1
|
Atencio B, Malavin S, Rubin-Blum M, Ram R, Adar E, Ronen Z. Site-specific incubations reveal biofilm diversity and functional adaptations in deep, ancient desert aquifers. Front Microbiol 2025; 16:1533115. [PMID: 40190731 PMCID: PMC11968702 DOI: 10.3389/fmicb.2025.1533115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Deep pristine aquifers are ecological hotspots with diverse microbial life, where microorganisms exist either attached (sessile) to solid substrates or suspended in groundwater (planktonic). Characterizing the attached microbial communities is of paramount importance, especially in the context of biofouling. However, obtaining samples of attached microbes that thrive under natural (undisturbed) conditions is challenging. Our study addresses this by retrieving sessile microbes on-site. We installed columns filled with site-specific rock cuttings at the wellhead, allowing fresh groundwater to flow continuously for approximately 60 days. We hypothesized that the attached microbial communities would differ structurally from planktonic microbes due to the aquifer's lithological and mineralogical composition. This study involved an exploratory examination of the microbial communities in different aquifers with distinct mineralogies, including quartzitic sandstone, calcareous, chert, and highly heterogeneous (clastic) aquifers in Israel's Negev Desert. Metagenomic analysis revealed both shared and distinct microbial communities among attached and planktonic forms in the various environments, likely shaped by the aquifers' physical, lithological, and mineralogical properties. A wealth of carbon-fixation pathways and energy-conservation strategies in the attached microbiome provide evidence for the potential productivity of these biofilms. We identified widespread genetic potential for biofilm formation (e.g., via pili, flagella, and extracellular polymeric substance production) and the interactome (e.g., quorum-sensing genes). Our assessment of these functions provides a genomic framework for groundwater management and biofouling treatment.
Collapse
Affiliation(s)
- Betzabe Atencio
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Stas Malavin
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
- Department of Marine Biology, Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Maxim Rubin-Blum
- Department of Marine Biology, Israel Oceanographic and Limnological Research, Haifa, Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Roi Ram
- Geological Survey of Israel, Jerusalem, Israel
- Institute of Environmental Physics, Heidelberg University, Heidelberg, Germany
| | - Eilon Adar
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Zeev Ronen
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| |
Collapse
|
2
|
Sajeevan A, Ramamurthy T, Solomon AP. Vibrio cholerae virulence and its suppression through the quorum-sensing system. Crit Rev Microbiol 2025; 51:22-43. [PMID: 38441045 DOI: 10.1080/1040841x.2024.2320823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/21/2023] [Accepted: 02/10/2024] [Indexed: 03/06/2024]
Abstract
Vibrio cholerae is a cholera-causing pathogen known to instigate severe contagious diarrhea that affects millions globally. Survival of vibrios depend on a combination of multicellular responses and adapt to changes that prevail in the environment. This process is achieved through a strong communication at the cellular level, the process has been recognized as quorum sensing (QS). The severity of infection is highly dependent on the QS of vibrios in the gut milieu. The quorum may exist in a low/high cell density (LCD/HCD) state to exert a positive or negative response to control the regulatory pathogenic networks. The impact of this regulation reflects on the transition of pathogenic V. cholerae from the environment to infect humans and cause outbreaks or epidemics of cholera. In this context, the review portrays various regulatory processes and associated virulent pathways, which maneuver and control LCD and HCD states for their survival in the host. Although several treatment options are existing, promotion of therapeutics by exploiting the virulence network may potentiate ineffective antibiotics to manage cholera. In addition, this approach is also useful in resource-limited settings, where the accessibility to antibiotics or conventional therapeutic options is limited.
Collapse
Affiliation(s)
- Anusree Sajeevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Thandavarayan Ramamurthy
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Disease, Kolkata, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
3
|
Tang X, Yang Q, Hu S, Guo K, Li Y, Wu Z. Comparative transcriptome reveals importance of export apparatus subunit (ascR) in type III secretion system and its roles on biological properties, gene expression profiles, virulence and colonization of Aeromonas veronii. Int J Biol Macromol 2024; 274:133270. [PMID: 38906357 DOI: 10.1016/j.ijbiomac.2024.133270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Aeromonas veronii, an opportunistic pathogen, is known to cause serious infections across various species. In our previous study, we discovered that A. veronii GL2 exhibited a virulence up to ten times greater than that of FO1. To ascertain the factors contributing to the disparity in virulence between the two strains, we conducted a comparative transcriptome analysis. This analysis reveals a significant upregulation (P < 0.05) of the ascR gene in GL2 compared with FO1. Additionally, six differentially expressed genes (DEGs) were identified within the "Bacterial secretion system" pathway (map03070), with ascR being an essential component of type III secretion system (T3SS). AscR, considered as SctR family export apparatus subunit within the T3SS, has ambiguous roles in the biological properties, gene expression profiles, virulence and colonization of A. veronii. Therefore, we constructed a mutant strain (ΔascR) by homologous recombination. Comparative analysis with the wide-type GL2 reveals no significant differences in terms of colony morphology, growth curve, hemolytic activity and protease activity. However, significant reductions (P < 0.01) were observed in the abilities of biofilm formation and swimming mobility. No remarkable difference was noted in the lengths of flagella. The LD50 value of ΔascR was to be 5.15 times higher than that of GL2. Interestingly, the mRNA expression of ascC, ascD, ascJ and ascI genes in the T3SS, and mshB, mshE, mshK and mshP genes in the MSHA type pili were significantly upregulated (P < 0.05) in ΔascR, potentially due to transcriptional compensation. Further analysis of enzymatic biomarkers revealed that ΔascR might not destruct the recognition of innate immune response in host remarkably, but the colonization levels of A.veronii were significantly suppressed (P < 0.01) in ΔascR group. In conclusion, the ascR gene may be a key determinant in regulating the virulence of A. veronii, and the destruction of the T3SS caused by ascR deficiency results in these notable changes.
Collapse
Affiliation(s)
- Xiaoqi Tang
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing 400715, China
| | - Qinglin Yang
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing 400715, China
| | - Shaoyu Hu
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing 400715, China
| | - Kefan Guo
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing 400715, China
| | - Yanhong Li
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing 400715, China
| | - Zhengli Wu
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Zhang Q, Alter T, Fleischmann S. Non-O1/Non-O139 Vibrio cholerae-An Underestimated Foodborne Pathogen? An Overview of Its Virulence Genes and Regulatory Systems Involved in Pathogenesis. Microorganisms 2024; 12:818. [PMID: 38674762 PMCID: PMC11052320 DOI: 10.3390/microorganisms12040818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the number of foodborne infections with non-O1 and non-O139 Vibrio cholerae (NOVC) has increased worldwide. These have ranged from sporadic infection cases to localized outbreaks. The majority of case reports describe self-limiting gastroenteritis. However, severe gastroenteritis and even cholera-like symptoms have also been described. All reported diarrheal cases can be traced back to the consumption of contaminated seafood. As climate change alters the habitats and distribution patterns of aquatic bacteria, there is a possibility that the number of infections and outbreaks caused by Vibrio spp. will further increase, especially in countries where raw or undercooked seafood is consumed or clean drinking water is lacking. Against this background, this review article focuses on a possible infection pathway and how NOVC can survive in the human host after oral ingestion, colonize intestinal epithelial cells, express virulence factors causing diarrhea, and is excreted by the human host to return to the environment.
Collapse
Affiliation(s)
| | | | - Susanne Fleischmann
- Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany; (Q.Z.); (T.A.)
| |
Collapse
|
5
|
Zhang J, Li S, Sun T, Zong Y, Luo Y, Wei Y, Zhang W, Zhao K. Oscillation of type IV pili regulated by the circadian clock in cyanobacterium Synechococcus elongatus PCC7942. SCIENCE ADVANCES 2024; 10:eadd9485. [PMID: 38266097 PMCID: PMC10807798 DOI: 10.1126/sciadv.add9485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Type IV pili (TFP) are known to be functionally related to cell motilities and natural transformation in many bacteria. However, the molecular and ecological functions of the TFP have rarely been reported for photosynthetic cyanobacteria. Here, by labeling pili in model cyanobacterium Synechococcus elongatus PCC 7942 (Syn7942), we have quantitatively characterized the TFP and its driven twitching motility in situ at the single-cell level. We found an oscillating pattern of TFP in accordance with the light and dark periods during light-dark cycles, which is correlated positively to the oscillating pattern of the natural transformation efficiency. We further showed that the internal circadian clock plays an important role in regulating the oscillating pattern of TFP, which is also supported by evidences at the molecular level by tracking the expression of 16 TFP-related genes. This study adds a detailed picture toward the gap between TFP and its relations to circadian regulations in Syn7942.
Collapse
Affiliation(s)
- Jingchao Zhang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
- Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Shubin Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Tao Sun
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, P.R. China
| | - Yiwu Zong
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Yan Luo
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Yufei Wei
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Weiwen Zhang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, P.R. China
| | - Kun Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and The Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| |
Collapse
|
6
|
Huang Z, Yu K, Lan R, Glenn Morris J, Xiao Y, Ye J, Zhang L, Luo L, Gao H, Bai X, Wang D. Vibrio metschnikovii as an emergent pathogen: analyses of phylogeny and O-antigen and identification of possible virulence characteristics. Emerg Microbes Infect 2023; 12:2252522. [PMID: 37616379 PMCID: PMC10484048 DOI: 10.1080/22221751.2023.2252522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 08/26/2023]
Abstract
Vibrio metschnikovii is an emergent pathogen that causes human infections which may be fatal. However, the phylogenetic characteristics and pathogenicity determinants of V. metschnikovii are poorly understood. Here, the whole-genome features of 103 V. metschnikovii strains isolated from different sources are described. On phylogenetic analysis V. metschnikovii populations could be divided into two major lineages, defined as lineage 1 (L1) and 2 (L2), of which L1 was more likely to be associated with human activity. Meanwhile, we defined 29 V. metschnikovii O-genotypes (VMOg, named VMOg1-VMOg29) by analysis of the O-antigen biosynthesis gene clusters (O-AGCs). Most VMOgs (VMOg1 to VMOg28) were assembled by the Wzx/Wzy pathway, while only VMOg29 used the ABC transporter pathway. Based on the sequence variation of the wzx and wzt genes, an in silico O-genotyping system for V. metschnikovii was developed. Furthermore, nineteen virulence-associated factors involving 161 genes were identified within the V. metschnikovii genomes, including genes encoding motility, adherence, toxins, and secretion systems. In particular, V. metschnikovii was found to promote a high level of cytotoxicity through the synergistic action of the lateral flagella and T6SS. The lateral flagellar-associated flhA gene played an important role in the adhesion and colonization of V. metschnikovii during the early stages of infection. Overall, this study provides an enhanced understanding of the genomic evolution, O-AGCs diversity, and potential pathogenic features of V. metschnikovii.
Collapse
Affiliation(s)
- Zhenzhou Huang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing, People’s Republic of China
- Center for Human Pathogenic Culture Collection, China CDC, Beijing, People’s Republic of China
- Hangzhou Center for Disease Control and Prevention, Hangzhou, People’s Republic of China
| | - Keyi Yu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing, People’s Republic of China
- Center for Human Pathogenic Culture Collection, China CDC, Beijing, People’s Republic of China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - J. Glenn Morris
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Yue Xiao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing, People’s Republic of China
- Center for Human Pathogenic Culture Collection, China CDC, Beijing, People’s Republic of China
| | - Julian Ye
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, People’s Republic of China
| | - Leyi Zhang
- Wenzhou Center for Disease Control and Prevention, Wenzhou, People’s Republic of China
| | - Longze Luo
- Sichuan Provincial Center for Disease Control and Prevention, Chengdu, People’s Republic of China
| | - He Gao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing, People’s Republic of China
- Center for Human Pathogenic Culture Collection, China CDC, Beijing, People’s Republic of China
| | - Xuemei Bai
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing, People’s Republic of China
- Center for Human Pathogenic Culture Collection, China CDC, Beijing, People’s Republic of China
| | - Duochun Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing, People’s Republic of China
- Center for Human Pathogenic Culture Collection, China CDC, Beijing, People’s Republic of China
| |
Collapse
|
7
|
Hughes HQ, Christman ND, Dalia TN, Ellison CK, Dalia AB. The PilT retraction ATPase promotes both extension and retraction of the MSHA type IVa pilus in Vibrio cholerae. PLoS Genet 2022; 18:e1010561. [PMID: 36542674 DOI: 10.1371/journal.pgen.1010561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/05/2023] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Diverse bacterial species use type IVa pili (T4aP) to interact with their environments. The dynamic extension and retraction of T4aP is critical for their function, but the mechanisms that regulate this dynamic activity remain poorly understood. T4aP are typically extended via the activity of a dedicated extension motor ATPase and retracted via the action of an antagonistic retraction motor ATPase called PilT. These motors are generally functionally independent, and loss of PilT commonly results in T4aP hyperpiliation due to undeterred pilus extension. However, for the mannose-sensitive hemagglutinin (MSHA) T4aP of Vibrio cholerae, the loss of PilT unexpectedly results in a loss of surface piliation. Here, we employ a combination of genetic and cell biological approaches to dissect the underlying mechanism. Our results demonstrate that PilT is necessary for MSHA pilus extension in addition to its well-established role in promoting MSHA pilus retraction. Through a suppressor screen, we also provide genetic evidence that the MshA major pilin impacts pilus extension. Together, these findings contribute to our understanding of the factors that regulate pilus extension and describe a previously uncharacterized function for the PilT motor ATPase.
Collapse
Affiliation(s)
- Hannah Q Hughes
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Nicholas D Christman
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Triana N Dalia
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Courtney K Ellison
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Ankur B Dalia
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
8
|
Teschler JK, Nadell CD, Drescher K, Yildiz FH. Mechanisms Underlying Vibrio cholerae Biofilm Formation and Dispersion. Annu Rev Microbiol 2022; 76:503-532. [PMID: 35671532 DOI: 10.1146/annurev-micro-111021-053553] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biofilms are a widely observed growth mode in which microbial communities are spatially structured and embedded in a polymeric extracellular matrix. Here, we focus on the model bacterium Vibrio cholerae and summarize the current understanding of biofilm formation, including initial attachment, matrix components, community dynamics, social interactions, molecular regulation, and dispersal. The regulatory network that orchestrates the decision to form and disperse from biofilms coordinates various environmental inputs. These cues are integrated by several transcription factors, regulatory RNAs, and second-messenger molecules, including bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP). Through complex mechanisms, V. cholerae weighs the energetic cost of forming biofilms against the benefits of protection and social interaction that biofilms provide. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jennifer K Teschler
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA;
| | - Carey D Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | | | - Fitnat H Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA;
| |
Collapse
|