1
|
Yadav GP, Annamalai M, Hagan DW, Cui L, Mathews C, Jiang QX. Molecular requirements of chromogranin B for the long-sought anion shunter of regulated secretion. Int J Biol Macromol 2025; 309:142180. [PMID: 40107558 DOI: 10.1016/j.ijbiomac.2025.142180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/02/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
All eukaryotes utilize regulated secretion to release molecular signals packaged in secretory granules for local and remote signaling. An anion shunt conductance was first suggested in secretory granules of bovine chromaffin cells nearly five decades ago. Biochemical identity of this conductance remains undefined. CLC-3, an intracellular Cl-/H+ exchanger, was proposed as a candidate sixteen years ago, which, however, was contested experimentally. Here, we show that chromogranin B (CHGB) makes the kernel of the long-sought anion shunter in cultured and primary neuroendocrine cells and its channel functions are essential to proper granule maturation. Intragranular pH measurements and cargo maturation assays revealed that normal granular acidification, proinsulin-insulin conversion, and dopamine-loading in neuroendocrine cells all rely on functional CHGB+ channels. Primary β-cells from Chgb-/- mice exhibited persistent granule deacidification, which suffices to uplift plasma proinsulin level, diminish glucose-induced 2nd-phase insulin secretion and dwindle monoamine content in chromaffin granules from the knockout mice. Data from targeted genetic manipulations, dominant negativity of a deletion mutant lacking channel-forming parts and tests of CLC-3/5 and ANO-1/2 all exclude CHGB-less channels from anion shunting in secretory granules. The highly conserved CHGB+ channels thus function in regulated secretory pathways in neuronal, endocrine, exocrine and stem cells of probably all vertebrates.
Collapse
Affiliation(s)
- Gaya P Yadav
- Departments of Microbiology and Cell Science, and Medicinal Chemistry, University of Florida, Gainesville, FL 32611, USA; Departments of Materials Design and Innovation and HWI, State University of New York at Buffalo, Buffalo, NY 14201, USA; Currently at the Department of Biochemistry & Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, TX 77843, USA
| | - Mani Annamalai
- Department of Pathology, College of Medicine, University of Florida, 1275 Center Drive, Gainesville, FL 32610, USA
| | - D Walker Hagan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL 32610, USA
| | - Lina Cui
- Department of Medicinal Chemistry, University of Florida, 1275 Center Drive, Gainesville, FL 32611, USA
| | - Clayton Mathews
- Department of Pathology, College of Medicine, University of Florida, 1275 Center Drive, Gainesville, FL 32610, USA
| | - Qiu-Xing Jiang
- Research Unit in Intelligent Utilization of Marine Biomacromolecules and Marine Cryo-EM Center, Laoshan Laboratory, Qingdao, Shandong 266200, China; Departments of Microbiology and Cell Science, and Medicinal Chemistry, University of Florida, Gainesville, FL 32611, USA; Departments of Materials Design and Innovation and HWI, State University of New York at Buffalo, Buffalo, NY 14201, USA; Department of Medicinal Chemistry, University of Florida, 1275 Center Drive, Gainesville, FL 32611, USA; Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
2
|
Deshmukh A, Chang K, Cuala J, Campos MJH, Mahmood S, Verma R, Georgia S, Loconte V, White KL. Secretory stimuli distinctly regulate insulin secretory granule maturation through structural remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.29.644646. [PMID: 40235991 PMCID: PMC11996419 DOI: 10.1101/2025.03.29.644646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Insulin secretory granule (ISG) maturation is a crucial aspect of insulin secretion and glucose homeostasis. The regulation of this maturation remains poorly understood, especially how secretory stimuli affect ISG maturity and subcellular localization. In this study, we used soft X-tomography (SXT) to quantitatively map ISG morphology, density, and location in single INS-1E and mouse pancreatic β-cells under the effect of various secretory stimuli. We found that the activation of glucokinase (GK), gastric inhibitory polypeptide receptor (GIPR), glucagon-like peptide-1 receptor (GLP-1R), and G-protein coupled receptor 40 (GPR40) promote ISG maturation. Each stimulus induces unique structural remodeling in ISGs, by altering size and density, depending on the specific signaling cascades activated. These distinct ISG subpopulations mobilize and redistribute in the cell altering overall cellular structural organization. Our results provide insight into how current diabetes and obesity therapies impact ISG maturation and may inform the development of future treatments that target maturation specifically.
Collapse
|
3
|
Lin W, Tseng K, Fraser SE, Junge J, White KL. Decoding Insulin Secretory Granule Maturation Using Genetically Encoded pH Sensors. ACS Sens 2024; 9:6032-6039. [PMID: 39504473 PMCID: PMC11590099 DOI: 10.1021/acssensors.4c01885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/16/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
Insulin is a peptide hormone secreted from pancreatic beta cells to regulate blood glucose homeostasis. Maturation of active insulin occurs within insulin secretory granules (ISG) by acidification of the lumen and enzymatic cleavage of insulin before secretion. This process is dysregulated in diabetes, and many questions remain on how the cell controls insulin maturation. We address this gap in knowledge by designing two genetically encoded fluorescence pH sensors and a fluorescence lifetime imaging and analysis pipeline to monitor the pH of individual secretory ISGs within live cells at higher resolution and precision than previously possible. We observed different subpopulations of ISGs based on their pH and subcellular localization. Signals regulating metabolism vs membrane depolarization mobilize different subpopulations of ISGs for secretion, and we confirm that maturation signals acidify ISGs. We conclude that different signaling networks uniquely impact ISG mobilization and secretion. Future applications of these tools will be useful for exploring how these processes are dysregulated in diabetes and provide new paths for developing more effective treatments.
Collapse
Affiliation(s)
- Wen Lin
- Department
of Chemistry, Bridge Institute, USC Michelson Center for Convergent
Bioscience, University of Southern California, Los Angeles, California 90089, United States
| | - Kaylee Tseng
- Department
of Chemistry, Bridge Institute, USC Michelson Center for Convergent
Bioscience, University of Southern California, Los Angeles, California 90089, United States
| | - Scott E. Fraser
- Department
of Biological Sciences, Bridge Institute, USC Michelson Center for
Convergent Bioscience, Translational Imaging Center, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
| | - Jason Junge
- Department
of Biological Sciences, Bridge Institute, USC Michelson Center for
Convergent Bioscience, Translational Imaging Center, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
| | - Kate L. White
- Department
of Chemistry, Bridge Institute, USC Michelson Center for Convergent
Bioscience, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
4
|
Barekatain M, Liu Y, Archambeau A, Cherezov V, Fraser S, White KL, Hayes MA. Insulator-based dielectrophoresis-assisted separation of insulin secretory vesicles. eLife 2024; 13:e74989. [PMID: 39190030 PMCID: PMC11349295 DOI: 10.7554/elife.74989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Organelle heterogeneity and inter-organelle contacts within a single cell contribute to the limited sensitivity of current organelle separation techniques, thus hindering organelle subpopulation characterization. Here, we use direct current insulator-based dielectrophoresis (DC-iDEP) as an unbiased separation method and demonstrate its capability by identifying distinct distribution patterns of insulin vesicles from INS-1E insulinoma cells. A multiple voltage DC-iDEP strategy with increased range and sensitivity has been applied, and a differentiation factor (ratio of electrokinetic to dielectrophoretic mobility) has been used to characterize features of insulin vesicle distribution patterns. We observed a significant difference in the distribution pattern of insulin vesicles isolated from glucose-stimulated cells relative to unstimulated cells, in accordance with maturation of vesicles upon glucose stimulation. We interpret the difference in distribution pattern to be indicative of high-resolution separation of vesicle subpopulations. DC-iDEP provides a path for future characterization of subtle biochemical differences of organelle subpopulations within any biological system.
Collapse
Affiliation(s)
- Mahta Barekatain
- Department of Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern CaliforniaLos AngelesUnited States
| | - Yameng Liu
- School of Molecular Sciences, Arizona State UniversityTempeUnited States
| | - Ashley Archambeau
- Department of Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern CaliforniaLos AngelesUnited States
| | - Vadim Cherezov
- Department of Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern CaliforniaLos AngelesUnited States
| | - Scott Fraser
- Department of Biological Sciences, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern CaliforniaLos AngelesUnited States
| | - Kate L White
- Department of Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern CaliforniaLos AngelesUnited States
| | - Mark A Hayes
- School of Molecular Sciences, Arizona State UniversityTempeUnited States
| |
Collapse
|
5
|
Kolic J, Sun WG, Cen HH, Ewald JD, Rogalski JC, Sasaki S, Sun H, Rajesh V, Xia YH, Moravcova R, Skovsø S, Spigelman AF, Manning Fox JE, Lyon J, Beet L, Xia J, Lynn FC, Gloyn AL, Foster LJ, MacDonald PE, Johnson JD. Proteomic predictors of individualized nutrient-specific insulin secretion in health and disease. Cell Metab 2024; 36:1619-1633.e5. [PMID: 38959864 PMCID: PMC11250105 DOI: 10.1016/j.cmet.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/26/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024]
Abstract
Population-level variation and mechanisms behind insulin secretion in response to carbohydrate, protein, and fat remain uncharacterized. We defined prototypical insulin secretion responses to three macronutrients in islets from 140 cadaveric donors, including those with type 2 diabetes. The majority of donors' islets exhibited the highest insulin response to glucose, moderate response to amino acid, and minimal response to fatty acid. However, 9% of donors' islets had amino acid responses, and 8% had fatty acid responses that were larger than their glucose-stimulated insulin responses. We leveraged this heterogeneity and used multi-omics to identify molecular correlates of nutrient responsiveness, as well as proteins and mRNAs altered in type 2 diabetes. We also examined nutrient-stimulated insulin release from stem cell-derived islets and observed responsiveness to fat but not carbohydrate or protein-potentially a hallmark of immaturity. Understanding the diversity of insulin responses to carbohydrate, protein, and fat lays the groundwork for personalized nutrition.
Collapse
Affiliation(s)
- Jelena Kolic
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| | - WenQing Grace Sun
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Haoning Howard Cen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jessica D Ewald
- Institute of Parasitology, McGill University, Montreal, QC, Canada
| | - Jason C Rogalski
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Shugo Sasaki
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Surgery, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Han Sun
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA, USA
| | - Varsha Rajesh
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA, USA
| | - Yi Han Xia
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Renata Moravcova
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Søs Skovsø
- Valkyrie Life Sciences, Vancouver, BC, Canada
| | - Aliya F Spigelman
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Jocelyn E Manning Fox
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - James Lyon
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Leanne Beet
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jianguo Xia
- Institute of Parasitology, McGill University, Montreal, QC, Canada
| | - Francis C Lynn
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Surgery, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Anna L Gloyn
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA, USA; Wellcome Center for Human Genetics, University of Oxford, Oxford, UK
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Patrick E MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - James D Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.
| |
Collapse
|
6
|
Webster KL, Mirmira RG. Beta cell dedifferentiation in type 1 diabetes: sacrificing function for survival? Front Endocrinol (Lausanne) 2024; 15:1427723. [PMID: 38904049 PMCID: PMC11187278 DOI: 10.3389/fendo.2024.1427723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024] Open
Abstract
The pathogeneses of type 1 and type 2 diabetes involve the progressive loss of functional beta cell mass, primarily attributed to cellular demise and/or dedifferentiation. While the scientific community has devoted significant attention to unraveling beta cell dedifferentiation in type 2 diabetes, its significance in type 1 diabetes remains relatively unexplored. This perspective article critically analyzes the existing evidence for beta cell dedifferentiation in type 1 diabetes, emphasizing its potential to reduce beta cell autoimmunity. Drawing from recent advancements in both human studies and animal models, we present beta cell identity as a promising target for managing type 1 diabetes. We posit that a better understanding of the mechanisms of beta cell dedifferentiation in type 1 diabetes is key to pioneering interventions that balance beta cell function and immunogenicity.
Collapse
Affiliation(s)
| | - Raghavendra G. Mirmira
- Kovler Diabetes Center and the Department of Medicine, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
7
|
Woolley L, Burbidge A, Vermant J, Christakopoulos F. A microrheological examination of insulin-secreting β-cells in healthy and diabetic-like conditions. SOFT MATTER 2024; 20:3464-3472. [PMID: 38573072 DOI: 10.1039/d3sm01141k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Pancreatic β-cells regulate glucose homeostasis through glucose-stimulated insulin secretion, which is hindered in type-2 diabetes. Transport of the insulin vesicles is expected to be affected by changes in the viscoelastic and transport properties of the cytoplasm. These are evaluated in situ through particle-tracking measurements using a rat insulinoma β-cell line. The use of inert probes assists in decoupling the material properties of the cytoplasm from the active transport through cellular processes. The effect of glucose-stimulated insulin secretion is examined, and the subsequent remodeling of the cytoskeleton, at constant effects of cell activity, is shown to result in reduced mobility of the tracer particles. Induction of diabetic-like conditions is identified to alter the mean-squared displacement of the passive particles in the cytoplasm and diminish its reaction to glucose stimulation.
Collapse
Affiliation(s)
- Lukas Woolley
- Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland.
| | - Adam Burbidge
- Nestlé Research, Route de Jorat 57, vers-chez-les Blanc, 1000 Lausanne, Switzerland
| | - Jan Vermant
- Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland.
| | - Fotis Christakopoulos
- Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland.
| |
Collapse
|
8
|
Kolic J, Sun WG, Cen HH, Ewald J, Rogalski JC, Sasaki S, Sun H, Rajesh V, Xia YH, Moravcova R, Skovsø S, Spigelman AF, Manning Fox JE, Lyon J, Beet L, Xia J, Lynn FC, Gloyn AL, Foster LJ, MacDonald PE, Johnson JD. Proteomic predictors of individualized nutrient-specific insulin secretion in health and disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.05.24.23290298. [PMID: 38496562 PMCID: PMC10942505 DOI: 10.1101/2023.05.24.23290298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Population level variation and molecular mechanisms behind insulin secretion in response to carbohydrate, protein, and fat remain uncharacterized despite ramifications for personalized nutrition. Here, we define prototypical insulin secretion dynamics in response to the three macronutrients in islets from 140 cadaveric donors, including those diagnosed with type 2 diabetes. While islets from the majority of donors exhibited the expected relative response magnitudes, with glucose being highest, amino acid moderate, and fatty acid small, 9% of islets stimulated with amino acid and 8% of islets stimulated with fatty acids had larger responses compared with high glucose. We leveraged this insulin response heterogeneity and used transcriptomics and proteomics to identify molecular correlates of specific nutrient responsiveness, as well as those proteins and mRNAs altered in type 2 diabetes. We also examine nutrient-responsiveness in stem cell-derived islet clusters and observe that they have dysregulated fuel sensitivity, which is a hallmark of functionally immature cells. Our study now represents the first comparison of dynamic responses to nutrients and multi-omics analysis in human insulin secreting cells. Responses of different people's islets to carbohydrate, protein, and fat lay the groundwork for personalized nutrition. ONE-SENTENCE SUMMARY Deep phenotyping and multi-omics reveal individualized nutrient-specific insulin secretion propensity.
Collapse
|
9
|
Amos C, Kiessling V, Kreutzberger AJB, Schenk NA, Mohan R, Nyenhuis S, Doyle CA, Wang HY, Levental K, Levental I, Anantharam A, Tamm LK. Membrane lipids couple synaptotagmin to SNARE-mediated granule fusion in insulin-secreting cells. Mol Biol Cell 2024; 35:ar12. [PMID: 38117594 PMCID: PMC10916878 DOI: 10.1091/mbc.e23-06-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 12/22/2023] Open
Abstract
Insulin secretion depends on the Ca2+-regulated fusion of granules with the plasma membrane. A recent model of Ca2+-triggered exocytosis in secretory cells proposes that lipids in the plasma membrane couple the calcium sensor Syt1 to the membrane fusion machinery (Kiessling et al., 2018). Specifically, Ca2+-mediated binding of Syt1's C2 domains to the cell membrane shifts the membrane-anchored SNARE syntaxin-1a to a more fusogenic conformation, straightening its juxtamembrane linker. To test this model in live cells and extend it to insulin secretion, we enriched INS1 cells with a panel of lipids with different acyl chain compositions. Fluorescence lifetime measurements demonstrate that cells with more disordered membranes show an increase in fusion efficiency, and vice versa. Experiments with granules purified from INS1 cells and recombinant SNARE proteins reconstituted in supported membranes confirmed that lipid acyl chain composition determines SNARE conformation and that lipid disordering correlates with increased fusion. Addition of Syt1's C2AB domains significantly decreased lipid order in target membranes and increased SNARE-mediated fusion probability. Strikingly, Syt's action on both fusion and lipid order could be partially bypassed by artificially increasing unsaturated phosphatidylserines in the target membrane. Thus, plasma membrane lipids actively participate in coupling Ca2+/synaptotagmin-sensing to the SNARE fusion machinery in cells.
Collapse
Affiliation(s)
- Chase Amos
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA 22908
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908
| | - Volker Kiessling
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA 22908
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908
| | - Alex J. B. Kreutzberger
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA 22908
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908
| | - Noah A. Schenk
- Department of Neurosciences, University of Toledo, Toledo, OH 43614
| | - Ramkumar Mohan
- Department of Neurosciences, University of Toledo, Toledo, OH 43614
| | - Sarah Nyenhuis
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904
| | - Catherine A. Doyle
- Department of Pharmacology, University of Virginia Health System, Charlottesville, VA 22908
| | - Hong-Yin Wang
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA 22908
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908
| | - Kandice Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA 22908
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA 22908
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908
| | - Arun Anantharam
- Department of Neurosciences, University of Toledo, Toledo, OH 43614
| | - Lukas K. Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA 22908
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
10
|
Beaven AH, Bikkumalla V, Chon NL, Matthews AE, Lin H, Knight JD, Sodt AJ. Synaptotagmin 7 C2 domains induce membrane curvature stress via electrostatic interactions and the wedge mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575084. [PMID: 38313280 PMCID: PMC10837831 DOI: 10.1101/2024.01.10.575084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Synaptotagmin 7 (Syt-7) is part of the synaptotagmin protein family that regulates exocytotic lipid membrane fusion. Among the family, Syt-7 stands out by its membrane binding strength and stabilization of long-lived membrane fusion pores. Given that Syt-7 vesicles form long-lived fusion pores, we hypothesize that its interactions with the membrane stabilize the specific curvatures, thicknesses, and lipid compositions that support a metastable fusion pore. Using all-atom molecular dynamics simulations and FRET-based assays of Syt-7's membrane-binding C2 domains (C2A and C2B), we found that Syt-7 C2 domains sequester anionic lipids, are sensitive to cholesterol, thin membranes, and generate lipid membrane curvature by two competing, but related mechanisms. First, Syt-7 forms strong electrostatic contacts with the membrane, generating negative curvature stress. Second, Syt-7's calcium binding loops embed in the membrane surface, acting as a wedge to thin the membrane and induce positive curvature stress. These curvature mechanisms are linked by the protein insertion depth as well as the resulting protein tilt. Simplified quantitative models of the curvature-generating mechanisms link simulation observables to their membrane-reshaping effectiveness.
Collapse
Affiliation(s)
- Andrew H. Beaven
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
- Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD
| | | | - Nara L. Chon
- Department of Chemistry, University of Colorado Denver, Denver, CO
| | | | - Hai Lin
- Department of Chemistry, University of Colorado Denver, Denver, CO
| | | | - Alexander J. Sodt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
11
|
Wang Y, Regeenes R, Memon M, Rocheleau JV. Insulin C-peptide secretion on-a-chip to measure the dynamics of secretion and metabolism from individual islets. CELL REPORTS METHODS 2023; 3:100602. [PMID: 37820726 PMCID: PMC10626205 DOI: 10.1016/j.crmeth.2023.100602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/16/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023]
Abstract
First-phase glucose-stimulated insulin secretion is mechanistically linked to type 2 diabetes, yet the underlying metabolism is difficult to discern due to significant islet-to-islet variability. Here, we miniaturize a fluorescence anisotropy immunoassay onto a microfluidic device to measure C-peptide secretion from individual islets as a surrogate for insulin (InsC-chip). This method measures secretion from up to four islets at a time with ∼7 s resolution while providing an optical window for real-time live-cell imaging. Using the InsC-chip, we reveal two glucose-dependent peaks of insulin secretion (i.e., a double peak) within the classically defined 1st phase (<10 min). By combining real-time secretion and live-cell imaging, we show islets transition from glycolytic to oxidative phosphorylation (OxPhos)-driven metabolism at the nadir of the peaks. Overall, these data validate the InsC-chip to measure glucose-stimulated insulin secretion while revealing new dynamics in secretion defined by a shift in glucose metabolism.
Collapse
Affiliation(s)
- Yufeng Wang
- Advanced Diagnostics, Toronto General Hospital Research Institute, Toronto, ON M5G 1L7, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Romario Regeenes
- Advanced Diagnostics, Toronto General Hospital Research Institute, Toronto, ON M5G 1L7, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Mahnoor Memon
- Advanced Diagnostics, Toronto General Hospital Research Institute, Toronto, ON M5G 1L7, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Jonathan V Rocheleau
- Advanced Diagnostics, Toronto General Hospital Research Institute, Toronto, ON M5G 1L7, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Departments of Medicine and Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
12
|
Firdos, Mittal A. Secretory Conservation in Insulin Producing Cells: Is There a System-Level Law of Mass Action in Biology? ACS OMEGA 2023; 8:37573-37583. [PMID: 37954232 PMCID: PMC10635588 DOI: 10.1021/acsomega.3c06058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/19/2023] [Indexed: 11/14/2023]
Abstract
Altered secretion of insulin from pancreatic β-cells can manifest into disorders. For example, a lack of endogenously produced and/or secreted insulin results in Type 1 diabetes (and other associated subtypes). Pancreatic β-cells are the endocrine secretory cells that promote insulin secretion in response to glucose stimulation. Secretion in response to extracellular triggers is an interplay among various signaling pathways, transcription factors, and molecular mechanisms. The Mouse Insulinoma 6 (MIN6) cell line serves as a model system for gaining mechanistic insights into pancreatic β-cell functions. It is obvious that higher glucose consumption and increased insulin secretion are correlated. However, it has been reported that intracellular ATP levels remain ∼ constant beyond the extracellular glucose (EG) concentration of 10 mM. Therefore, any cause-effect relationship between glucose consumption (GC) and enhanced insulin secretion (eIS) remains unclear. We also found that total cellular protein, as well as total protein content in the culture "supernatant," remains constant regardless of varying EG concentrations. This indicated that eIS may be at the cost of (a) intracellular synthesis of other proteins and (b) secretion of other secretory proteins, or both (a) and (b), somehow coupled with GC by cells. To gain insights into the above, we carried out a transcriptome study of MIN6 cells exposed to hypoglycemic (HoG = 2.8 mM EG) and hyperglycemic (HyG = 25 mM EG) conditions. Expression of transcripts was analyzed in terms of Fragments Per Kilobase of transcript per Million mapped reads and Transcripts Per Million (FPKM and TPM) as well as values obtained by normalizing w.r.t. "∑(FPKM)" and "∑(TPM)." We report that HyG extracellular conditions lead to an ∼2-fold increase in insulin secretion compared to HoG measured by the enzyme-linked immunosorbent assay (ELISA) and transcripts of secreted proteins as well as their isoforms decreased in HyG conditions compared to HoG. Our results show for the first time that eIS in HyG conditions is at the cost of reduced transcription of other secreted proteins and is coupled with higher GC. The higher GC at increased extracellular glucose also indicates a yet undiscovered role of glucose molecules enhancing insulin secretion, since ATP levels resulting from glucose metabolism have been reported to be constant above an EG concentration of 10 mM. While extrapolation of our results to clinical implications is ambitious at best, this work reports novel cellular level aspects that seem relevant in some clinical observations pertaining to Type 1 diabetes. In addition, the conservatory nature of cellular secretions in insulin-secreting cells, discovered here, may be a general feature in cell biology.
Collapse
Affiliation(s)
- Firdos
- Kusuma
School of Biological Sciences, Indian Institute
of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi 110016, India
| | - Aditya Mittal
- Kusuma
School of Biological Sciences, Indian Institute
of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi 110016, India
- Supercomputing
Facility for Bioinformatics and Computational Biology (SCFBio), IIT Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
13
|
Chen YC, Taylor AJ, Fulcher JM, Swensen AC, Dai XQ, Komba M, Wrightson KL, Fok K, Patterson AE, Klein Geltink RI, MacDonald PE, Qian WJ, Verchere CB. Deletion of Carboxypeptidase E in β-Cells Disrupts Proinsulin Processing but Does Not Lead to Spontaneous Development of Diabetes in Mice. Diabetes 2023; 72:1277-1288. [PMID: 37364047 PMCID: PMC10450824 DOI: 10.2337/db22-0945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Carboxypeptidase E (CPE) facilitates the conversion of prohormones into mature hormones and is highly expressed in multiple neuroendocrine tissues. Carriers of CPE mutations have elevated plasma proinsulin and develop severe obesity and hyperglycemia. We aimed to determine whether loss of Cpe in pancreatic β-cells disrupts proinsulin processing and accelerates development of diabetes and obesity in mice. Pancreatic β-cell-specific Cpe knockout mice (βCpeKO; Cpefl/fl x Ins1Cre/+) lack mature insulin granules and have elevated proinsulin in plasma; however, glucose-and KCl-stimulated insulin secretion in βCpeKO islets remained intact. High-fat diet-fed βCpeKO mice showed weight gain and glucose tolerance comparable with those of Wt littermates. Notably, β-cell area was increased in chow-fed βCpeKO mice and β-cell replication was elevated in βCpeKO islets. Transcriptomic analysis of βCpeKO β-cells revealed elevated glycolysis and Hif1α-target gene expression. On high glucose challenge, β-cells from βCpeKO mice showed reduced mitochondrial membrane potential, increased reactive oxygen species, reduced MafA, and elevated Aldh1a3 transcript levels. Following multiple low-dose streptozotocin injections, βCpeKO mice had accelerated development of hyperglycemia with reduced β-cell insulin and Glut2 expression. These findings suggest that Cpe and proper proinsulin processing are critical in maintaining β-cell function during the development of hyperglycemia. ARTICLE HIGHLIGHTS Carboxypeptidase E (Cpe) is an enzyme that removes the carboxy-terminal arginine and lysine residues from peptide precursors. Mutations in CPE lead to obesity and type 2 diabetes in humans, and whole-body Cpe knockout or mutant mice are obese and hyperglycemic and fail to convert proinsulin to insulin. We show that β-cell-specific Cpe deletion in mice (βCpeKO) does not lead to the development of obesity or hyperglycemia, even after prolonged high-fat diet treatment. However, β-cell proliferation rate and β-cell area are increased, and the development of hyperglycemia induced by multiple low-dose streptozotocin injections is accelerated in βCpeKO mice.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Austin J. Taylor
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - James M. Fulcher
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Adam C. Swensen
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Xiao-Qing Dai
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Mitsuhiro Komba
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | | | - Kenny Fok
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Annette E. Patterson
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ramon I. Klein Geltink
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Wei-Jun Qian
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - C. Bruce Verchere
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Rahman MM, Pathak A, Schueler KL, Alsharif H, Michl A, Alexander J, Kim JA, Bhatnagar S. Genetic ablation of synaptotagmin-9 alters tomosyn-1 function to increase insulin secretion from pancreatic β-cells improving glucose clearance. FASEB J 2023; 37:e23075. [PMID: 37432648 PMCID: PMC10348599 DOI: 10.1096/fj.202300291rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023]
Abstract
Stimulus-coupled insulin secretion from the pancreatic islet β-cells involves the fusion of insulin granules to the plasma membrane (PM) via SNARE complex formation-a cellular process key for maintaining whole-body glucose homeostasis. Less is known about the role of endogenous inhibitors of SNARE complexes in insulin secretion. We show that an insulin granule protein synaptotagmin-9 (Syt9) deletion in mice increased glucose clearance and plasma insulin levels without affecting insulin action compared to the control mice. Upon glucose stimulation, increased biphasic and static insulin secretion were observed from ex vivo islets due to Syt9 loss. Syt9 colocalizes and binds with tomosyn-1 and the PM syntaxin-1A (Stx1A); Stx1A is required for forming SNARE complexes. Syt9 knockdown reduced tomosyn-1 protein abundance via proteasomal degradation and binding of tomosyn-1 to Stx1A. Furthermore, Stx1A-SNARE complex formation was increased, implicating Syt9-tomosyn-1-Stx1A complex is inhibitory in insulin secretion. Rescuing tomosyn-1 blocked the Syt9-knockdown-mediated increases in insulin secretion. This shows that the inhibitory effects of Syt9 on insulin secretion are mediated by tomosyn-1. We report a molecular mechanism by which β-cells modulate their secretory capacity rendering insulin granules nonfusogenic by forming the Syt9-tomosyn-1-Stx1A complex. Altogether, Syt9 loss in β-cells decreases tomosyn-1 protein abundance, increasing the formation of Stx1A-SNARE complexes, insulin secretion, and glucose clearance. These outcomes differ from the previously published work that identified Syt9 has either a positive or no effect of Syt9 on insulin secretion. Future work using β-cell-specific deletion of Syt9 mice is key for establishing the role of Syt9 in insulin secretion.
Collapse
Affiliation(s)
- Md Mostafizur Rahman
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| | - Asmita Pathak
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| | | | - Haifa Alsharif
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| | - Ava Michl
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| | - Justin Alexander
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| | - Jeong-A Kim
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| | - Sushant Bhatnagar
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| |
Collapse
|
15
|
Wu SY, Wu HT, Wang YC, Chang CJ, Shan YS, Wu SR, Chiu YC, Hsu CL, Juan HF, Lan KY, Chu CW, Lee YR, Lan SH, Liu HS. Secretory autophagy promotes RAB37-mediated insulin secretion under glucose stimulation both in vitro and in vivo. Autophagy 2023; 19:1239-1257. [PMID: 36109708 PMCID: PMC10012902 DOI: 10.1080/15548627.2022.2123098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
High blood glucose is one of the risk factors for metabolic disease and INS (insulin) is the key regulatory hormone for glucose homeostasis. Hypoinsulinemia accompanied with hyperglycemia was diagnosed in mice with pancreatic β-cells exhibiting autophagy deficiency; however, the underlying mechanism remains elusive. The role of secretory autophagy in the regulation of metabolic syndrome is gaining more attention. Our data demonstrated that increased macroautophagic/autophagic activity leads to induction of insulin secretion in β-cells both in vivo and in vitro under high-glucose conditions. Moreover, proteomic analysis of purified autophagosomes from β-cells identified a group of vesicular transport proteins participating in insulin secretion, implying that secretory autophagy regulates insulin exocytosis. RAB37, a small GTPase, regulates vesicle biogenesis, trafficking, and cargo release. We demonstrated that the active form of RAB37 increased MAP1LC3/LC3 lipidation (LC3-II) and is essential for the promotion of insulin secretion by autophagy, but these phenomena were not observed in rab37 knockout (rab37-/-) cells and mice. Unbalanced insulin and glucose concentration in the blood was improved by manipulating autophagic activity using a novel autophagy inducer niclosamide (an antihelminthic drug) in a high-fat diet (HFD)-obesity mouse model. In summary, we reveal that secretory autophagy promotes RAB37-mediated insulin secretion to maintain the homeostasis of insulin and glucose both in vitro and in vivo.
Collapse
Affiliation(s)
- Shan-Ying Wu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Tsung Wu
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Jen Chang
- Department of Family Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Chi Chiu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Lang Hsu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Hsueh-Fen Juan
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Kai-Ying Lan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Wen Chu
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University
| | - Ying-Ray Lee
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheng-Hui Lan
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiao-Sheng Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center for Cancer Research, Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
16
|
Dong G, Adak S, Spyropoulos G, Zhang Q, Feng C, Yin L, Speck SL, Shyr Z, Morikawa S, Kitamura RA, Kathayat RS, Dickinson BC, Ng XW, Piston DW, Urano F, Remedi MS, Wei X, Semenkovich CF. Palmitoylation couples insulin hypersecretion with β cell failure in diabetes. Cell Metab 2023; 35:332-344.e7. [PMID: 36634673 PMCID: PMC9908855 DOI: 10.1016/j.cmet.2022.12.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/14/2022] [Accepted: 12/15/2022] [Indexed: 01/13/2023]
Abstract
Hyperinsulinemia often precedes type 2 diabetes. Palmitoylation, implicated in exocytosis, is reversed by acyl-protein thioesterase 1 (APT1). APT1 biology was altered in pancreatic islets from humans with type 2 diabetes, and APT1 knockdown in nondiabetic islets caused insulin hypersecretion. APT1 knockout mice had islet autonomous increased glucose-stimulated insulin secretion that was associated with prolonged insulin granule fusion. Using palmitoylation proteomics, we identified Scamp1 as an APT1 substrate that localized to insulin secretory granules. Scamp1 knockdown caused insulin hypersecretion. Expression of a mutated Scamp1 incapable of being palmitoylated in APT1-deficient cells rescued insulin hypersecretion and nutrient-induced apoptosis. High-fat-fed islet-specific APT1-knockout mice and global APT1-deficient db/db mice showed increased β cell failure. These findings suggest that APT1 is regulated in human islets and that APT1 deficiency causes insulin hypersecretion leading to β cell failure, modeling the evolution of some forms of human type 2 diabetes.
Collapse
Affiliation(s)
- Guifang Dong
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA; Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Sangeeta Adak
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - George Spyropoulos
- Department of Pediatrics, Washington University, St. Louis, MO 63110, USA
| | - Qiang Zhang
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - Chu Feng
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - Li Yin
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - Sarah L Speck
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - Zeenat Shyr
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - Shuntaro Morikawa
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - Rie Asada Kitamura
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - Rahul S Kathayat
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Bryan C Dickinson
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Xue Wen Ng
- Department of Cell Biology & Physiology, Washington University, St. Louis, MO 63110, USA
| | - David W Piston
- Department of Cell Biology & Physiology, Washington University, St. Louis, MO 63110, USA
| | - Fumihiko Urano
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University, St. Louis, MO 63110, USA
| | - Maria S Remedi
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA; Department of Cell Biology & Physiology, Washington University, St. Louis, MO 63110, USA
| | - Xiaochao Wei
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA.
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA; Department of Cell Biology & Physiology, Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
17
|
Warner JM, An D, Stratton BS, O'Shaughnessy B. A hemifused complex is the hub in a network of pathways to membrane fusion. Biophys J 2023; 122:374-385. [PMID: 36463406 PMCID: PMC9892611 DOI: 10.1016/j.bpj.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/25/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Membrane fusion is a critical step for many essential processes, from neurotransmission to fertilization. For over 40 years, protein-free fusion driven by calcium or other cationic species has provided a simplified model of biological fusion, but the mechanisms remain poorly understood. Cation-mediated membrane fusion and permeation are essential in their own right to drug delivery strategies based on cell-penetrating peptides or cation-bearing lipid nanoparticles. Experimental studies suggest calcium drives anionic membranes to a hemifused intermediate that constitutes a hub in a network of pathways, but the pathway selection mechanism is unknown. Here we develop a mathematical model that identifies the network hub as a highly dynamic hemifusion complex. Multivalent cations drive expansion of this high-tension hemifusion interface between interacting vesicles during a brief transient. The fate of this interface determines the outcome, either fusion, dead-end hemifusion, or vesicle lysis. The model reproduces the unexplained finding that calcium-driven fusion of vesicles with planar membranes typically stalls at hemifusion, and we show the equilibrated hemifused state is a novel lens-shaped complex. Thus, membrane fusion kinetics follow a stochastic trajectory within a network of pathways, with outcome weightings set by a hemifused complex intermediate.
Collapse
Affiliation(s)
- Jason M Warner
- Department of Chemical Engineering, Columbia University, New York, New York
| | - Dong An
- Department of Chemical Engineering, Columbia University, New York, New York
| | | | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, New York.
| |
Collapse
|
18
|
Hagan DW, Ferreira SM, Santos GJ, Phelps EA. The role of GABA in islet function. Front Endocrinol (Lausanne) 2022; 13:972115. [PMID: 36246925 PMCID: PMC9558271 DOI: 10.3389/fendo.2022.972115] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Gamma aminobutyric acid (GABA) is a non-proteinogenic amino acid and neurotransmitter that is produced in the islet at levels as high as in the brain. GABA is synthesized by the enzyme glutamic acid decarboxylase (GAD), of which the 65 kDa isoform (GAD65) is a major autoantigen in type 1 diabetes. Originally described to be released via synaptic-like microvesicles or from insulin secretory vesicles, beta cells are now understood to release substantial quantities of GABA directly from the cytosol via volume-regulated anion channels (VRAC). Once released, GABA influences the activity of multiple islet cell types through ionotropic GABAA receptors and metabotropic GABAB receptors. GABA also interfaces with cellular metabolism and ATP production via the GABA shunt pathway. Beta cells become depleted of GABA in type 1 diabetes (in remaining beta cells) and type 2 diabetes, suggesting that loss or reduction of islet GABA correlates with diabetes pathogenesis and may contribute to dysfunction of alpha, beta, and delta cells in diabetic individuals. While the function of GABA in the nervous system is well-understood, the description of the islet GABA system is clouded by differing reports describing multiple secretion pathways and effector functions. This review will discuss and attempt to unify the major experimental results from over 40 years of literature characterizing the role of GABA in the islet.
Collapse
Affiliation(s)
- D. Walker Hagan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Sandra M. Ferreira
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Gustavo J. Santos
- Islet Biology and Metabolism Lab – I.B.M. Lab, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Brazil
| | - Edward A. Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
19
|
Cheung R, Pizza G, Chabosseau P, Rolando D, Tomas A, Burgoyne T, Wu Z, Salowka A, Thapa A, Macklin A, Cao Y, Nguyen-Tu MS, Dickerson MT, Jacobson DA, Marchetti P, Shapiro J, Piemonti L, de Koning E, Leclerc I, Bouzakri K, Sakamoto K, Smith DM, Rutter GA, Martinez-Sanchez A. Glucose-Dependent miR-125b Is a Negative Regulator of β-Cell Function. Diabetes 2022; 71:1525-1545. [PMID: 35476777 PMCID: PMC9998846 DOI: 10.2337/db21-0803] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 04/11/2022] [Indexed: 11/13/2022]
Abstract
Impaired pancreatic β-cell function and insulin secretion are hallmarks of type 2 diabetes. miRNAs are short, noncoding RNAs that silence gene expression vital for the development and function of β cells. We have previously shown that β cell-specific deletion of the important energy sensor AMP-activated protein kinase (AMPK) results in increased miR-125b-5p levels. Nevertheless, the function of this miRNA in β cells is unclear. We hypothesized that miR-125b-5p expression is regulated by glucose and that this miRNA mediates some of the deleterious effects of hyperglycemia in β cells. Here, we show that islet miR-125b-5p expression is upregulated by glucose in an AMPK-dependent manner and that short-term miR-125b-5p overexpression impairs glucose-stimulated insulin secretion (GSIS) in the mouse insulinoma MIN6 cells and in human islets. An unbiased, high-throughput screen in MIN6 cells identified multiple miR-125b-5p targets, including the transporter of lysosomal hydrolases M6pr and the mitochondrial fission regulator Mtfp1. Inactivation of miR-125b-5p in the human β-cell line EndoCβ-H1 shortened mitochondria and enhanced GSIS, whereas mice overexpressing miR-125b-5p selectively in β cells (MIR125B-Tg) were hyperglycemic and glucose intolerant. MIR125B-Tg β cells contained enlarged lysosomal structures and had reduced insulin content and secretion. Collectively, we identify miR-125b as a glucose-controlled regulator of organelle dynamics that modulates insulin secretion.
Collapse
Affiliation(s)
- Rebecca Cheung
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Grazia Pizza
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Pauline Chabosseau
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Delphine Rolando
- Beta Cell Genome Regulation Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Thomas Burgoyne
- UCL Institute of Ophthalmology, University College London, London, U.K
| | - Zhiyi Wu
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Anna Salowka
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Anusha Thapa
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Annabel Macklin
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Yufei Cao
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Marie-Sophie Nguyen-Tu
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Matthew T. Dickerson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - David A. Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - James Shapiro
- Clinical Islet Laboratory and Clinical Islet Transplant Program, University of Alberta, Edmonton, Canada
| | | | - Eelco de Koning
- Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Karim Bouzakri
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Kei Sakamoto
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - David M. Smith
- Emerging Innovations Unit, Discovery Sciences, R&D, AstraZeneca, Cambridge, U.K
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
- CR-CHUM, University of Montreal, Montreal, Quebec, Canada
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
- Corresponding author: Aida Martinez-Sanchez,
| |
Collapse
|
20
|
Xu H, Chang F, Jain S, Heller BA, Han X, Liu Y, Edwards RH. SNX5 targets a monoamine transporter to the TGN for assembly into dense core vesicles by AP-3. J Cell Biol 2022; 221:e202106083. [PMID: 35426896 PMCID: PMC9016777 DOI: 10.1083/jcb.202106083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/06/2021] [Accepted: 02/16/2022] [Indexed: 11/22/2022] Open
Abstract
The time course of signaling by peptide hormones, neural peptides, and other neuromodulators depends on their storage inside dense core vesicles (DCVs). Adaptor protein 3 (AP-3) assembles the membrane proteins that confer regulated release of DCVs and is thought to promote their trafficking from endosomes directly to maturing DCVs. We now find that regulated monoamine release from DCVs requires sorting nexin 5 (SNX5). Loss of SNX5 disrupts trafficking of the vesicular monoamine transporter (VMAT) to DCVs. The mechanism involves a role for SNX5 in retrograde transport of VMAT from endosomes to the TGN. However, this role for SNX5 conflicts with the proposed function of AP-3 in trafficking from endosomes directly to DCVs. We now identify a transient role for AP-3 at the TGN, where it associates with DCV cargo. Thus, retrograde transport from endosomes by SNX5 enables DCV assembly at the TGN by AP-3, resolving the apparent antagonism. A novel role for AP-3 at the TGN has implications for other organelles that also depend on this adaptor.
Collapse
Affiliation(s)
- Hongfei Xu
- Departments of Neurology and Physiology, University of California San Francisco, San Francisco, CA
- Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Fei Chang
- Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Shweta Jain
- Departments of Neurology and Physiology, University of California San Francisco, San Francisco, CA
| | - Bradley Austin Heller
- Departments of Neurology and Physiology, University of California San Francisco, San Francisco, CA
| | - Xu Han
- Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Yongjian Liu
- Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
- Departments of Pharmacology and Biological Chemistry, University of Pittsburgh, Pittsburgh, PA
| | - Robert H. Edwards
- Departments of Neurology and Physiology, University of California San Francisco, San Francisco, CA
| |
Collapse
|
21
|
He X, Ewing AG. Simultaneous Counting of Molecules in the Halo and Dense-Core of Nanovesicles by Regulating Dynamics of Vesicle Opening. Angew Chem Int Ed Engl 2022; 61:e202116217. [PMID: 35129861 PMCID: PMC9306628 DOI: 10.1002/anie.202116217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Indexed: 01/09/2023]
Abstract
We report the discovery that in the presence of chaotropic anions (SCN- ) the opening of nanometer biological vesicles at an electrified interface often becomes a two-step process (around 30 % doublet peaks). We have then used this to independently count molecules in each subvesicular compartment, the halo and protein dense-core, and the fraction of catecholamine binding to the dense-core is 68 %. Moreover, we differentiated two distinct populations of large dense-core vesicles (LDCVs) and quantified their content, which might correspond to immature (43 %) and mature (30 %) LDCVs, to reveal differences in their biogenesis. We speculate this is caused by an increase in the electrostatic attraction between protonated catecholamine and the negatively charged dense-core following adsorption of SCN- .
Collapse
Affiliation(s)
- Xiulan He
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivägen 1041296GothenburgSweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivägen 1041296GothenburgSweden
| |
Collapse
|
22
|
Rohli KE, Boyer CK, Blom SE, Stephens SB. Nutrient Regulation of Pancreatic Islet β-Cell Secretory Capacity and Insulin Production. Biomolecules 2022; 12:335. [PMID: 35204835 PMCID: PMC8869698 DOI: 10.3390/biom12020335] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023] Open
Abstract
Pancreatic islet β-cells exhibit tremendous plasticity for secretory adaptations that coordinate insulin production and release with nutritional demands. This essential feature of the β-cell can allow for compensatory changes that increase secretory output to overcome insulin resistance early in Type 2 diabetes (T2D). Nutrient-stimulated increases in proinsulin biosynthesis may initiate this β-cell adaptive compensation; however, the molecular regulators of secretory expansion that accommodate the increased biosynthetic burden of packaging and producing additional insulin granules, such as enhanced ER and Golgi functions, remain poorly defined. As these adaptive mechanisms fail and T2D progresses, the β-cell succumbs to metabolic defects resulting in alterations to glucose metabolism and a decline in nutrient-regulated secretory functions, including impaired proinsulin processing and a deficit in mature insulin-containing secretory granules. In this review, we will discuss how the adaptative plasticity of the pancreatic islet β-cell's secretory program allows insulin production to be carefully matched with nutrient availability and peripheral cues for insulin signaling. Furthermore, we will highlight potential defects in the secretory pathway that limit or delay insulin granule biosynthesis, which may contribute to the decline in β-cell function during the pathogenesis of T2D.
Collapse
Affiliation(s)
- Kristen E. Rohli
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Cierra K. Boyer
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Sandra E. Blom
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Samuel B. Stephens
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
23
|
He X, Ewing AG. Simultaneous Counting of Molecules in the Halo and Dense‐Core of Nanovesicles by Regulating Dynamics of Vesicle Opening. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiulan He
- Department of Chemistry and Molecular Biology University of Gothenburg Kemivägen 10 41296 Gothenburg Sweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular Biology University of Gothenburg Kemivägen 10 41296 Gothenburg Sweden
| |
Collapse
|
24
|
Eguchi N, Toribio AJ, Alexander M, Xu I, Whaley DL, Hernandez LF, Dafoe D, Ichii H. Dysregulation of β-Cell Proliferation in Diabetes: Possibilities of Combination Therapy in the Development of a Comprehensive Treatment. Biomedicines 2022; 10:biomedicines10020472. [PMID: 35203680 PMCID: PMC8962301 DOI: 10.3390/biomedicines10020472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder characterized by chronic hyperglycemia as a result of insufficient insulin levels and/or impaired function as a result of autoimmune destruction or insulin resistance. While Type 1 DM (T1DM) and Type 2 DM (T2DM) occur through different pathological processes, both result in β-cell destruction and/or dysfunction, which ultimately lead to insufficient β-cell mass to maintain normoglycemia. Therefore, therapeutic agents capable of inducing β-cell proliferation is crucial in treating and reversing diabetes; unfortunately, adult human β-cell proliferation has been shown to be very limited (~0.2% of β-cells/24 h) and poorly responsive to many mitogens. Furthermore, diabetogenic insults result in damage to β cells, making it ever more difficult to induce proliferation. In this review, we discuss β-cell mass/proliferation pathways dysregulated in diabetes and current therapeutic agents studied to induce β-cell proliferation. Furthermore, we discuss possible combination therapies of proliferation agents with immunosuppressants and antioxidative therapy to improve overall long-term outcomes of diabetes.
Collapse
|
25
|
Josefsen K, Krogvold L, Gerling IC, Pociot F, Dahl-Jørgensen K, Buschard K. Development of Type 1 Diabetes may occur through a Type 2 Diabetes mechanism. Front Endocrinol (Lausanne) 2022; 13:1032822. [PMID: 36589856 PMCID: PMC9794996 DOI: 10.3389/fendo.2022.1032822] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND At diagnosis of Type 1 Diabetes (T1D), 30% of the beta cells are dormant, i.e. alive, but inactive. This could reduce beta cell destruction, as cellular stress contributes to beta cell damage. However, the beta cells, that are still active, must produce more insulin and are therefore more vulnerable. The inactive beta cells represent a potential for restoring the insulin secretion. METHODS We analyzed the expression of selected genes in islets from live, newly diagnosed T1D patients from the DiViD study and organ doners with longer duration of T1D, type 2 diabetes (T2D), or no diabetes from the nPOD study. Additionally, analysis of polymorphisms was performed on all the investigated genes. FINDINGS Various possibilities were considered for the inactivity of the beta cells: secretion defect, fetal state, hibernation, and insulin resistance. We analyzed genes related to the ceramide and sphingomyelin synthesis and degradation, secretion, circadian rhythm and insulin action, and found changes in T1D islets that resemble fetal dedifferentiation and asynchrony. Furthermore, we found low levels of insulin receptor mRNA in the islets. No polymorphisms were found. INTERPRETATION Our findings suggest a secretion defect, but also fetal dedifferentiation and desynchronization in the inactive beta cells. Together with previous evidence, that predisposing factors for T2D are also present for T1D development, we raise the idea to treat individuals with ongoing T1D development prophylactically with T2D medicine like GLP-1 receptor agonists, metformin, or others, combined with anti-inflammatory compounds, in order to reactivate the dormant beta cells, and to prevent autoimmune destruction. T2D mechanisms during T1D development should be investigated further.
Collapse
Affiliation(s)
- Knud Josefsen
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen Biocenter, Denmark
| | - Lars Krogvold
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ivan C. Gerling
- Department of Medicine, University of Tennessee, Memphis, TN, United States
| | - Flemming Pociot
- Department of Medicine, University of Tennessee, Memphis, TN, United States
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Knut Dahl-Jørgensen
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Karsten Buschard
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen Biocenter, Denmark
- *Correspondence: Karsten Buschard,
| |
Collapse
|
26
|
Yau B, Hocking S, Andrikopoulos S, Kebede MA. Targeting the insulin granule for modulation of insulin exocytosis. Biochem Pharmacol 2021; 194:114821. [PMID: 34748819 DOI: 10.1016/j.bcp.2021.114821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 02/08/2023]
Abstract
The pancreatic β-cells control insulin secretion in the body to regulate glucose homeostasis, and β-cell stress and dysfunction is characteristic of Type 2 Diabetes. Pharmacological targeting of the β-cell to increase insulin secretion is typically utilised, however, extended use of common drugs such as sulfonylureas are known to result in secondary failure. Moreover, there is evidence they may induce β-cell failure in the long term. Within β-cells, insulin secretory granules (ISG) serve as compartments to store, process and traffic insulin for exocytosis. There is now growing evidence that ISG exist in multiple populations, distinct in their protein composition, motility, age, and capacity for secretion. In this review, we discuss the implications of a heterogenous ISG population in β-cells and highlight the need for more understanding into how unique ISG populations may be targeted in anti-diabetic therapies.
Collapse
Affiliation(s)
- Belinda Yau
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia.
| | - Samantha Hocking
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia; Central Clinical School, Faculty of Medicine and Health and Department of Endocrinology Royal Prince Alfred Hospital, NSW, Australia
| | | | - Melkam A Kebede
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
27
|
Germanos M, Gao A, Taper M, Yau B, Kebede MA. Inside the Insulin Secretory Granule. Metabolites 2021; 11:metabo11080515. [PMID: 34436456 PMCID: PMC8401130 DOI: 10.3390/metabo11080515] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022] Open
Abstract
The pancreatic β-cell is purpose-built for the production and secretion of insulin, the only hormone that can remove glucose from the bloodstream. Insulin is kept inside miniature membrane-bound storage compartments known as secretory granules (SGs), and these specialized organelles can readily fuse with the plasma membrane upon cellular stimulation to release insulin. Insulin is synthesized in the endoplasmic reticulum (ER) as a biologically inactive precursor, proinsulin, along with several other proteins that will also become members of the insulin SG. Their coordinated synthesis enables synchronized transit through the ER and Golgi apparatus for congregation at the trans-Golgi network, the initiating site of SG biogenesis. Here, proinsulin and its constituents enter the SG where conditions are optimized for proinsulin processing into insulin and subsequent insulin storage. A healthy β-cell is continually generating SGs to supply insulin in vast excess to what is secreted. Conversely, in type 2 diabetes (T2D), the inability of failing β-cells to secrete may be due to the limited biosynthesis of new insulin. Factors that drive the formation and maturation of SGs and thus the production of insulin are therefore critical for systemic glucose control. Here, we detail the formative hours of the insulin SG from the luminal perspective. We do this by mapping the journey of individual members of the SG as they contribute to its genesis.
Collapse
|
28
|
Isolation and Proteomics of the Insulin Secretory Granule. Metabolites 2021; 11:metabo11050288. [PMID: 33946444 PMCID: PMC8147143 DOI: 10.3390/metabo11050288] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/21/2022] Open
Abstract
Insulin, a vital hormone for glucose homeostasis is produced by pancreatic beta-cells and when secreted, stimulates the uptake and storage of glucose from the blood. In the pancreas, insulin is stored in vesicles termed insulin secretory granules (ISGs). In Type 2 diabetes (T2D), defects in insulin action results in peripheral insulin resistance and beta-cell compensation, ultimately leading to dysfunctional ISG production and secretion. ISGs are functionally dynamic and many proteins present either on the membrane or in the lumen of the ISG may modulate and affect different stages of ISG trafficking and secretion. Previously, studies have identified few ISG proteins and more recently, proteomics analyses of purified ISGs have uncovered potential novel ISG proteins. This review summarizes the proteins identified in the current ISG proteomes from rat insulinoma INS-1 and INS-1E cell lines. Here, we also discuss techniques of ISG isolation and purification, its challenges and potential future directions.
Collapse
|