LEC-specific memory impairment.
Collapse
|
5
|
Hole KL, Zhu B, Huggon L, Brown JT, Mason JM, Williams RJ. Tau P301L disengages from the proteosome core complex and neurogranin coincident with enhanced neuronal network excitability. Cell Death Dis 2024; 15:429. [PMID: 38890273 PMCID: PMC11189525 DOI: 10.1038/s41419-024-06815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Tauopathies are characterised by the pathological accumulation of misfolded tau. The emerging view is that toxic tau species drive synaptic dysfunction and potentially tau propagation before measurable neurodegeneration is evident, but the underlying molecular events are not well defined. Human non-mutated 0N4R tau (tauWT) and P301L mutant 0N4R tau (tauP301L) were expressed in mouse primary cortical neurons using adeno-associated viruses to monitor early molecular changes and synaptic function before the onset of neuronal loss. In this model tauP301L was differentially phosphorylated relative to tauwt with a notable increase in phosphorylation at ser262. Affinity purification - mass spectrometry combined with tandem mass tagging was used to quantitatively compare the tauWT and tauP301L interactomes. This revealed an enrichment of tauP301L with ribosomal proteins but a decreased interaction with the proteasome core complex and reduced tauP301L degradation. Differences in the interaction of tauP301L with members of a key synaptic calcium-calmodulin signalling pathway were also identified, most notably, increased association with CaMKII but reduced association with calcineurin and the candidate AD biomarker neurogranin. Decreased association of neurogranin to tauP301L corresponded with the appearance of enhanced levels of extracellular neurogranin suggestive of potential release or leakage from synapses. Finally, analysis of neuronal network activity using micro-electrode arrays showed that overexpression of tauP301L promoted basal hyperexcitability coincident with these changes in the tau interactome and implicating tau in specific early alterations in synaptic function.
Collapse
Affiliation(s)
- Katriona L Hole
- Department of Life Sciences, University of Bath, Bath, UK
- The Francis Crick Institute, London, UK
| | - Bangfu Zhu
- Department of Life Sciences, University of Bath, Bath, UK
| | - Laura Huggon
- Department of Life Sciences, University of Bath, Bath, UK
- UK Dementia Research Institute at King's College London, London, UK
| | - Jon T Brown
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Jody M Mason
- Department of Life Sciences, University of Bath, Bath, UK
| | | |
Collapse
|
6
|
Herber CS, Pratt KJ, Shea JM, Villeda SA, Giocomo LM. Spatial Coding Dysfunction and Network Instability in the Aging Medial Entorhinal Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.588890. [PMID: 38659809 PMCID: PMC11042240 DOI: 10.1101/2024.04.12.588890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Across species, spatial memory declines with age, possibly reflecting altered hippocampal and medial entorhinal cortex (MEC) function. However, the integrity of cellular and network-level spatial coding in aged MEC is unknown. Here, we leveraged in vivo electrophysiology to assess MEC function in young, middle-aged, and aged mice navigating virtual environments. In aged grid cells, we observed impaired stabilization of context-specific spatial firing, correlated with spatial memory deficits. Additionally, aged grid networks shifted firing patterns often but with poor alignment to context changes. Aged spatial firing was also unstable in an unchanging environment. In these same mice, we identified 458 genes differentially expressed with age in MEC, 61 of which had expression correlated with spatial firing stability. These genes were enriched among interneurons and related to synaptic transmission. Together, these findings identify coordinated transcriptomic, cellular, and network changes in MEC implicated in impaired spatial memory in aging.
Collapse
Affiliation(s)
- Charlotte S. Herber
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - Karishma J.B. Pratt
- Department of Anatomy, University of California San Francisco, 513 Parnassus Avenue, Box 0452, San Francisco, CA, 94143, USA
- These authors contributed equally
| | - Jeremy M. Shea
- Department of Anatomy, University of California San Francisco, 513 Parnassus Avenue, Box 0452, San Francisco, CA, 94143, USA
- These authors contributed equally
| | - Saul A. Villeda
- Department of Anatomy, University of California San Francisco, 513 Parnassus Avenue, Box 0452, San Francisco, CA, 94143, USA
- Bakar Aging Research Institute, San Francisco, CA, 94143, USA
| | - Lisa M. Giocomo
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
- Lead contact
| |
Collapse
|
7
|
Koike R, Soeda Y, Kasai A, Fujioka Y, Ishigaki S, Yamanaka A, Takaichi Y, Chambers JK, Uchida K, Watanabe H, Takashima A. Path integration deficits are associated with phosphorylated tau accumulation in the entorhinal cortex. Brain Commun 2024; 6:fcad359. [PMID: 38347945 PMCID: PMC10859636 DOI: 10.1093/braincomms/fcad359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 11/14/2023] [Accepted: 01/04/2024] [Indexed: 02/15/2024] Open
Abstract
Alzheimer's disease is a devastating disease that is accompanied by dementia, and its incidence increases with age. However, no interventions have exhibited clear therapeutic effects. We aimed to develop and characterize behavioural tasks that allow the earlier identification of signs preceding dementia that would facilitate the development of preventative and therapeutic interventions for Alzheimer's disease. To this end, we developed a 3D virtual reality task sensitive to the activity of grid cells in the entorhinal cortex, which is the region that first exhibits neurofibrillary tangles in Alzheimer's disease. We investigated path integration (assessed by error distance) in a spatial navigation task sensitive to grid cells in the entorhinal cortex in 177 volunteers, aged 20-89 years, who did not have self-reported dementia. While place memory was intact even in old age, path integration deteriorated with increasing age. To investigate the relationship between neurofibrillary tangles in the entorhinal cortex and path integration deficit, we examined a mouse model of tauopathy (P301S mutant tau-overexpressing mice; PS19 mice). At 6 months of age, PS19 mice showed a significant accumulation of phosphorylated tau only in the entorhinal cortex, associated with impaired path integration without impairments in spatial cognition. These data are consistent with the idea that path integration deficit is caused by the accumulation of phosphorylated tau in the entorhinal cortex. This method may allow the early identification of individuals likely to develop Alzheimer's disease.
Collapse
Affiliation(s)
- Riki Koike
- Laboratory for Alzheimer’s Disease, Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
| | - Yoshiyuki Soeda
- Laboratory for Alzheimer’s Disease, Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
| | - Atsushi Kasai
- Deapartment of Research and Development, MIG (Medical Innovation Group) Inc, Shibuya, Tokyo 150-0031, Japan
| | - Yusuke Fujioka
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Shinsuke Ishigaki
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yuta Takaichi
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - James K Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hirohisa Watanabe
- Department of Neurology, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Akihiko Takashima
- Laboratory for Alzheimer’s Disease, Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
8
|
Reinshagen A. Grid cells: the missing link in understanding Parkinson's disease? Front Neurosci 2024; 18:1276714. [PMID: 38389787 PMCID: PMC10881698 DOI: 10.3389/fnins.2024.1276714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
The mechanisms underlying Parkinson's disease (PD) are complex and not fully understood, and the box-and-arrow model among other current models present significant challenges. This paper explores the potential role of the allocentric brain and especially its grid cells in several PD motor symptoms, including bradykinesia, kinesia paradoxa, freezing of gait, the bottleneck phenomenon, and their dependency on cueing. It is argued that central hubs, like the locus coeruleus and the pedunculopontine nucleus, often narrowly interpreted in the context of PD, play an equally important role in governing the allocentric brain as the basal ganglia. Consequently, the motor and secondary motor (e.g., spatially related) symptoms of PD linked with dopamine depletion may be more closely tied to erroneous computation by grid cells than to the basal ganglia alone. Because grid cells and their associated central hubs introduce both spatial and temporal information to the brain influencing velocity perception they may cause bradykinesia or hyperkinesia as well. In summary, PD motor symptoms may primarily be an allocentric disturbance resulting from virtual faulty computation by grid cells revealed by dopamine depletion in PD.
Collapse
|
9
|
Aoun A, Shetler O, Raghuraman R, Rodriguez GA, Hussaini SA. Beyond correlation: optimal transport metrics for characterizing representational stability and remapping in neurons encoding spatial memory. Front Cell Neurosci 2024; 17:1273283. [PMID: 38303974 PMCID: PMC10831886 DOI: 10.3389/fncel.2023.1273283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/05/2023] [Indexed: 02/03/2024] Open
Abstract
Introduction Spatial representations in the entorhinal cortex (EC) and hippocampus (HPC) are fundamental to cognitive functions like navigation and memory. These representations, embodied in spatial field maps, dynamically remap in response to environmental changes. However, current methods, such as Pearson's correlation coefficient, struggle to capture the complexity of these remapping events, especially when fields do not overlap, or transformations are non-linear. This limitation hinders our understanding and quantification of remapping, a key aspect of spatial memory function. Methods We propose a family of metrics based on the Earth Mover's Distance (EMD) as a versatile framework for characterizing remapping. Results The EMD provides a granular, noise-resistant, and rate-robust description of remapping. This approach enables the identification of specific cell types and the characterization of remapping in various scenarios, including disease models. Furthermore, the EMD's properties can be manipulated to identify spatially tuned cell types and to explore remapping as it relates to alternate information forms such as spatiotemporal coding. Discussion We present a feasible, lightweight approach that complements traditional methods. Our findings underscore the potential of the EMD as a powerful tool for enhancing our understanding of remapping in the brain and its implications for spatial navigation, memory studies and beyond.
Collapse
Affiliation(s)
- Andrew Aoun
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, United States
| | - Oliver Shetler
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, United States
| | - Radha Raghuraman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, United States
| | - Gustavo A. Rodriguez
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, United States
| | - S. Abid Hussaini
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
10
|
Viana da Silva S, Haberl MG, Gaur K, Patel R, Narayan G, Ledakis M, Fu ML, de Castro Vieira M, Koo EH, Leutgeb JK, Leutgeb S. Localized APP expression results in progressive network dysfunction by disorganizing spike timing. Neuron 2024; 112:124-140.e6. [PMID: 37909036 PMCID: PMC10877582 DOI: 10.1016/j.neuron.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/16/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023]
Abstract
Progressive cognitive decline in Alzheimer's disease could either be caused by a spreading molecular pathology or by an initially focal pathology that causes aberrant neuronal activity in a larger network. To distinguish between these possibilities, we generated a mouse model with expression of mutant human amyloid precursor protein (APP) in only hippocampal CA3 cells. We found that performance in a hippocampus-dependent memory task was impaired in young adult and aged mutant mice. In both age groups, we then recorded from the CA1 region, which receives inputs from APP-expressing CA3 cells. We observed that theta oscillation frequency in CA1 was reduced along with disrupted relative timing of principal cells. Highly localized pathology limited to the presynaptic CA3 cells is thus sufficient to cause aberrant firing patterns in postsynaptic neuronal networks, which indicates that disease progression is not only from spreading pathology but also mediated by progressively advancing physiological dysfunction.
Collapse
Affiliation(s)
- Silvia Viana da Silva
- Neurobiology Department, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA; NeuroCure Excellence Cluster and German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Matthias G Haberl
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Neuroscience Research Center, Charitéplatz 1, 10117 Berlin, Germany
| | - Kshitij Gaur
- Neurobiology Department, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Rina Patel
- Neurobiology Department, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Gautam Narayan
- Neurobiology Department, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Max Ledakis
- Neurobiology Department, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Maylin L Fu
- Neurobiology Department, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Miguel de Castro Vieira
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Neuroscience Research Center, Charitéplatz 1, 10117 Berlin, Germany
| | - Edward H Koo
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jill K Leutgeb
- Neurobiology Department, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| | - Stefan Leutgeb
- Neurobiology Department, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA; Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
11
|
Colmant L, Bierbrauer A, Bellaali Y, Kunz L, Van Dongen J, Sleegers K, Axmacher N, Lefèvre P, Hanseeuw B. Dissociating effects of aging and genetic risk of sporadic Alzheimer's disease on path integration. Neurobiol Aging 2023; 131:170-181. [PMID: 37672944 DOI: 10.1016/j.neurobiolaging.2023.07.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/19/2023] [Accepted: 07/26/2023] [Indexed: 09/08/2023]
Abstract
Path integration is a spatial navigation ability that requires the integration of information derived from self-motion cues and stable landmarks, when available, to return to a previous location. Path integration declines with age and Alzheimer's disease (AD). Here, we sought to separate the effects of age and AD risk on path integration, with and without a landmark. Overall, 279 people participated, aged between 18 and 80 years old. Advanced age impaired the appropriate use of a landmark. Older participants furthermore remembered the location of the goal relative to their starting location and reproduced this initial view without considering that they had moved in the environment. This lack of adaptative behavior was not associated with AD risk. In contrast, participants at genetic risk of AD (apolipoprotein E ε4 carriers) exhibited a pure path integration deficit, corresponding to difficulty in performing path integration in the absence of a landmark. Our results show that advanced-age impacts landmark-supported path integration, and that this age effect is dissociable from the effects of AD risk impacting pure path integration.
Collapse
Affiliation(s)
- Lise Colmant
- Institute of Neuroscience, UCLouvain, Brussels, Belgium; Cliniques Universitaires Saint-Luc, Brussels, Belgium; Institute of Information and Communication Technologies, Electronics and Applied Mathematics, UCLouvain, Louvain-la-Neuve, Belgium.
| | - Anne Bierbrauer
- Institute for Systems Neuroscience, Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Germany
| | | | - Lukas Kunz
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Jasper Van Dongen
- VIB-Department of Molecular Genetics, University of Antwerp, Belgium
| | - Kristel Sleegers
- VIB-Department of Molecular Genetics, University of Antwerp, Belgium
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Germany
| | - Philippe Lefèvre
- Institute of Neuroscience, UCLouvain, Brussels, Belgium; Institute of Information and Communication Technologies, Electronics and Applied Mathematics, UCLouvain, Louvain-la-Neuve, Belgium
| | - Bernard Hanseeuw
- Institute of Neuroscience, UCLouvain, Brussels, Belgium; Cliniques Universitaires Saint-Luc, Brussels, Belgium; Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; WELBIO Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
12
|
Coughlan G, DeSouza B, Zhukovsky P, Hornberger M, Grady C, Buckley RF. Spatial cognition is associated with levels of phosphorylated-tau and β-amyloid in clinically normal older adults. Neurobiol Aging 2023; 130:124-134. [PMID: 37506550 DOI: 10.1016/j.neurobiolaging.2023.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023]
Abstract
Spatial cognition is associated with Alzheimer's disease (AD) biomarkers in the symptomatic stages of the disease. We investigated whether cerebrospinal fluid (CSF) biomarkers (phosphorylated-tau [p-tau] and β-amyloid) are associated with poorer spatial cognition in clinically normal older adults. Participants were 1875 clinically normal adults (age 67.8 [8.5] years) from the European Prevention of Alzheimer's Dementia Consortium. Mixed effect models assessed the cross-sectional association between p-tau181, β-amyloid1-42 (Aβ1-42) and p-tau181/Aβ1-42 ratio and spatial cognition measured using semi-automated Supermarket Task and the 4 Mountains Task. Levels of p-tau181, Aβ1-42, and p-tau181/Aβ1-42 ratio were significantly associated with spatial cognition scores on both tasks. The p-tau181/Aβ1-42 ratio showed the largest effect sizes (β = -0.04/0.05, p < 0.001). Lower entorhinal cortical volume was associated with poorer outcomes on both tasks (β = 0.06, p < 0.002) and accounted for 18%-22% of the direct association between p-tau181 and spatial cognition scores. In conclusion, degeneration of the entorhinal cortex mediates a significant proportion of the association between p-tau181 and spatial assessments in cognitively normal adults. Future studies should focus on increasing the sensitivity of digital spatial assessments.
Collapse
Affiliation(s)
- Gillian Coughlan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Brennan DeSouza
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
| | - Peter Zhukovsky
- Campbell Family Mental Health Research Institute, Centre for Mental Health and Addiction, Toronto, Ontario, Canada
| | - Michael Hornberger
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Cheryl Grady
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada; Departments of Psychiatry and Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Rachel F Buckley
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
13
|
Ying J, Reboreda A, Yoshida M, Brandon MP. Grid cell disruption in a mouse model of early Alzheimer's disease reflects reduced integration of self-motion cues. Curr Biol 2023:S0960-9822(23)00547-X. [PMID: 37220744 DOI: 10.1016/j.cub.2023.04.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/25/2023]
Abstract
Converging evidence from human and rodent studies suggests that disrupted grid cell coding in the medial entorhinal cortex (MEC) underlies path integration behavioral deficits during early Alzheimer's disease (AD). However, grid cell firing relies on both self-motion cues and environmental features, and it remains unclear whether disrupted grid coding can account for specific path integration deficits reported during early AD. Here, we report in the J20 transgenic amyloid beta (Aβ) mouse model of early AD that grid cells were spatially unstable toward the center of the arena, had qualitatively different spatial components that aligned parallel to the borders of the environment, and exhibited impaired integration of distance traveled via reduced theta phase precession. Our results suggest that disrupted early AD grid coding reflects reduced integration of self-motion cues but not environmental information via geometric boundaries, providing evidence that grid cell impairments underlie path integration deficits during early AD.
Collapse
Affiliation(s)
- Johnson Ying
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, Montreal, QC H4H 1R3, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
| | - Antonio Reboreda
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany; Leibniz Institute for Neurobiology (LIN), Magdeburg 39120, Germany
| | - Motoharu Yoshida
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany; Leibniz Institute for Neurobiology (LIN), Magdeburg 39120, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg 39106, Germany
| | - Mark P Brandon
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, Montreal, QC H4H 1R3, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada.
| |
Collapse
|
14
|
Meftah S, Gan J. Alzheimer's disease as a synaptopathy: Evidence for dysfunction of synapses during disease progression. Front Synaptic Neurosci 2023; 15:1129036. [PMID: 36970154 PMCID: PMC10033629 DOI: 10.3389/fnsyn.2023.1129036] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
The synapse has consistently been considered a vulnerable and critical target within Alzheimer's disease, and synapse loss is, to date, one of the main biological correlates of cognitive decline within Alzheimer's disease. This occurs prior to neuronal loss with ample evidence that synaptic dysfunction precedes this, in support of the idea that synaptic failure is a crucial stage within disease pathogenesis. The two main pathological hallmarks of Alzheimer's disease, abnormal aggregates of amyloid or tau proteins, have had demonstrable effects on synaptic physiology in animal and cellular models of Alzheimer's disease. There is also growing evidence that these two proteins may have a synergistic effect on neurophysiological dysfunction. Here, we review some of the main findings of synaptic alterations in Alzheimer's disease, and what we know from Alzheimer's disease animal and cellular models. First, we briefly summarize some of the human evidence to suggest that synapses are altered, including how this relates to network activity. Subsequently, animal and cellular models of Alzheimer's disease are considered, highlighting mouse models of amyloid and tau pathology and the role these proteins may play in synaptic dysfunction, either in isolation or examining how the two pathologies may interact in dysfunction. This specifically focuses on neurophysiological function and dysfunction observed within these animal models, typically measured using electrophysiology or calcium imaging. Following synaptic dysfunction and loss, it would be impossible to imagine that this would not alter oscillatory activity within the brain. Therefore, this review also discusses how this may underpin some of the aberrant oscillatory patterns seen in animal models of Alzheimer's disease and human patients. Finally, an overview of some key directions and considerations in the field of synaptic dysfunction in Alzheimer's disease is covered. This includes current therapeutics that are targeted specifically at synaptic dysfunction, but also methods that modulate activity to rescue aberrant oscillatory patterns. Other important future avenues of note in this field include the role of non-neuronal cell types such as astrocytes and microglia, and mechanisms of dysfunction independent of amyloid and tau in Alzheimer's disease. The synapse will certainly continue to be an important target within Alzheimer's disease for the foreseeable future.
Collapse
Affiliation(s)
- Soraya Meftah
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jian Gan
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
15
|
Igarashi KM. Entorhinal cortex dysfunction in Alzheimer's disease. Trends Neurosci 2023; 46:124-136. [PMID: 36513524 PMCID: PMC9877178 DOI: 10.1016/j.tins.2022.11.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/31/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022]
Abstract
The entorhinal cortex (EC) is the brain region that often exhibits the earliest histological alterations in Alzheimer's disease (AD), including the formation of neurofibrillary tangles and cell death. Recently, brain imaging studies from preclinical AD patients and electrophysiological recordings from AD animal models have shown that impaired neuronal activity in the EC precedes neurodegeneration. This implies that memory impairments and spatial navigation deficits at the initial stage of AD are likely caused by activity dysfunction rather than by cell death. This review focuses on recent findings on EC dysfunction in AD, and discusses the potential pathways for mitigating AD progression by protecting the EC.
Collapse
Affiliation(s)
- Kei M Igarashi
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
16
|
Silva A, Martínez MC. Spatial memory deficits in Alzheimer's disease and their connection to cognitive maps' formation by place cells and grid cells. Front Behav Neurosci 2023; 16:1082158. [PMID: 36710956 PMCID: PMC9878455 DOI: 10.3389/fnbeh.2022.1082158] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Whenever we navigate through different contexts, we build a cognitive map: an internal representation of the territory. Spatial navigation is a complex skill that involves multiple types of information processing and integration. Place cells and grid cells, collectively with other hippocampal and medial entorhinal cortex neurons (MEC), form a neural network whose activity is critical for the representation of self-position and orientation along with spatial memory retrieval. Furthermore, this activity generates new representations adapting to changes in the environment. Though there is a normal decline in spatial memory related to aging, this is dramatically increased in pathological conditions such as Alzheimer's disease (AD). AD is a multi-factorial neurodegenerative disorder affecting mainly the hippocampus-entorhinal cortex (HP-EC) circuit. Consequently, the initial stages of the disease have disorientation and wandering behavior as two of its hallmarks. Recent electrophysiological studies have linked spatial memory deficits to difficulties in spatial information encoding. Here we will discuss map impairment and remapping disruption in the HP-EC network, as a possible circuit mechanism involved in the spatial memory and navigation deficits observed in AD, pointing out the benefits of virtual reality as a tool for early diagnosis and rehabilitation.
Collapse
Affiliation(s)
- Azul Silva
- Facultad de Ciencias Médicas, Universidad de Buenos Aires, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Fisiología y Biofísica “Dr. Bernardo Houssay”- CONICET (IFIBIO), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Cecilia Martínez
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Fisiología y Biofísica “Dr. Bernardo Houssay”- CONICET (IFIBIO), Universidad de Buenos Aires, Buenos Aires, Argentina,Facultad de Ciencias Exactas y Naturales, Departamento de Biología Molecular y Celular “Dr. Héctor Maldonado”, Universidad de Buenos Aires, Buenos Aires, Argentina,*Correspondence: María Cecilia Martínez,
| |
Collapse
|
17
|
Theta and gamma oscillatory dynamics in mouse models of Alzheimer's disease: A path to prospective therapeutic intervention. Neurosci Biobehav Rev 2022; 136:104628. [PMID: 35331816 DOI: 10.1016/j.neubiorev.2022.104628] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/26/2022]
Abstract
Understanding the neural basis of cognitive deficits, a key feature of Alzheimer's disease (AD), is imperative for achieving the therapy of the disease. Rhythmic oscillatory activities in neural systems are a fundamental mechanism for diverse brain functions, including cognition. In several neurological conditions like AD, aberrant neural oscillations have been shown to play a central role. Furthermore, manipulation of brain oscillations in animals has confirmed their impact on cognition and disease. In this article, we review the evidence from mouse models that shows how synchronized oscillatory activity is intricately linked to AD machinery. We primarily focus on recent reports showing abnormal oscillatory activities at theta and gamma frequencies in AD condition and their influence on cellular disturbances and cognitive impairments. A thorough comprehension of the role that neuronal oscillations play in AD pathology should pave the way to therapeutic interventions that can curb the disease.
Collapse
|
18
|
Segen V, Ying J, Morgan E, Brandon M, Wolbers T. Path integration in normal aging and Alzheimer's disease. Trends Cogn Sci 2021; 26:142-158. [PMID: 34872838 DOI: 10.1016/j.tics.2021.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/20/2022]
Abstract
In this review we discuss converging evidence from human and rodent research demonstrating how path integration (PI) is impaired in healthy aging and Alzheimer's disease (AD), and point to the neural mechanisms that underlie these deficits. Importantly, we highlight that (i) the grid cell network in the entorhinal cortex is crucial for PI in both humans and rodents, (ii) PI deficits are present in healthy aging and are significantly more pronounced in patients with early-stage AD, (iii) compromised entorhinal grid cell computations in healthy older adults and in young adults at risk of AD are linked to PI deficits, and (iv) PI and grid cell deficits may serve as sensitive markers for pathological decline in early AD.
Collapse
Affiliation(s)
- Vladislava Segen
- Aging and Cognition Research Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany.
| | - Johnson Ying
- Douglas Hospital Research Center, McGill University, Montreal, QC, Canada
| | - Erik Morgan
- Douglas Hospital Research Center, McGill University, Montreal, QC, Canada
| | - Mark Brandon
- Douglas Hospital Research Center, McGill University, Montreal, QC, Canada
| | - Thomas Wolbers
- Aging and Cognition Research Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany.
| |
Collapse
|
19
|
Gong Z, Yu F. A Plane-Dependent Model of 3D Grid Cells for Representing Both 2D and 3D Spaces Under Various Navigation Modes. Front Comput Neurosci 2021; 15:739515. [PMID: 34630061 PMCID: PMC8493087 DOI: 10.3389/fncom.2021.739515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/20/2021] [Indexed: 11/30/2022] Open
Abstract
Grid cells are crucial in path integration and representation of the external world. The spikes of grid cells spatially form clusters called grid fields, which encode important information about allocentric positions. To decode the information, studying the spatial structures of grid fields is a key task for both experimenters and theorists. Experiments reveal that grid fields form hexagonal lattice during planar navigation, and are anisotropic beyond planar navigation. During volumetric navigation, they lose global order but possess local order. How grid cells form different field structures behind these different navigation modes remains an open theoretical question. However, to date, few models connect to the latest discoveries and explain the formation of various grid field structures. To fill in this gap, we propose an interpretive plane-dependent model of three-dimensional (3D) grid cells for representing both two-dimensional (2D) and 3D space. The model first evaluates motion with respect to planes, such as the planes animals stand on and the tangent planes of the motion manifold. Projection of the motion onto the planes leads to anisotropy, and error in the perception of planes degrades grid field regularity. A training-free recurrent neural network (RNN) then maps the processed motion information to grid fields. We verify that our model can generate regular and anisotropic grid fields, as well as grid fields with merely local order; our model is also compatible with mode switching. Furthermore, simulations predict that the degradation of grid field regularity is inversely proportional to the interval between two consecutive perceptions of planes. In conclusion, our model is one of the few pioneers that address grid field structures in a general case. Compared to the other pioneer models, our theory argues that the anisotropy and loss of global order result from the uncertain perception of planes rather than insufficient training.
Collapse
Affiliation(s)
- Ziyi Gong
- Center for Brain Inspired Computing Research, Tsinghua University, Beijing, China.,Department of Neurobiology, School of Medicine, Duke University, Durham, NC, United States
| | - Fangwen Yu
- Center for Brain Inspired Computing Research, Tsinghua University, Beijing, China
| |
Collapse
|
20
|
Nuñez A, Buño W. The Theta Rhythm of the Hippocampus: From Neuronal and Circuit Mechanisms to Behavior. Front Cell Neurosci 2021; 15:649262. [PMID: 33746716 PMCID: PMC7970048 DOI: 10.3389/fncel.2021.649262] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/28/2021] [Indexed: 11/17/2022] Open
Abstract
This review focuses on the neuronal and circuit mechanisms involved in the generation of the theta (θ) rhythm and of its participation in behavior. Data have accumulated indicating that θ arises from interactions between medial septum-diagonal band of Broca (MS-DbB) and intra-hippocampal circuits. The intrinsic properties of MS-DbB and hippocampal neurons have also been shown to play a key role in θ generation. A growing number of studies suggest that θ may represent a timing mechanism to temporally organize movement sequences, memory encoding, or planned trajectories for spatial navigation. To accomplish those functions, θ and gamma (γ) oscillations interact during the awake state and REM sleep, which are considered to be critical for learning and memory processes. Further, we discuss that the loss of this interaction is at the base of various neurophatological conditions.
Collapse
Affiliation(s)
- Angel Nuñez
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain
| | - Washington Buño
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| |
Collapse
|