1
|
Kim SH, Lee J, Jang M, Roh SE, Kim S, Lee JH, Seo J, Baek J, Hwang JY, Baek IS, Lee YS, Shigetomi E, Lee CJ, Koizumi S, Kim SK, Kim SJ. Cerebellar Bergmann glia integrate noxious information and modulate nocifensive behaviors. Nat Neurosci 2025; 28:336-345. [PMID: 39748107 DOI: 10.1038/s41593-024-01807-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/27/2024] [Indexed: 01/04/2025]
Abstract
The cerebellum is activated by noxious stimuli and pathological pain but its role in noxious information processing remains unknown. Here, we show that in mice, cutaneous noxious electrical stimuli induced noradrenaline (NA) release from locus coeruleus (LC) terminals in the cerebellar cortex. Bergmann glia (BG) accumulated these LC-NA signals by increasing intracellular calcium in an integrative manner ('flares'). BG flares were also elicited in response to an intraplantar capsaicin injection. Chemogenetic inactivation of LC terminals or BG in the cerebellar cortex or BG-specific knockdown of α1-adrenergic receptors suppressed BG flares, reduced nocifensive licking and had analgesic effects in nerve injury-induced chronic neuropathic pain. Moreover, chemogenetic activation of BG or an intraplantar capsaicin injection reduced Purkinje cell firing, which may disinhibit the output activity of the deep cerebellar nuclei. These results suggest a role for BG in computing noxious information from the LC and in modulating pain-related behaviors by regulating cerebellar output.
Collapse
Affiliation(s)
- Seung Ha Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jaegeon Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Mirae Jang
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Eon Roh
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Soobin Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Hwan Lee
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Jewoo Seo
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jinhee Baek
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Yoon Hwang
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - In Seon Baek
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Yong-Seok Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Memory Network Medical Research Center, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
- Yamanashi GLIA Center, University of Yamanashi, Yamanashi, Japan
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Korea
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
- Yamanashi GLIA Center, University of Yamanashi, Yamanashi, Japan
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Korea.
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea.
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.
- Memory Network Medical Research Center, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
2
|
Kim H, Melliti N, Breithausen E, Michel K, Colomer SF, Poguzhelskaya E, Nemcova P, Ewell L, Blaess S, Becker A, Pitsch J, Dietrich D, Schoch S. Paroxysmal dystonia results from the loss of RIM4 in Purkinje cells. Brain 2024; 147:3171-3188. [PMID: 38478593 DOI: 10.1093/brain/awae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 09/04/2024] Open
Abstract
Full-length RIM1 and 2 are key components of the presynaptic active zone that ubiquitously control excitatory and inhibitory neurotransmitter release. Here, we report that the function of the small RIM isoform RIM4, consisting of a single C2 domain, is strikingly different from that of the long isoforms. RIM4 is dispensable for neurotransmitter release but plays a postsynaptic, cell type-specific role in cerebellar Purkinje cells that is essential for normal motor function. In the absence of RIM4, Purkinje cell intrinsic firing is reduced and caffeine-sensitive, and dendritic integration of climbing fibre input is disturbed. Mice lacking RIM4, but not mice lacking RIM1/2, selectively in Purkinje cells exhibit a severe, hours-long paroxysmal dystonia. These episodes can also be induced by caffeine, ethanol or stress and closely resemble the deficits seen with mutations of the PNKD (paroxysmal non-kinesigenic dystonia) gene. Our data reveal essential postsynaptic functions of RIM proteins and show non-overlapping specialized functions of a small isoform despite high homology to a single domain in the full-length proteins.
Collapse
Affiliation(s)
- Hyuntae Kim
- Synaptic Neuroscience Team, Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Nesrine Melliti
- Synaptic Neuroscience Team, Institute of Neuropathology, University Hospital Bonn, 53127 Bonn, Germany
| | - Eva Breithausen
- Synaptic Neuroscience Team, Institute of Neuropathology, University Hospital Bonn, 53127 Bonn, Germany
| | - Katrin Michel
- Synaptic Neuroscience Team, Institute of Neuropathology, University Hospital Bonn, 53127 Bonn, Germany
| | - Sara Ferrando Colomer
- Synaptic Neuroscience Team, Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Ekaterina Poguzhelskaya
- Synaptic Neuroscience Team, Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Paulina Nemcova
- Synaptic Neuroscience Team, Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Laura Ewell
- School of Medicine, UC Irvine, 92697 Irvine, USA
| | - Sandra Blaess
- Institute of Reconstructive Neurobiology, University Hospital Bonn, 53127 Bonn, Germany
| | - Albert Becker
- Synaptic Neuroscience Team, Institute of Neuropathology, University Hospital Bonn, 53127 Bonn, Germany
| | - Julika Pitsch
- Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany
| | - Dirk Dietrich
- Synaptic Neuroscience Team, Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Susanne Schoch
- Synaptic Neuroscience Team, Institute of Neuropathology, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
3
|
Lin TF, Busch SE, Hansel C. Intrinsic and synaptic determinants of receptive field plasticity in Purkinje cells of the mouse cerebellum. Nat Commun 2024; 15:4645. [PMID: 38821918 PMCID: PMC11143328 DOI: 10.1038/s41467-024-48373-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 04/28/2024] [Indexed: 06/02/2024] Open
Abstract
Non-synaptic (intrinsic) plasticity of membrane excitability contributes to aspects of memory formation, but it remains unclear whether it merely facilitates synaptic long-term potentiation or plays a permissive role in determining the impact of synaptic weight increase. We use tactile stimulation and electrical activation of parallel fibers to probe intrinsic and synaptic contributions to receptive field plasticity in awake mice during two-photon calcium imaging of cerebellar Purkinje cells. Repetitive activation of both stimuli induced response potentiation that is impaired in mice with selective deficits in either synaptic or intrinsic plasticity. Spatial analysis of calcium signals demonstrated that intrinsic, but not synaptic plasticity, enhances the spread of dendritic parallel fiber response potentiation. Simultaneous dendrite and axon initial segment recordings confirm these dendritic events affect axonal output. Our findings support the hypothesis that intrinsic plasticity provides an amplification mechanism that exerts a permissive control over the impact of long-term potentiation on neuronal responsiveness.
Collapse
Affiliation(s)
- Ting-Feng Lin
- Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Silas E Busch
- Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Christian Hansel
- Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Lin TF, Busch SE, Hansel C. Intrinsic and synaptic determinants of receptive field plasticity in Purkinje cells of the mouse cerebellum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549760. [PMID: 37502848 PMCID: PMC10370111 DOI: 10.1101/2023.07.19.549760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Non-synaptic ('intrinsic') plasticity of membrane excitability contributes to aspects of memory formation, but it remains unclear whether it merely facilitates synaptic long-term potentiation (LTP), or whether it plays a permissive role in determining the impact of synaptic weight increase. We use tactile stimulation and electrical activation of parallel fibers to probe intrinsic and synaptic contributions to receptive field (RF) plasticity in awake mice during two-photon calcium imaging of cerebellar Purkinje cells. Repetitive activation of both stimuli induced response potentiation that is impaired in mice with selective deficits in either intrinsic plasticity (SK2 KO) or LTP (CaMKII TT305/6VA). Intrinsic, but not synaptic, plasticity expands the local, dendritic RF representation. Simultaneous dendrite and axon initial segment recordings confirm that these dendritic events affect axonal output. Our findings support the hypothesis that intrinsic plasticity provides an amplification mechanism that exerts a permissive control over the impact of LTP on neuronal responsiveness.
Collapse
Affiliation(s)
- Ting-Feng Lin
- Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| | - Silas E Busch
- Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| | - Christian Hansel
- Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
5
|
Busch SE, Hansel C. Climbing fiber multi-innervation of mouse Purkinje dendrites with arborization common to human. Science 2023; 381:420-427. [PMID: 37499000 PMCID: PMC10962609 DOI: 10.1126/science.adi1024] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/16/2023] [Indexed: 07/29/2023]
Abstract
Canonically, each Purkinje cell (PC) in the adult cerebellum receives only one climbing fiber (CF) from the inferior olive. Underlying current theories of cerebellar function is the notion that this highly conserved one-to-one relationship renders Purkinje dendrites into a single computational compartment. However, we discovered that multiple primary dendrites are a near-universal morphological feature in humans. Using tract tracing, immunolabeling, and in vitro electrophysiology, we found that in mice ~25% of mature multibranched cells receive more than one CF input. Two-photon calcium imaging in vivo revealed that separate dendrites can exhibit distinct response properties to sensory stimulation, indicating that some multibranched cells integrate functionally independent CF-receptive fields. These findings indicate that PCs are morphologically and functionally more diverse than previously thought.
Collapse
Affiliation(s)
- Silas E. Busch
- Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, IL 60637, USA
| | - Christian Hansel
- Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
6
|
Simmons DH, Busch SE, Titley HK, Grasselli G, Shih J, Du X, Wei C, Gomez CM, Piochon C, Hansel C. Sensory Over-responsivity and Aberrant Plasticity in Cerebellar Cortex in a Mouse Model of Syndromic Autism. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 2:450-459. [PMID: 36324646 PMCID: PMC9616247 DOI: 10.1016/j.bpsgos.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 11/28/2022] Open
Abstract
Background Patients with autism spectrum disorder often show altered responses to sensory stimuli as well as motor deficits, including an impairment of delay eyeblink conditioning, which involves integration of sensory signals in the cerebellum. Here, we identify abnormalities in parallel fiber (PF) and climbing fiber (CF) signaling in the mouse cerebellar cortex that may contribute to these pathologies. Methods We used a mouse model for the human 15q11-13 duplication (patDp/+) and studied responses to sensory stimuli in Purkinje cells from awake mice using two-photon imaging of GCaMP6f signals. Moreover, we examined synaptic transmission and plasticity using in vitro electrophysiological, immunohistochemical, and confocal microscopic techniques. Results We found that spontaneous and sensory-evoked CF-calcium transients are enhanced in patDp/+ Purkinje cells, and aversive movements are more severe across sensory modalities. We observed increased expression of the synaptic organizer NRXN1 at CF synapses and ectopic spread of these synapses to fine dendrites. CF-excitatory postsynaptic currents recorded from Purkinje cells are enlarged in patDp/+ mice, while responses to PF stimulation are reduced. Confocal measurements show reduced PF+CF-evoked spine calcium transients, a key trigger for PF long-term depression, one of several plasticity types required for eyeblink conditioning learning. Long-term depression is impaired in patDp/+ mice but is rescued on pharmacological enhancement of calcium signaling. Conclusions Our findings suggest that this genetic abnormality causes a pathological inflation of CF signaling, possibly resulting from enhanced NRXN1 expression, with consequences for the representation of sensory stimuli by the CF input and for PF synaptic organization and plasticity.
Collapse
Affiliation(s)
- Dana H Simmons
- Department of Neurobiology, University of Chicago, Chicago, Illinois
| | - Silas E Busch
- Department of Neurobiology, University of Chicago, Chicago, Illinois
| | - Heather K Titley
- Department of Neurobiology, University of Chicago, Chicago, Illinois.,Department of Nursing, University of Alberta, Edmonton, Alberta, Canada
| | - Giorgio Grasselli
- Department of Neurobiology, University of Chicago, Chicago, Illinois.,Istituto Italiano di Tecnologia, Center for Synaptic Neuroscience and Technology, Genoa, Italy.,IRCC Ospedale Policlinico San Martino, Genoa, Italy
| | - Justine Shih
- Department of Neurobiology, University of Chicago, Chicago, Illinois
| | - Xiaofei Du
- Department of Neurology, University of Chicago, Chicago, Illinois
| | - Cenfu Wei
- Department of Neurology, University of Chicago, Chicago, Illinois
| | | | - Claire Piochon
- Department of Neurobiology, University of Chicago, Chicago, Illinois
| | - Christian Hansel
- Department of Neurobiology, University of Chicago, Chicago, Illinois
| |
Collapse
|
7
|
Abstract
The cerebellar cortex is an important system for relating neural circuits and learning. Its promise reflects the longstanding idea that it contains simple, repeated circuit modules with only a few cell types and a single plasticity mechanism that mediates learning according to classical Marr-Albus models. However, emerging data have revealed surprising diversity in neuron types, synaptic connections, and plasticity mechanisms, both locally and regionally within the cerebellar cortex. In light of these findings, it is not surprising that attempts to generate a holistic model of cerebellar learning across different behaviors have not been successful. While the cerebellum remains an ideal system for linking neuronal function with behavior, it is necessary to update the cerebellar circuit framework to achieve its great promise. In this review, we highlight recent advances in our understanding of cerebellar-cortical cell types, synaptic connections, signaling mechanisms, and forms of plasticity that enrich cerebellar processing.
Collapse
Affiliation(s)
- Court Hull
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
8
|
Dorgans K, Guo D, Kurima K, Wickens J, Uusisaari MY. Designing AAV Vectors for Monitoring the Subtle Calcium Fluctuations of Inferior Olive Network in vivo. Front Cell Neurosci 2022; 16:825056. [PMID: 35573836 PMCID: PMC9093741 DOI: 10.3389/fncel.2022.825056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Adeno-associated viral (AAV) vectors, used as vehicles for gene transfer into the brain, are a versatile and powerful tool of modern neuroscience that allow identifying specific neuronal populations, monitoring and modulating their activity. For consistent and reproducible results, the AAV vectors must be engineered so that they reliably and accurately target cell populations. Furthermore, transgene expression must be adjusted to sufficient and safe levels compatible with the physiology of studied cells. We undertook the effort to identify and validate an AAV vector that could be utilized for researching the inferior olivary (IO) nucleus, a structure gating critical timing-related signals to the cerebellum. By means of systematic construct generation and quantitative expression profiling, we succeeded in creating a viral tool for specific and strong transfection of the IO neurons without adverse effects on their physiology. The potential of these tools is demonstrated by expressing the calcium sensor GCaMP6s in adult mouse IO neurons. We could monitor subtle calcium fluctuations underlying two signatures of intrinsic IO activity: the subthreshold oscillations (STOs) and the variable-duration action potential waveforms both in-vitro and in-vivo. Further, we show that the expression levels of GCaMP6s allowing such recordings are compatible with the delicate calcium-based dynamics of IO neurons, inviting future work into the network dynamics of the olivo-cerebellar system in behaving animals.
Collapse
Affiliation(s)
- Kevin Dorgans
- Neuronal Rhythms in Movement Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Da Guo
- Neuronal Rhythms in Movement Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Kiyoto Kurima
- Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jeff Wickens
- Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Marylka Yoe Uusisaari
- Neuronal Rhythms in Movement Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- *Correspondence: Marylka Yoe Uusisaari
| |
Collapse
|
9
|
Fanning A, Shakhawat A, Raymond JL. Population calcium responses of Purkinje cells in the oculomotor cerebellum driven by non-visual input. J Neurophysiol 2021; 126:1391-1402. [PMID: 34346783 DOI: 10.1152/jn.00715.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The climbing fiber input to the cerebellum conveys instructive signals that can induce synaptic plasticity and learning by triggering complex spikes accompanied by large calcium transients in Purkinje cells. In the cerebellar flocculus, which supports oculomotor learning, complex spikes are driven by image motion on the retina, which could indicate an oculomotor error. In the same neurons, complex spikes also can be driven by non-visual signals. It has been shown that the calcium transients accompanying each complex spike can vary in amplitude, even within a given cell, therefore, we compared the calcium responses associated with the visual and non-visual inputs to floccular Purkinje cells. The calcium indicator GCaMP6f was selectively expressed in Purkinje cells, and fiber photometry was used to record the calcium responses from a population of Purkinje cells in the flocculus of awake behaving mice. During visual (optokinetic) stimuli and pairing of vestibular and visual stimuli, the calcium level increased during contraversive retinal image motion. During performance of the vestibulo-ocular reflex in the dark, calcium increased during contraversive head rotation and the associated ipsiverse eye movements. The amplitude of this non-visual calcium response was comparable to that during conditions with retinal image motion present that induce oculomotor learning. Thus, population calcium responses of Purkinje cells in the cerebellar flocculus to visual and non-visual input are similar to what has been reported previously for complex spikes, suggesting that multimodal instructive signals control the synaptic plasticity supporting oculomotor learning.
Collapse
Affiliation(s)
- Alexander Fanning
- Department of Neurobiology, Stanford University, Stanford, CA, United States
| | - Amin Shakhawat
- Department of Neurobiology, Stanford University, Stanford, CA, United States
| | - Jennifer L Raymond
- Department of Neurobiology, Stanford University, Stanford, CA, United States
| |
Collapse
|
10
|
Stochastic reaction-diffusion modeling of calcium dynamics in 3D dendritic spines of Purkinje cells. Biophys J 2021; 120:2112-2123. [PMID: 33887224 PMCID: PMC8390834 DOI: 10.1016/j.bpj.2021.03.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/22/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Calcium (Ca2+) is a second messenger assumed to control changes in synaptic strength in the form of both long-term depression and long-term potentiation at Purkinje cell dendritic spine synapses via inositol trisphosphate (IP3)-induced Ca2+ release. These Ca2+ transients happen in response to stimuli from parallel fibers (PFs) from granule cells and climbing fibers (CFs) from the inferior olivary nucleus. These events occur at low numbers of free Ca2+, requiring stochastic single-particle methods when modeling them. We use the stochastic particle simulation program MCell to simulate Ca2+ transients within a three-dimensional Purkinje cell dendritic spine. The model spine includes the endoplasmic reticulum, several Ca2+ transporters, and endogenous buffer molecules. Our simulations successfully reproduce properties of Ca2+ transients in different dynamical situations. We test two different models of the IP3 receptor (IP3R). The model with nonlinear concentration response of binding of activating Ca2+ reproduces experimental results better than the model with linear response because of the filtering of noise. Our results also suggest that Ca2+-dependent inhibition of the IP3R needs to be slow to reproduce experimental results. Simulations suggest the experimentally observed optimal timing window of CF stimuli arises from the relative timing of CF influx of Ca2+ and IP3 production sensitizing IP3R for Ca2+-induced Ca2+ release. We also model ataxia, a loss of fine motor control assumed to be the result of malfunctioning information transmission at the granule to Purkinje cell synapse, resulting in a decrease or loss of Ca2+ transients. Finally, we propose possible ways of recovering Ca2+ transients under ataxia.
Collapse
|
11
|
Roome CJ, Kuhn B. Dendritic coincidence detection in Purkinje neurons of awake mice. eLife 2020; 9:59619. [PMID: 33345779 PMCID: PMC7771959 DOI: 10.7554/elife.59619] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Dendritic coincidence detection is fundamental to neuronal processing yet remains largely unexplored in awake animals. Specifically, the underlying dendritic voltage–calcium relationship has not been directly addressed. Here, using simultaneous voltage and calcium two-photon imaging of Purkinje neuron spiny dendrites, we show how coincident synaptic inputs and resulting dendritic spikes modulate dendritic calcium signaling during sensory stimulation in awake mice. Sensory stimulation increased the rate of postsynaptic potentials and dendritic calcium spikes evoked by climbing fiber and parallel fiber synaptic input. These inputs are integrated in a time-dependent and nonlinear fashion to enhance the sensory-evoked dendritic calcium signal. Intrinsic supralinear dendritic mechanisms, including voltage-gated calcium channels and metabotropic glutamate receptors, are recruited cooperatively to expand the dynamic range of sensory-evoked dendritic calcium signals. This establishes how dendrites can use multiple interplaying mechanisms to perform coincidence detection, as a fundamental and ongoing feature of dendritic integration in behaving animals.
Collapse
Affiliation(s)
- Christopher J Roome
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Bernd Kuhn
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| |
Collapse
|