1
|
Schnetz L, Butler RJ, Coates MI, Sansom IJ. The skeletal completeness of the Palaeozoic chondrichthyan fossil record. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231451. [PMID: 38298400 PMCID: PMC10827434 DOI: 10.1098/rsos.231451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024]
Abstract
Chondrichthyes (sharks, rays, ratfish and their extinct relatives) originated and diversified in the Palaeozoic but are rarely preserved as articulated or partly articulated remains because of their predominantly cartilaginous endoskeletons. Consequently, their evolutionary history is perceived to be documented predominantly by isolated teeth, scales and fin spines. Here, we aim to capture and analyse the quality of the Palaeozoic chondrichthyan fossil record by using a variation of the skeletal completeness metric, which calculates how complete the skeletons of individuals are compared to estimates of their original entirety. Notably, chondrichthyan completeness is significantly lower than any published vertebrate group: low throughout the Silurian and Permian but peaking in the Devonian and Carboniferous. Scores increase to a range similar to pelycosaurs and parareptiles only when taxa identified solely from isolated teeth, scales and spines are excluded. We argue that environmental influences probably played an important role in chondrichthyan completeness. Sea level significantly negatively correlates with chondrichthyan completeness records and resembles patterns already evident in records of ichthyosaurs, plesiosaurs and sauropodomorphs. Such observed variations in completeness highlight the impact of different sampling biases on the chondrichthyan fossil record and the need to acknowledge these when inferring patterns of chondrichthyan macroevolution.
Collapse
Affiliation(s)
- Lisa Schnetz
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Richard J. Butler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Michael I. Coates
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637-1508, USA
| | - Ivan J. Sansom
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
2
|
Cui X, Friedman M, Yu Y, Zhu YA, Zhu M. Bony-fish-like scales in a Silurian maxillate placoderm. Nat Commun 2023; 14:7622. [PMID: 37993457 PMCID: PMC10665347 DOI: 10.1038/s41467-023-43557-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023] Open
Abstract
Major groups of jawed vertebrates exhibit contrasting conditions of dermal plates and scales. But the transition between these conditions remains unclear due to rare information on taxa occupying key phylogenetic positions. The 425-million-year-old fish Entelognathus combines an unusual mosaic of characters typically associated with jawed stem gnathostomes or crown gnathostomes. However, only the anterior part of the exoskeleton was previously known for this very crownward member of the gnathostome stem. Here, we report a near-complete post-thoracic exoskeleton of Entelognathus. Strikingly, its scales are large and some are rhomboid, bearing distinctive peg-and-socket articulations; this combination was previously only known in osteichthyans and considered a synapomorphy of that group. The presence in Entelognathus of an anal fin spine, previously only found in some stem chondrichthyans, further illustrates that many characters previously thought to be restricted to specific lineages within the gnathostome crown likely arose before the common ancestor of living jawed vertebrates.
Collapse
Affiliation(s)
- Xindong Cui
- Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, 100871, Beijing, China
- CAS Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 100044, Beijing, China
| | - Matt Friedman
- Museum of Paleontology and Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yilun Yu
- CAS Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 100044, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - You-An Zhu
- CAS Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 100044, Beijing, China.
| | - Min Zhu
- CAS Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 100044, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
3
|
Brazeau MD, Castiello M, El Fassi El Fehri A, Hamilton L, Ivanov AO, Johanson Z, Friedman M. Fossil evidence for a pharyngeal origin of the vertebrate pectoral girdle. Nature 2023; 623:550-554. [PMID: 37914937 PMCID: PMC10651482 DOI: 10.1038/s41586-023-06702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023]
Abstract
The origin of vertebrate paired appendages is one of the most investigated and debated examples of evolutionary novelty1-7. Paired appendages are widely considered as key innovations that enabled new opportunities for controlled swimming and gill ventilation and were prerequisites for the eventual transition from water to land. The past 150 years of debate8-10 has been shaped by two contentious theories4,5: the ventrolateral fin-fold hypothesis9,10 and the archipterygium hypothesis8. The latter proposes that fins and girdles evolved from an ancestral gill arch. Although studies in animal development have revived interest in this idea11-13, it is apparently unsupported by fossil evidence. Here we present palaeontological support for a pharyngeal basis for the vertebrate shoulder girdle. We use computed tomography scanning to reveal details of the braincase of Kolymaspis sibirica14, an Early Devonian placoderm fish from Siberia, that suggests a pharyngeal component of the shoulder. We combine these findings with refreshed comparative anatomy of placoderms and jawless outgroups to place the origin of the shoulder girdle on the sixth branchial arch. These findings provide a novel framework for understanding the origin of the pectoral girdle. Our evidence clarifies the location of the presumptive head-trunk interface in jawless fishes and explains the constraint on branchial arch number in gnathostomes15. The results revive a key aspect of the archipterygium hypothesis and help reconcile it with the ventrolateral fin-fold model.
Collapse
Affiliation(s)
- Martin D Brazeau
- Department of Life Sciences, Imperial College London, Ascot, UK.
- The Natural History Museum, London, UK.
| | - Marco Castiello
- Department of Life Sciences, Imperial College London, Ascot, UK
- London Academy of Excellence, London, United Kingdom
| | - Amin El Fassi El Fehri
- Department of Life Sciences, Imperial College London, Ascot, UK
- Paläontologisches Institut und Museum, Universität Zürich, Zurich, Switzerland
| | - Louis Hamilton
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Alexander O Ivanov
- Department of Sedimentary Geology, Institute of Earth Sciences, St Petersburg State University, St Petersburg, Russia
- Institute of Geology and Petroleum Technologies, Kazan Federal University, Kazan, Russia
| | | | - Matt Friedman
- The Natural History Museum, London, UK
- Museum of Paleontology, University of Michigan, Ann Arbor, MI, USA
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Brazeau MD, Yuan H, Giles S, Jerve AL, Zorig E, Ariunchimeg Y, Sansom RS, Atwood RC. A well-preserved 'placoderm' (stem-group Gnathostomata) upper jaw from the Early Devonian of Mongolia clarifies jaw evolution. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221452. [PMID: 36844806 PMCID: PMC9943883 DOI: 10.1098/rsos.221452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The origin of jaws and teeth remains contentious in vertebrate evolution. 'Placoderms' (Silurian-Devonian armoured jawed fishes) are central to debates on the origins of these anatomical structures. 'Acanthothoracids' are generally considered the most primitive 'placoderms'. However, they are so far known mainly from disarticulated skeletal elements that are typically incomplete. The structure of the jaws-particularly the jaw hinge-is poorly known, leaving open questions about their jaw function and comparison with other placoderms and modern gnathostomes. Here we describe a near-complete 'acanthothoracid' upper jaw, allowing us to reconstruct the likely orientation and angle of the bite and compare its morphology with that of other known 'placoderm' groups. We clarify that the bite position is located on the upper jaw cartilage rather than on the dermal cheek and thus show that there is a highly conserved bite morphology among most groups of 'placoderms', regardless of their overall cranial geometry. Incorporation of the dermal skeleton appears to provide a sound biomechanical basis for jaw origins. It appears that 'acanthothoracid' dentitions were fundamentally similar in location to that of arthrodire 'placoderms', rather than resembling bony fishes. Irrespective of current phylogenetic uncertainty, the new data here resolve the likely general condition for 'placoderms' as a whole, and as such, ancestral morphology of known jawed vertebrates.
Collapse
Affiliation(s)
- Martin D. Brazeau
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
- The Natural History Museum, London SW7 5BD, UK
| | - Haobo Yuan
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | - Sam Giles
- The Natural History Museum, London SW7 5BD, UK
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Anna L. Jerve
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | - E. Zorig
- Institute of Paleontology, Mongolian Academy of Sciences, Ulaanbaatar 15160, Mongolia
| | | | - Robert S. Sansom
- Department of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PT, UK
| | | |
Collapse
|
5
|
Mallatt J. Vertebrate origins are informed by larval lampreys (ammocoetes): a response to Miyashita et al., 2021. Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlac086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
This paper addresses a recent claim by Miyashita and co-authors that the filter-feeding larval lamprey is a new evolutionary addition to the lamprey life-cycle and does not provide information about early vertebrates, in contrast to the traditional view that this ammocoete stage resembles the first vertebrates. The evidence behind this revolutionary claim comes from fossil lampreys from 360–306 Mya that include young stages – even yolk-sac hatchlings – with adult (predacious) feeding structures. However, the traditional view is not so easily dismissed. The phylogeny on which the non-ammocoete theory is based was not tested in a statistically meaningful way. Additionally, the target article did not consider the known evidence for the traditional view, namely that the complex filter-feeding structures are highly similar in ammocoetes and the invertebrate chordates, amphioxus and tunicates. In further support of the traditional view, I show that ammocoetes are helpful for reconstructing the first vertebrates and the jawless, fossil stem gnathostomes called ostracoderms – their pharynx, oral cavity, mouth opening, lips and filter-feeding mode (but, ironically, not their mandibular/jaw region). From these considerations, I offer a scenario for the evolution of vertebrate life-cycles that fits the traditional, ammocoete-informed theory and puts filter feeding at centre stage.
Collapse
Affiliation(s)
- Jon Mallatt
- The University of Washington WWAMI Medical Education Program at The University of Idaho , Moscow, Idaho 83843 , USA
| |
Collapse
|
6
|
The Development of the Chimaeroid Pelvic Skeleton and the Evolution of Chondrichthyan Pelvic Fins. J Dev Biol 2022; 10:jdb10040053. [PMID: 36547475 PMCID: PMC9782884 DOI: 10.3390/jdb10040053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/11/2022] [Accepted: 11/01/2022] [Indexed: 12/14/2022] Open
Abstract
Pelvic girdles, fins and claspers are evolutionary novelties first recorded in jawed vertebrates. Over the course of the evolution of chondrichthyans (cartilaginous fish) two trends in the morphology of the pelvic skeleton have been suggested to have occurred. These evolutionary shifts involved both an enlargement of the metapterygium (basipterygium) and a transition of fin radial articulation from the pelvic girdle to the metapterygium. To determine how these changes in morphology have occurred it is essential to understand the development of extant taxa as this can indicate potential developmental mechanisms that may have been responsible for these changes. The study of the morphology of the appendicular skeleton across development in chondrichthyans is almost entirely restricted to the historical literature with little contemporary research. Here, we have examined the morphology and development of the pelvic skeleton of a holocephalan chondrichthyan, the elephant shark (Callorhinchus milii), through a combination of dissections, histology, and nanoCT imaging and redescribed the pelvic skeleton of Cladoselache kepleri (NHMUK PV P 9269), a stem holocephalan. To put our findings in their evolutionary context we compare them with the fossil record of chondrichthyans and the literature on pelvic development in elasmobranchs from the late 19th century. Our findings demonstrate that the pelvic skeleton of C. milii initially forms as a single mesenchymal condensation, consisting of the pelvic girdle and a series of fin rays, which fuse to form the basipterygium. The girdle and fin skeleton subsequently segment into distinct components whilst chondrifying. This confirms descriptions of the early pelvic development in Scyliorhinid sharks from the historical literature and suggests that chimaeras and elasmobranchs share common developmental patterns in their pelvic anatomy. Alterations in the location and degree of radial fusion during early development may be the mechanism responsible for changes in pelvic fin morphology over the course of the evolution of both elasmobranchs and holocephalans, which appears to be an example of parallel evolution.
Collapse
|
7
|
Mottequin B, Goolaerts S, Hunt AP, Olive S. The erroneous chondrichthyan egg case assignments from the Devonian: implications for the knowledge on the evolution of the reproductive strategy within chondrichthyans. Naturwissenschaften 2021; 108:36. [PMID: 34432151 DOI: 10.1007/s00114-021-01751-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
Spiraxis interstrialis, and its junior synonym Fayolia mourloni, an uppermost Famennian (Upper Devonian) fossil first described as algae and subsequently interpreted as the oldest known chondrichthyan egg case, is reinvestigated based on the discovery of several additional specimens in Belgian collections. New data, in particular from micro-CT imaging, allow to refute S. interstrialis, and by extension also Spiraxis major (the type species of Spiraxis Newberry, non Adams) and Spiraxis randalli from the Famennian of New York and Pennsylvania, as chondrichthyan egg cases. Alternative interpretations of these enigmatic helicoidal fossils are discussed. The first occurrence of oviparity in the fossil record of chondrichthyans is thus not as old as previously thought and is close to the first occurrence of viviparity in this group, both being recognised now in the Mississippian. The question of which of both conditions is plesiomorphic within chondrichthyans, and more widely within vertebrates, is discussed. Also, the presence of the genus Spiraxis in both the USA (east coast) and Belgium reinforces the strong faunal resemblance already observed in both palaeogeographical areas. It suggests important faunal exchanges between these regions of the Euramerica landmass during the Famennian.
Collapse
Affiliation(s)
- Bernard Mottequin
- O.D. Earth and History of Life, Royal Belgian Institute of Natural Sciences, rue Vautier 29, 1000, Brussels, Belgium.
| | - Stijn Goolaerts
- O.D. Earth and History of Life & Scientific Service of Heritage, Royal Belgian Institute of Natural Sciences, rue Vautier 29, 1000, Brussels, Belgium
| | - Adrian P Hunt
- Flying Heritage and Combat Armor Museum, 3407 109th St SW, Everett, WA, 98204, USA
| | - Sébastien Olive
- O.D. Earth and History of Life, Royal Belgian Institute of Natural Sciences, rue Vautier 29, 1000, Brussels, Belgium.
| |
Collapse
|