1
|
Han Y, Tu W, Zhang Y, Huang J, Meng X, Wu Q, Li S, Liu B, Michal JJ, Jiang Z, Tan Y, Zhou X, Wang H. Comprehensive analysis of single-nucleotide variants and alternative polyadenylation between inbred and outbred pigs. Int J Biol Macromol 2024; 278:134416. [PMID: 39098700 DOI: 10.1016/j.ijbiomac.2024.134416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Inbreeding can lead to the accumulation of homozygous single nucleotide polymorphisms (SNPs) in the genome, which can significantly affect gene expression and phenotype. In this study, we examined the impact of homozygous SNPs resulting from inbreeding on alternative polyadenylation (APA) site selection and the underlying genetic mechanisms using inbred Luchuan pigs. Genome resequencing revealed that inbreeding results in a high accumulation of homozygous SNPs within the pig genome. 3' mRNA-seq on leg muscle, submandibular lymph node, and liver tissues was performed to identify differences in APA events between inbred and outbred Luchuan pigs. We revealed different tissue-specific APA usage caused by inbreeding, which were associated with different biological processes. Furthermore, we explored the role of polyadenylation signal (PAS) SNPs in APA regulation under inbreeding and identified key genes such as PUM1, SCARF1, RIPOR2, C1D, and LRRK2 that are involved in biological processes regulation. This study provides resources and sheds light on the impact of genomic homozygosity on APA regulation, offering insights into genetic characteristics and biological processes associated with inbreeding.
Collapse
Affiliation(s)
- Yu Han
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weilong Tu
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Yingying Zhang
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Ji Huang
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Xiangge Meng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qingqing Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Songyu Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Bang Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jennifer J Michal
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Zhihua Jiang
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Yongsong Tan
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Xiang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| | - Hongyang Wang
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China.
| |
Collapse
|
2
|
Ruiz-Orera J, Miller DC, Greiner J, Genehr C, Grammatikaki A, Blachut S, Mbebi J, Patone G, Myronova A, Adami E, Dewani N, Liang N, Hummel O, Muecke MB, Hildebrandt TB, Fritsch G, Schrade L, Zimmermann WH, Kondova I, Diecke S, van Heesch S, Hübner N. Evolution of translational control and the emergence of genes and open reading frames in human and non-human primate hearts. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1217-1235. [PMID: 39317836 PMCID: PMC11473369 DOI: 10.1038/s44161-024-00544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024]
Abstract
Evolutionary innovations can be driven by changes in the rates of RNA translation and the emergence of new genes and small open reading frames (sORFs). In this study, we characterized the transcriptional and translational landscape of the hearts of four primate and two rodent species through integrative ribosome and transcriptomic profiling, including adult left ventricle tissues and induced pluripotent stem cell-derived cardiomyocyte cell cultures. We show here that the translational efficiencies of subunits of the mitochondrial oxidative phosphorylation chain complexes IV and V evolved rapidly across mammalian evolution. Moreover, we discovered hundreds of species-specific and lineage-specific genomic innovations that emerged during primate evolution in the heart, including 551 genes, 504 sORFs and 76 evolutionarily conserved genes displaying human-specific cardiac-enriched expression. Overall, our work describes the evolutionary processes and mechanisms that have shaped cardiac transcription and translation in recent primate evolution and sheds light on how these can contribute to cardiac development and disease.
Collapse
Affiliation(s)
- Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| | - Duncan C Miller
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Technology Platform Pluripotent Stem Cells, Berlin, Germany
| | - Johannes Greiner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Carolin Genehr
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Technology Platform Pluripotent Stem Cells, Berlin, Germany
| | - Aliki Grammatikaki
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Susanne Blachut
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Jeanne Mbebi
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Giannino Patone
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Anna Myronova
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Eleonora Adami
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Nikita Dewani
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Ning Liang
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Oliver Hummel
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Michael B Muecke
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Thomas B Hildebrandt
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Freie Universitaet Berlin, Berlin, Germany
| | - Guido Fritsch
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Lisa Schrade
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Wolfram H Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Lower Saxony, Göttingen, Germany
- DZNE (German Center for Neurodegenerative Diseases), Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Göttingen, Germany
| | - Ivanela Kondova
- Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Sebastian Diecke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Technology Platform Pluripotent Stem Cells, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Sebastiaan van Heesch
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Norbert Hübner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
- Charité-Universitätsmedizin, Berlin, Germany.
- Helmholtz Institute for Translational AngioCardioScience (HI-TAC) of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) at Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
3
|
Hansen TJ, Fong SL, Day JK, Capra JA, Hodges E. Human gene regulatory evolution is driven by the divergence of regulatory element function in both cis and trans. CELL GENOMICS 2024; 4:100536. [PMID: 38604126 PMCID: PMC11019363 DOI: 10.1016/j.xgen.2024.100536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/03/2024] [Accepted: 03/10/2024] [Indexed: 04/13/2024]
Abstract
Gene regulatory divergence between species can result from cis-acting local changes to regulatory element DNA sequences or global trans-acting changes to the regulatory environment. Understanding how these mechanisms drive regulatory evolution has been limited by challenges in identifying trans-acting changes. We present a comprehensive approach to directly identify cis- and trans-divergent regulatory elements between human and rhesus macaque lymphoblastoid cells using assay for transposase-accessible chromatin coupled to self-transcribing active regulatory region (ATAC-STARR) sequencing. In addition to thousands of cis changes, we discover an unexpected number (∼10,000) of trans changes and show that cis and trans elements exhibit distinct patterns of sequence divergence and function. We further identify differentially expressed transcription factors that underlie ∼37% of trans differences and trace how cis changes can produce cascades of trans changes. Overall, we find that most divergent elements (67%) experienced changes in both cis and trans, revealing a substantial role for trans divergence-alone and together with cis changes-in regulatory differences between species.
Collapse
Affiliation(s)
- Tyler J Hansen
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Sarah L Fong
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jessica K Day
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - John A Capra
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94143, USA.
| | - Emily Hodges
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Ingram Cancer Center, Nashville, TN 37232, USA.
| |
Collapse
|
4
|
Barr KA, Rhodes KL, Gilad Y. The relationship between regulatory changes in cis and trans and the evolution of gene expression in humans and chimpanzees. Genome Biol 2023; 24:207. [PMID: 37697401 PMCID: PMC10496171 DOI: 10.1186/s13059-023-03019-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/21/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Comparative gene expression studies in apes are fundamentally limited by the challenges associated with sampling across different tissues. Here, we used single-cell RNA sequencing of embryoid bodies to collect transcriptomic data from over 70 cell types in three humans and three chimpanzees. RESULTS We find hundreds of genes whose regulation is conserved across cell types, as well as genes whose regulation likely evolves under directional selection in one or a handful of cell types. Using embryoid bodies from a human-chimpanzee fused cell line, we also infer the proportion of inter-species regulatory differences due to changes in cis and trans elements between the species. Using the cis/trans inference and an analysis of transcription factor binding sites, we identify dozens of transcription factors whose inter-species differences in expression are affecting expression differences between humans and chimpanzees in hundreds of target genes. CONCLUSIONS Here, we present the most comprehensive dataset of comparative gene expression from humans and chimpanzees to date, including a catalog of regulatory mechanisms associated with inter-species differences.
Collapse
Affiliation(s)
- Kenneth A Barr
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | | | - Yoav Gilad
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA.
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
5
|
Hansen T, Fong S, Capra JA, Hodges E. Human gene regulatory evolution is driven by the divergence of regulatory element function in both cis and trans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528376. [PMID: 36824965 PMCID: PMC9949080 DOI: 10.1101/2023.02.14.528376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Gene regulatory divergence between species can result from cis-acting local changes to regulatory element DNA sequences or global trans-acting changes to the regulatory environment. Understanding how these mechanisms drive regulatory evolution has been limited by challenges in identifying trans-acting changes. We present a comprehensive approach to directly identify cis- and trans-divergent regulatory elements between human and rhesus macaque lymphoblastoid cells using ATAC-STARR-seq. In addition to thousands of cis changes, we discover an unexpected number (~10,000) of trans changes and show that cis and trans elements exhibit distinct patterns of sequence divergence and function. We further identify differentially expressed transcription factors that underlie >50% of trans differences and trace how cis changes can produce cascades of trans changes. Overall, we find that most divergent elements (67%) experienced changes in both cis and trans, revealing a substantial role for trans divergence-alone and together with cis changes-to regulatory differences between species.
Collapse
Affiliation(s)
- Tyler Hansen
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | - Sarah Fong
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John A. Capra
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Emily Hodges
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
- Lead contact
| |
Collapse
|
6
|
Ferrández-Peral L, Zhan X, Alvarez-Estape M, Chiva C, Esteller-Cucala P, García-Pérez R, Julià E, Lizano E, Fornas Ò, Sabidó E, Li Q, Marquès-Bonet T, Juan D, Zhang G. Transcriptome innovations in primates revealed by single-molecule long-read sequencing. Genome Res 2022; 32:1448-1462. [PMID: 35840341 PMCID: PMC9435740 DOI: 10.1101/gr.276395.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 07/12/2022] [Indexed: 11/24/2022]
Abstract
Transcriptomic diversity greatly contributes to the fundamentals of disease, lineage-specific biology, and environmental adaptation. However, much of the actual isoform repertoire contributing to shaping primate evolution remains unknown. Here, we combined deep long- and short-read sequencing complemented with mass spectrometry proteomics in a panel of lymphoblastoid cell lines (LCLs) from human, three other great apes, and rhesus macaque, producing the largest full-length isoform catalog in primates to date. Around half of the captured isoforms are not annotated in their reference genomes, significantly expanding the gene models in primates. Furthermore, our comparative analyses unveil hundreds of transcriptomic innovations and isoform usage changes related to immune function and immunological disorders. The confluence of these evolutionary innovations with signals of positive selection and their limited impact in the proteome points to changes in alternative splicing in genes involved in immune response as an important target of recent regulatory divergence in primates.
Collapse
Affiliation(s)
| | | | | | - Cristina Chiva
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | | | | | - Eva Julià
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
| | - Esther Lizano
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Òscar Fornas
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Eduard Sabidó
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Qiye Li
- BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tomàs Marquès-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- CNAG-CRG, Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - David Juan
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain
| | - Guojie Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen 2200, Denmark
- Evolutionary and Organismal Biology Research Center, School of Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Chou SP, Alexander AK, Rice EJ, Choate LA, Danko CG. Genetic dissection of the RNA polymerase II transcription cycle. eLife 2022; 11:e78458. [PMID: 35775732 PMCID: PMC9286732 DOI: 10.7554/elife.78458] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/30/2022] [Indexed: 11/20/2022] Open
Abstract
How DNA sequence affects the dynamics and position of RNA Polymerase II (Pol II) during transcription remains poorly understood. Here, we used naturally occurring genetic variation in F1 hybrid mice to explore how DNA sequence differences affect the genome-wide distribution of Pol II. We measured the position and orientation of Pol II in eight organs collected from heterozygous F1 hybrid mice using ChRO-seq. Our data revealed a strong genetic basis for the precise coordinates of transcription initiation and promoter proximal pause, allowing us to redefine molecular models of core transcriptional processes. Our results implicate DNA sequence, including both known and novel DNA sequence motifs, as key determinants of the position of Pol II initiation and pause. We report evidence that initiation site selection follows a stochastic process similar to Brownian motion along the DNA template. We found widespread differences in the position of transcription termination, which impact the primary structure and stability of mature mRNA. Finally, we report evidence that allelic changes in transcription often affect mRNA and ncRNA expression across broad genomic domains. Collectively, we reveal how DNA sequences shape core transcriptional processes at single nucleotide resolution in mammals.
Collapse
Affiliation(s)
- Shao-Pei Chou
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - Adriana K Alexander
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - Edward J Rice
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - Lauren A Choate
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - Charles G Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| |
Collapse
|
8
|
Housman G, Briscoe E, Gilad Y. Evolutionary insights into primate skeletal gene regulation using a comparative cell culture model. PLoS Genet 2022; 18:e1010073. [PMID: 35263340 PMCID: PMC8936463 DOI: 10.1371/journal.pgen.1010073] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 03/21/2022] [Accepted: 02/02/2022] [Indexed: 01/10/2023] Open
Abstract
The evolution of complex skeletal traits in primates was likely influenced by both genetic and environmental factors. Because skeletal tissues are notoriously challenging to study using functional genomic approaches, they remain poorly characterized even in humans, let alone across multiple species. The challenges involved in obtaining functional genomic data from the skeleton, combined with the difficulty of obtaining such tissues from nonhuman apes, motivated us to consider an alternative in vitro system with which to comparatively study gene regulation in skeletal cell types. Specifically, we differentiated six human (Homo sapiens) and six chimpanzee (Pan troglodytes) induced pluripotent stem cell lines (iPSCs) into mesenchymal stem cells (MSCs) and subsequently into osteogenic cells (bone cells). We validated differentiation using standard methods and collected single-cell RNA sequencing data from over 100,000 cells across multiple samples and replicates at each stage of differentiation. While most genes that we examined display conserved patterns of expression across species, hundreds of genes are differentially expressed (DE) between humans and chimpanzees within and across stages of osteogenic differentiation. Some of these interspecific DE genes show functional enrichments relevant in skeletal tissue trait development. Moreover, topic modeling indicates that interspecific gene programs become more pronounced as cells mature. Overall, we propose that this in vitro model can be used to identify interspecific regulatory differences that may have contributed to skeletal trait differences between species. Primates display a range of skeletal morphologies and susceptibilities to skeletal diseases, but the molecular basis of these phenotypic differences is unclear. Studies of gene expression variation in primate skeletal tissues are extremely restricted due to the ethical and practical challenges associated with collecting samples. Nevertheless, the ability to study gene regulation in primate skeletal tissues is crucial for understanding how the primate skeleton has evolved. We therefore developed a comparative primate skeletal cell culture model that allows us to access a spectrum of human and chimpanzee cell types as they differentiate from stem cells into bone cells. While most gene expression patterns are conserved across species, we also identified hundreds of differentially expressed genes between humans and chimpanzees within and across stages of differentiation. We also classified cells by osteogenic stage and identified additional interspecific differentially expressed genes which may contribute to skeletal trait differences. We anticipate that this model will be extremely useful for exploring questions related to gene regulation variation in primate bone biology and development.
Collapse
Affiliation(s)
- Genevieve Housman
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| | - Emilie Briscoe
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Yoav Gilad
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
9
|
Wang J, Xi Y, Ma S, Qi J, Li J, Zhang R, Han C, Li L, Wang J, Liu H. Single-molecule long-read sequencing reveals the potential impact of posttranscriptional regulation on gene dosage effects on the avian Z chromosome. BMC Genomics 2022; 23:122. [PMID: 35148676 PMCID: PMC8832729 DOI: 10.1186/s12864-022-08360-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 02/01/2022] [Indexed: 12/23/2022] Open
Abstract
Background Mammalian sex chromosomes provide dosage compensation, but avian lack a global mechanism of dose compensation. Herein, we employed nanopore sequencing to investigate the genetic basis of gene expression and gene dosage effects in avian Z chromosomes at the posttranscriptional level. Results In this study, the gonad and head skin of female and male duck samples (n = 4) were collected at 16 weeks of age for Oxford nanopore sequencing. Our results revealed a dosage effect and local regulation of duck Z chromosome gene expression. Additionally, AS and APA achieve tissue-specific gene expression, and male-biased lncRNA regulates its Z-linked target genes, with a positive regulatory role for gene dosage effects on the duck Z chromosome. In addition, GO enrichment and KEGG pathway analysis showed that the dosage effects of Z-linked genes were mainly associated with the cellular response to hormone stimulus, melanin biosynthetic, metabolic pathways, and melanogenesis, resulting in sex differences. Conclusions Our data suggested that post transcriptional regulation (AS, APA and lncRNA) has a potential impact on the gene expression effects of avian Z chromosomes. Our study provides a new view of gene regulation underlying the dose effects in avian Z chromosomes at the RNA post transcriptional level. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08360-8.
Collapse
Affiliation(s)
- Jianmei Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Yang Xi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Shengchao Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Jingjing Qi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Junpeng Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Rongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China.
| |
Collapse
|
10
|
Mittleman BE, Pott S, Warland S, Barr K, Cuevas C, Gilad Y. Divergence in alternative polyadenylation contributes to gene regulatory differences between humans and chimpanzees. eLife 2021; 10:e62548. [PMID: 33595436 PMCID: PMC7954529 DOI: 10.7554/elife.62548] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
While comparative functional genomic studies have shown that inter-species differences in gene expression can be explained by corresponding inter-species differences in genetic and epigenetic regulatory mechanisms, co-transcriptional mechanisms, such as alternative polyadenylation (APA), have received little attention. We characterized APA in lymphoblastoid cell lines from six humans and six chimpanzees by identifying and estimating the usage for 44,432 polyadenylation sites (PAS) in 9518 genes. Although APA is largely conserved, 1705 genes showed significantly different PAS usage (FDR 0.05) between species. Genes with divergent APA also tend to be differentially expressed, are enriched among genes showing differences in protein translation, and can explain a subset of observed inter-species protein expression differences that do not differ at the transcript level. Finally, we found that genes with a dominant PAS, which is used more often than other PAS, are particularly enriched for differentially expressed genes.
Collapse
Affiliation(s)
- Briana E Mittleman
- Genetics, Genomics and Systems Biology, University of ChicagoChicagoUnited States
| | - Sebastian Pott
- Department of Human Genetics, University of ChicagoChicagoUnited States
| | - Shane Warland
- Section of Genetic Medicine, Department of Medicine, University of ChicagoChicagoUnited States
| | - Kenneth Barr
- Section of Genetic Medicine, Department of Medicine, University of ChicagoChicagoUnited States
| | - Claudia Cuevas
- Section of Genetic Medicine, Department of Medicine, University of ChicagoChicagoUnited States
| | - Yoav Gilad
- Department of Human Genetics, University of ChicagoChicagoUnited States
- Section of Genetic Medicine, Department of Medicine, University of ChicagoChicagoUnited States
| |
Collapse
|