1
|
Wall EK, Virakorn EA, Baker KD, Cohen EM, Richardson R. Preclinical behavioral and pharmacological treatments for enhancing fear extinction in adolescence. Neurosci Biobehav Rev 2025; 172:106090. [PMID: 40049540 DOI: 10.1016/j.neubiorev.2025.106090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/17/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Adolescence is a window of vulnerability for the development of anxiety disorders but also a window of opportunity for treatments to minimize the long-term impact of such disorders. Current first-line treatments, primarily exposure-based cognitive-behavioral therapy (CBT), have limited long-term efficacy in adolescents. The urgent need for more effective interventions is underscored by the frequent reports of extinction impairments in adolescents as well as the rising anxiety rates in youth, particularly post-COVID-19. Preclinical research on the extinction of learned fear in adolescents may contribute to developing better treatment approaches to anxiety in this age group. Unfortunately, this is still a largely under-explored area. However, both pharmacological and behavioral augmentation strategies can be used to enhance extinction learning and consolidation. Here we describe work exploring such adjuncts, focusing on pre-clinical work with rodents. Much of the research to date shows striking developmental differences in response to various pharmacological treatments, with only a few shown to be effective in adolescents. Further, recent experience of stress reduces the efficacy of these treatments in adolescence. This review highlights the necessity for tailored strategies, especially when it comes to pharmacological adjuncts, that address developmental differences in drug responses as well as the impact of stressful experiences on treatment efficacy.
Collapse
Affiliation(s)
- Emily K Wall
- School of Psychology, UNSW Sydney, Sydney, NSW 2052, Australia
| | | | - Kathryn D Baker
- School of Psychology, UNSW Sydney, Sydney, NSW 2052, Australia; Department of Psychology, Counselling and Therapy, La Trobe University, Melbourne, VIC 3086, Australia
| | - E Myfanwy Cohen
- School of Psychology, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Rick Richardson
- School of Psychology, UNSW Sydney, Sydney, NSW 2052, Australia.
| |
Collapse
|
2
|
de Vos JH, Lange I, Goossens L, Leibold NK, de Cort K, Bakker J, Michielse S, Marcelis M, van Os J, van Amelsvoort T, Linden DEJ, Schruers KRJ. Long-term exposure therapy outcome in phobia and the link with behavioral and neural indices of extinction learning. J Affect Disord 2025; 375:324-330. [PMID: 39889926 DOI: 10.1016/j.jad.2025.01.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/03/2024] [Accepted: 01/26/2025] [Indexed: 02/03/2025]
Abstract
Extinction learning is regarded as a core mechanism underlying exposure therapy. Under this assumption, studies have looked at the predictive value of the extinction learning paradigm for exposure therapy outcomes. However, predicting factors of long-term exposure therapy success have not been established. Participants with a specific phobia (SP) for spiders were included in a double-blind randomized controlled trial. Participants were randomly assigned to receive exposure therapy (n = 25, 24 females) or an active control intervention, progressive muscle relaxation (PMR; n = 18, 15 females). Symptom levels were measured with the Fear of Spiders questionnaire (FSQ) at baseline (T0), after the intervention (T1), and at six- (T2) and twelve (T3) months follow-up. At baseline, participants completed a three-day fMRI fear conditioning, extinction learning, and extinction recall paradigm. Indices of extinction were defined as self-reported threat expectancy and fear, and neural activation during stimulus presentations and threat omission in the ventromedial prefrontal cortex and nucleus accumbens, based on prior data. Mixed model analysis revealed that the exposure therapy group had an overall stronger decrease in phobic symptoms over time than the PMR group (β = 10.95, p < .001). However, none of the indices of extinction learning were predictive for FSQ scores after exposure therapy at the longest follow-up measurement (T3). In sum, the current results show the long-term effectiveness of a single session of exposure therapy for reducing a specific fear of spiders but no baseline characteristics were identified that predicted individual differences in exposure therapy success after one year.
Collapse
Affiliation(s)
- Jette H de Vos
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, the Netherlands.
| | - Iris Lange
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, the Netherlands; Faculty of Psychology, Laboratory of Biological Psychology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Liesbet Goossens
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, the Netherlands
| | - Nicole K Leibold
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, the Netherlands
| | - Klara de Cort
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, the Netherlands; Academic Anxiety Center, Mondriaan/PsyQ, Maastricht, the Netherlands
| | - Jindra Bakker
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, the Netherlands
| | - Stijn Michielse
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, the Netherlands
| | - Machteld Marcelis
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, the Netherlands; Institute for Mental Health Care Eindhoven (GGzE), Eindhoven, the Netherlands
| | - Jim van Os
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, the Netherlands; Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Therese van Amelsvoort
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, the Netherlands
| | - David E J Linden
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, the Netherlands
| | - Koen R J Schruers
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, the Netherlands; Academic Anxiety Center, Mondriaan/PsyQ, Maastricht, the Netherlands; Faculty of Psychology, Center for Experimental and Learning Psychology, University of Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Willems AL, Van Oudenhove L, Vervliet B. Omissions of threat trigger subjective relief and prediction error-like signaling in the human reward and salience systems. eLife 2025; 12:RP91400. [PMID: 40008871 PMCID: PMC11875134 DOI: 10.7554/elife.91400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
The unexpected absence of danger constitutes a pleasurable event that is critical for the learning of safety. Accumulating evidence points to similarities between the processing of absent threat and the well-established reward prediction error (PE). However, clear-cut evidence for this analogy in humans is scarce. In line with recent animal data, we showed that the unexpected omission of (painful) electrical stimulation triggers activations within key regions of the reward and salience pathways and that these activations correlate with the pleasantness of the reported relief. Furthermore, by parametrically violating participants' probability and intensity related expectations of the upcoming stimulation, we showed for the first time in humans that omission-related activations in the VTA/SN were stronger following omissions of more probable and intense stimulations, like a positive reward PE signal. Together, our findings provide additional support for an overlap in the neural processing of absent danger and rewards in humans.
Collapse
Affiliation(s)
- Anne L Willems
- Laboratory of Biological Psychology, Department of Brain & Cognition, KU LeuvenLeuvenBelgium
- Leuven Brain Institute, KU LeuvenLeuvenBelgium
| | - Lukas Van Oudenhove
- Leuven Brain Institute, KU LeuvenLeuvenBelgium
- Laboratory for Brain-Gut Axis Studies (LaBGAS), Translational Research in GastroIntestinal Disorders (TARGID), Department of chronic diseases and metabolism, KU LeuvenLeuvenBelgium
| | - Bram Vervliet
- Laboratory of Biological Psychology, Department of Brain & Cognition, KU LeuvenLeuvenBelgium
- Leuven Brain Institute, KU LeuvenLeuvenBelgium
| |
Collapse
|
4
|
Andres E, Meyer B, Yuen KSL, Kalisch R. Current State of the Neuroscience of Fear Extinction and Its Relevance to Anxiety Disorders. Curr Top Behav Neurosci 2025. [PMID: 39747796 DOI: 10.1007/7854_2024_555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The elucidation of the functional neuroanatomy of human fear, or threat, extinction has started in the 2000s by a series of enthusiastically greeted functional magnetic resonance imaging (fMRI) studies that were able to translate findings from rodent research about an involvement of the ventromedial prefrontal cortex (vmPFC) and the hippocampus in fear extinction into human models. Enthusiasm has been painfully dampened by a meta-analysis of human fMRI studies by Fullana and colleagues in 2018 who showed that activation in these areas is inconsistent, sending shock waves through the extinction research community. The present review guides readers from the field (as well as non-specialist readers desiring safe knowledge about human extinction mechanisms) during a series of exposures with corrective information. New information about extinction-related brain activation not considered by Fullana et al. will also be presented. After completion of this exposure-based fear reduction program, readers will trust that the reward learning system, the cerebellum, the vmPFC, the hippocampus, and a wider brain network are involved in human fear extinction, along with the neurotransmitters dopamine and noradrenaline. Specific elements of our exposure program include exploitation of the temporal dynamics of extinction, of the spatial heterogeneity of extinction-related brain activation, of functional connectivity methods, and of large sample sizes. Implications of insights from studies in healthy humans for the understanding and treatment of anxiety-related disorders are discussed.
Collapse
Affiliation(s)
- Elena Andres
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - Benjamin Meyer
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Kenneth S L Yuen
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Raffael Kalisch
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany.
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany.
| |
Collapse
|
5
|
Laing PAF, Dunsmoor JE. Event Segmentation Promotes the Reorganization of Emotional Memory. J Cogn Neurosci 2025; 37:110-134. [PMID: 39231276 DOI: 10.1162/jocn_a_02244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Event boundaries help structure the content of episodic memories by segmenting continuous experiences into discrete events. Event boundaries may also serve to preserve meaningful information within an event, thereby actively separating important memories from interfering representations imposed by past and future events. Here, we tested the hypothesis that event boundaries organize emotional memory based on changing dynamics as events unfold. We developed a novel threat-reversal learning task whereby participants encoded trial-unique exemplars from two semantic categories across three phases: preconditioning, fear acquisition, and reversal. Shock contingencies were established for one category during acquisition (CS+) and then switched to the other during reversal (CS-). Importantly, reversal was either separated by a perceptible event boundary (Experiment 1) or occurred immediately after acquisition, with no perceptible context shift (Experiment 2). In a surprise recognition memory test the next day, memory performance tracked the learning contingencies from encoding in Experiment 1, such that participants selectively recognized more threat-associated CS+ exemplars from before (retroactive) and during acquisition, but this pattern reversed toward CS- exemplars encoded during reversal. By contrast, participants with continuous encoding-without a boundary between conditioning and reversal-exhibited undifferentiated memory for exemplars from both categories encoded before acquisition and after reversal. Further analyses highlight nuanced effects of event boundaries on reversing conditioned fear, updating mnemonic generalization, and emotional biasing of temporal source memory. These findings suggest that event boundaries provide anchor points to organize memory for distinctly meaningful information, thereby adaptively structuring memory based on the content of our experiences.
Collapse
|
6
|
Duvarci S. Dopaminergic circuits controlling threat and safety learning. Trends Neurosci 2024; 47:1014-1027. [PMID: 39472156 DOI: 10.1016/j.tins.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/11/2024] [Accepted: 10/06/2024] [Indexed: 12/12/2024]
Abstract
The ability to learn from experience that certain cues and situations are associated with threats or safety is crucial for survival and adaptive behavior. Understanding the neural substrates of threat and safety learning has high clinical significance because deficits in these forms of learning characterize anxiety disorders. Traditionally, dopamine neurons were thought to uniformly support reward learning by signaling reward prediction errors. However, the dopamine system is functionally more diverse than was initially appreciated and is also critical for processing threat and safety. In this review, I highlight recent studies demonstrating that dopamine neurons generate prediction errors for threat and safety, and describe how dopamine projections to the amygdala, medial prefrontal cortex (mPFC), and striatum regulate associative threat and safety learning.
Collapse
Affiliation(s)
- Sevil Duvarci
- Institute of Neurophysiology, Neuroscience Center, Goethe University, Frankfurt, Germany.
| |
Collapse
|
7
|
Mueller M, Fadai T, Rauh J, Haaker J. Nicotine reduces discrimination between threat and safety in the hippocampus, nucleus accumbens and amygdala. Transl Psychiatry 2024; 14:319. [PMID: 39097609 PMCID: PMC11297927 DOI: 10.1038/s41398-024-03040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/26/2024] [Indexed: 08/05/2024] Open
Abstract
Nicotine intake is linked to the maintenance and development of anxiety disorders and impairs adaptive discrimination of threat and safety in rodents and humans. Yet, it is unclear if nicotine exerts a causal pharmacological effect on the affective and neural mechanisms that underlie aversive learning. We conducted a pre-registered, pseudo-randomly and double-blinded pharmacological fMRI study to investigate the effect of acute nicotine on Fear Acquisition and Extinction in non-smokers (n = 88). Our results show that nicotine administration led to decreased discrimination between threat and safety in subjective fear. Nicotine furthermore decreased differential (threat vs. safety) activation in the hippocampus, which was functionally coupled with Nucleus Accumbens and amygdala, compared to placebo controls. Additionally, nicotine led to enhanced physiological arousal to learned threats and overactivation of the ventral tegmental area. This study provides mechanistic evidence that single doses of nicotine impair neural substrates of adaptive aversive learning in line with the risk for the development of pathological anxiety.
Collapse
Affiliation(s)
- Madeleine Mueller
- University Medical Center Hamburg-Eppendorf (Germany), Department of Systems Neuroscience, Hamburg, Germany.
| | - Tahmine Fadai
- University Medical Center Hamburg-Eppendorf (Germany), Department of Systems Neuroscience, Hamburg, Germany
- University Medical Center Hamburg-Eppendorf (Germany), Department of Child- and Adolescent Psychiatry and Psychotherapy, Hamburg, Germany
| | - Jonas Rauh
- University Medical Center Hamburg-Eppendorf (Germany), Department of Systems Neuroscience, Hamburg, Germany
- University Medical Center Hamburg-Eppendorf (Germany), Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch, Hamburg, Germany
| | - Jan Haaker
- University Medical Center Hamburg-Eppendorf (Germany), Department of Systems Neuroscience, Hamburg, Germany.
| |
Collapse
|
8
|
Hamati R, Ahrens J, Shvetz C, Holahan MR, Tuominen L. 65 years of research on dopamine's role in classical fear conditioning and extinction: A systematic review. Eur J Neurosci 2024; 59:1099-1140. [PMID: 37848184 DOI: 10.1111/ejn.16157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023]
Abstract
Dopamine, a catecholamine neurotransmitter, has historically been associated with the encoding of reward, whereas its role in aversion has received less attention. Here, we systematically gathered the vast evidence of the role of dopamine in the simplest forms of aversive learning: classical fear conditioning and extinction. In the past, crude methods were used to augment or inhibit dopamine to study its relationship with fear conditioning and extinction. More advanced techniques such as conditional genetic, chemogenic and optogenetic approaches now provide causal evidence for dopamine's role in these learning processes. Dopamine neurons encode conditioned stimuli during fear conditioning and extinction and convey the signal via activation of D1-4 receptor sites particularly in the amygdala, prefrontal cortex and striatum. The coordinated activation of dopamine receptors allows for the continuous formation, consolidation, retrieval and updating of fear and extinction memory in a dynamic and reciprocal manner. Based on the reviewed literature, we conclude that dopamine is crucial for the encoding of classical fear conditioning and extinction and contributes in a way that is comparable to its role in encoding reward.
Collapse
Affiliation(s)
- Rami Hamati
- Neuroscience Graduate Program, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | - Jessica Ahrens
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Cecelia Shvetz
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Matthew R Holahan
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Lauri Tuominen
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
- Department of Psychiatry, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
Sartori SB, Keil TMV, Kummer KK, Murphy CP, Gunduz-Cinar O, Kress M, Ebner K, Holmes A, Singewald N. Fear extinction rescuing effects of dopamine and L-DOPA in the ventromedial prefrontal cortex. Transl Psychiatry 2024; 14:11. [PMID: 38191458 PMCID: PMC10774374 DOI: 10.1038/s41398-023-02708-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
The ventromedial prefrontal cortex (vmPFC; rodent infralimbic cortex (IL)), is posited to be an important locus of fear extinction-facilitating effects of the dopamine (DA) bio-precursor, L-DOPA, but this hypothesis remains to be formally tested. Here, in a model of impaired fear extinction (the 129S1/SvImJ inbred mouse strain; S1), we monitored extracellular DA dynamics via in vivo microdialysis in IL during fear extinction and following L-DOPA administration. Systemic L-DOPA caused sustained elevation of extracellular DA levels in IL and increased neuronal activation in a subpopulation of IL neurons. Systemic L-DOPA enabled extinction learning and promoted extinction retention at one but not ten days after training. Conversely, direct microinfusion of DA into IL produced long-term fear extinction (an effect that was insensitive to ɑ-/ß-adrenoreceptor antagonism). However, intra-IL delivery of a D1-like or D2 receptor agonist did not facilitate extinction. Using ex vivo multi-electrode array IL neuronal recordings, along with ex vivo quantification of immediate early genes and DA receptor signalling markers in mPFC, we found evidence of reduced DA-evoked mPFC network responses in S1 as compared with extinction-competent C57BL/6J mice that were partially driven by D1 receptor activation. Together, our data demonstrate that locally increasing DA in IL is sufficient to produce lasting rescue of impaired extinction. The finding that systemic L-DOPA increased IL DA levels, but had only transient effects on extinction, suggests L-DOPA failed to reach a threshold level of IL DA or produced opposing behavioural effects in other brain regions. Collectively, our findings provide further insight into the neural basis of the extinction-promoting effects of DA and L-DOPA in a clinically relevant animal model, with possible implications for therapeutically targeting the DA system in anxiety and trauma-related disorders.
Collapse
Affiliation(s)
- Simone B Sartori
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Thomas M V Keil
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Kai K Kummer
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Conor P Murphy
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Ozge Gunduz-Cinar
- Laboratory of Behavioral and Genomic Neuroscience, NIH/NIAAA, Rockville, MD, USA
| | - Michaela Kress
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Karl Ebner
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, NIH/NIAAA, Rockville, MD, USA
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
10
|
Latagliata EC, Orsini C, Cabib S, Biagioni F, Fornai F, Puglisi-Allegra S. Prefrontal Dopamine in Flexible Adaptation to Environmental Changes: A Game for Two Players. Biomedicines 2023; 11:3189. [PMID: 38137410 PMCID: PMC10740496 DOI: 10.3390/biomedicines11123189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Deficits in cognitive flexibility have been characterized in affective, anxiety, and neurodegenerative disorders. This paper reviews data, mainly from studies on animal models, that support the existence of a cortical-striatal brain circuit modulated by dopamine (DA), playing a major role in cognitive/behavioral flexibility. Moreover, we reviewed clinical findings supporting misfunctioning of this circuit in Parkinson's disease that could be responsible for some important non-motoric symptoms. The reviewed findings point to a role of catecholaminergic transmission in the medial prefrontal cortex (mpFC) in modulating DA's availability in the nucleus accumbens (NAc), as well as a role of NAc DA in modulating the motivational value of natural and conditioned stimuli. The review section is accompanied by a preliminary experiment aimed at testing weather the extinction of a simple Pavlovian association fosters increased DA transmission in the mpFC and inhibition of DA transmission in the NAc.
Collapse
Affiliation(s)
| | - Cristina Orsini
- I.R.C.C.S. Fondazione Santa Lucia, 00143 Rome, Italy; (C.O.); (S.C.)
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Simona Cabib
- I.R.C.C.S. Fondazione Santa Lucia, 00143 Rome, Italy; (C.O.); (S.C.)
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesca Biagioni
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (F.F.)
| | - Francesco Fornai
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (F.F.)
- Department of Translational Research and New Technologies on Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | | |
Collapse
|
11
|
Sierra RO, Pedraza LK, Barcsai L, Pejin A, Li Q, Kozák G, Takeuchi Y, Nagy AJ, Lőrincz ML, Devinsky O, Buzsáki G, Berényi A. Closed-loop brain stimulation augments fear extinction in male rats. Nat Commun 2023; 14:3972. [PMID: 37407557 DOI: 10.1038/s41467-023-39546-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/16/2023] [Indexed: 07/07/2023] Open
Abstract
Dysregulated fear reactions can result from maladaptive processing of trauma-related memories. In post-traumatic stress disorder (PTSD) and other psychiatric disorders, dysfunctional extinction learning prevents discretization of trauma-related memory engrams and generalizes fear responses. Although PTSD may be viewed as a memory-based disorder, no approved treatments target pathological fear memory processing. Hippocampal sharp wave-ripples (SWRs) and concurrent neocortical oscillations are scaffolds to consolidate contextual memory, but their role during fear processing remains poorly understood. Here, we show that closed-loop, SWR triggered neuromodulation of the medial forebrain bundle (MFB) can enhance fear extinction consolidation in male rats. The modified fear memories became resistant to induced recall (i.e., 'renewal' and 'reinstatement') and did not reemerge spontaneously. These effects were mediated by D2 receptor signaling-induced synaptic remodeling in the basolateral amygdala. Our results demonstrate that SWR-triggered closed-loop stimulation of the MFB reward system enhances extinction of fearful memories and reducing fear expression across different contexts and preventing excessive and persistent fear responses. These findings highlight the potential of neuromodulation to augment extinction learning and provide a new avenue to develop treatments for anxiety disorders.
Collapse
Affiliation(s)
- Rodrigo Ordoñez Sierra
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary
| | - Lizeth Katherine Pedraza
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary
| | - Lívia Barcsai
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary
- HCEMM-SZTE Magnetotherapeutics Research Group, University of Szeged, Szeged, 6720, Hungary
- Neunos Inc, Boston, MA, 02108, USA
| | - Andrea Pejin
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary
- HCEMM-SZTE Magnetotherapeutics Research Group, University of Szeged, Szeged, 6720, Hungary
- Neunos Inc, Boston, MA, 02108, USA
| | - Qun Li
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary
| | - Gábor Kozák
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary
| | - Yuichi Takeuchi
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary
- Department of Biopharmaceutical Sciences and Pharmacy, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Anett J Nagy
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary
- HCEMM-SZTE Magnetotherapeutics Research Group, University of Szeged, Szeged, 6720, Hungary
- Neunos Inc, Boston, MA, 02108, USA
| | - Magor L Lőrincz
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary
- Department of Physiology, Anatomy and Neuroscience, Faculty of Sciences University of Szeged, Szeged, 6726, Hungary
- Neuroscience Division, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Orrin Devinsky
- Department of Neurology, NYU Langone Comprehensive Epilepsy Center, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - György Buzsáki
- Neuroscience Institute, New York University, New York, NY, 10016, USA
- Center for Neural Science, New York University, New York, NY, 10016, USA
| | - Antal Berényi
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary.
- HCEMM-SZTE Magnetotherapeutics Research Group, University of Szeged, Szeged, 6720, Hungary.
- Neunos Inc, Boston, MA, 02108, USA.
- Neuroscience Institute, New York University, New York, NY, 10016, USA.
| |
Collapse
|
12
|
Kampa M, Hermann A, Stark R, Klucken T. Neural correlates of immediate versus delayed extinction when simultaneously varying the time of the test in humans. Cereb Cortex 2023:bhad205. [PMID: 37317067 DOI: 10.1093/cercor/bhad205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023] Open
Abstract
Anxiety disorders are effectively treated with exposure therapy based on the extinction of Pavlovian fear conditioning. Animal research indicates that both the timing of extinction and test are important factors to reduce the return of fear. However, empirical evidence in humans is incomplete and inconsistent. In this neuroimaging study, we, therefore, tested 103 young, healthy participants in a 2-factorial between-subjects design with the factors extinction group (immediate, delayed) and test group (+1 day and +7 days). Immediate extinction led to greater retention of fear memory at the beginning of extinction training indicated by increased skin conductance responses. A return of fear was observed in both extinction groups, with a trend toward a greater return of fear in immediate extinction. The return of fear was generally higher in groups with an early test. Neuroimaging results show successful cross-group fear acquisition and retention, as well as activation of the left nucleus accumbens during extinction training. Importantly, the delayed extinction group showed a larger bilateral nucleus accumbens activation during test. This nucleus accumbens finding is discussed in terms of salience, contingency, relief, and prediction error processing. It may imply that the delayed extinction group benefits more from the test as a new learning opportunity.
Collapse
Affiliation(s)
- Miriam Kampa
- Department of Clinical Psychology and Psychotherapy, University of Siegen, Siegen 57072, Germany
- Bender Institute of Neuroimaging, Justus Liebig University, Giessen 35394, Germany
| | - Andrea Hermann
- Bender Institute of Neuroimaging, Justus Liebig University, Giessen 35394, Germany
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University, Giessen 35394, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen 35394, Germany
| | - Rudolf Stark
- Bender Institute of Neuroimaging, Justus Liebig University, Giessen 35394, Germany
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University, Giessen 35394, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen 35394, Germany
| | - Tim Klucken
- Department of Clinical Psychology and Psychotherapy, University of Siegen, Siegen 57072, Germany
| |
Collapse
|
13
|
Singewald N, Sartori SB, Reif A, Holmes A. Alleviating anxiety and taming trauma: Novel pharmacotherapeutics for anxiety disorders and posttraumatic stress disorder. Neuropharmacology 2023; 226:109418. [PMID: 36623804 PMCID: PMC10372846 DOI: 10.1016/j.neuropharm.2023.109418] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/30/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Psychiatric disorders associated with psychological trauma, stress and anxiety are a highly prevalent and increasing cause of morbidity worldwide. Current therapeutic approaches, including medication, are effective in alleviating symptoms of anxiety disorders and posttraumatic stress disorder (PTSD), at least in some individuals, but have unwanted side-effects and do not resolve underlying pathophysiology. After a period of stagnation, there is renewed enthusiasm from public, academic and commercial parties in designing and developing drug treatments for these disorders. Here, we aim to provide a snapshot of the current state of this field that is written for neuropharmacologists, but also practicing clinicians and the interested lay-reader. After introducing currently available drug treatments, we summarize recent/ongoing clinical assessment of novel medicines for anxiety and PTSD, grouped according to primary neurochemical targets and their potential to produce acute and/or enduring therapeutic effects. The evaluation of putative treatments targeting monoamine (including psychedelics), GABA, glutamate, cannabinoid, cholinergic and neuropeptide systems, amongst others, are discussed. We emphasize the importance of designing and clinically assessing new medications based on a firm understanding of the underlying neurobiology stemming from the rapid advances being made in neuroscience. This includes harnessing neuroplasticity to bring about lasting beneficial changes in the brain rather than - as many current medications do - produce a transient attenuation of symptoms, as exemplified by combining psychotropic/cognitive enhancing drugs with psychotherapeutic approaches. We conclude by noting some of the other emerging trends in this promising new phase of drug development.
Collapse
Affiliation(s)
- Nicolas Singewald
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria.
| | - Simone B Sartori
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| |
Collapse
|
14
|
Weisser S, Mueller M, Rauh J, Esser R, Fuss J, Lutz B, Haaker J. Acquisition of threat responses are associated with elevated plasma concentration of endocannabinoids in male humans. Neuropsychopharmacology 2022; 47:1931-1938. [PMID: 35562542 PMCID: PMC9485143 DOI: 10.1038/s41386-022-01320-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023]
Abstract
Endocannabinoids (eCBs) are involved in buffering threat and stress responses. Elevation of circulating eCBs in humans was reported to strengthen inhibition (i.e., extinction) of threat responses and to reduce effects of stressors. However, it remains unclear whether the acquisition of threat responses involves a physiological change in circulating eCBs. Here, we demonstrate in male human volunteers that the plasma concentration of the eCB N-arachidonoylethanolamine (AEA) and its metabolite arachidonic acid (AA) are increased during acquisition of threat responses. Furthermore, elevated responses to a learned threat cue (e.g., rating of fear) were associated with individual increases in plasma concentration of the eCB 2-arachidonoylglycerol (2-AG). In complementing these observations, we found individual increases in AEA associated with elevated neural responses during threat learning in the amygdala. Our results thereby suggest that physiological increases in circulating eCB levels are part of a response mechanism to learned threats.
Collapse
Affiliation(s)
- Smilla Weisser
- grid.13648.380000 0001 2180 3484Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Madeleine Mueller
- grid.13648.380000 0001 2180 3484Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonas Rauh
- grid.13648.380000 0001 2180 3484Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany ,grid.13648.380000 0001 2180 3484University Medical Center Hamburg-Eppendorf (Germany), Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch, Hamburg, Germany
| | - Roland Esser
- grid.13648.380000 0001 2180 3484Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Fuss
- grid.13648.380000 0001 2180 3484Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany ,grid.13648.380000 0001 2180 3484Human Behavior Laboratory, Institute for Sex Research and Forensic Psychiatry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany ,grid.5718.b0000 0001 2187 5445Institute of Forensic Psychiatry and Sex Research, Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45030 Essen, Germany
| | - Beat Lutz
- grid.410607.4Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany ,grid.509458.50000 0004 8087 0005Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Jan Haaker
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
15
|
Laing PAF, Felmingham KL, Davey CG, Harrison BJ. The neurobiology of Pavlovian safety learning: Towards an acquisition-expression framework. Neurosci Biobehav Rev 2022; 142:104882. [PMID: 36150453 DOI: 10.1016/j.neubiorev.2022.104882] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022]
Abstract
Safety learning creates associations between conditional stimuli and the absence of threat. Studies of human fear conditioning have accumulated evidence for the neural signatures of safety over various paradigms, aligning on several common brain systems. While these systems are often interpreted as underlying safety learning in a generic sense, they may instead reflect the expression of learned safety, pertaining to processes of fear inhibition, positive affect, and memory. Animal models strongly suggest these can be separable from neural circuits implicated in the conditioning process itself (or safety acquisition). While acquisition-expression distinctions are ubiquitous in behavioural science, this lens has not been applied to safety learning, which remains a novel area in the field. In this mini-review, we overview findings from prevalent safety paradigms in humans, and synthesise these with insights from animal models to propose that the neurobiology of safety learning be conceptualised along an acquisition-expression model, with the aim of stimulating richer brain-based characterisations of this important process.
Collapse
Affiliation(s)
- Patrick A F Laing
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia.
| | - Kim L Felmingham
- Melbourne School of Psychological Sciences, The University of Melbourne, Australia
| | - Christopher G Davey
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia.
| |
Collapse
|
16
|
Ojala KE, Tzovara A, Poser BA, Lutti A, Bach DR. Asymmetric representation of aversive prediction errors in Pavlovian threat conditioning. Neuroimage 2022; 263:119579. [PMID: 35995374 DOI: 10.1016/j.neuroimage.2022.119579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
Survival in biological environments requires learning associations between predictive sensory cues and threatening outcomes. Such aversive learning may be implemented through reinforcement learning algorithms that are driven by the signed difference between expected and encountered outcomes, termed prediction errors (PEs). While PE-based learning is well established for reward learning, the role of putative PE signals in aversive learning is less clear. Here, we used functional magnetic resonance imaging in humans (21 healthy men and women) to investigate the neural representation of PEs during maintenance of learned aversive associations. Four visual cues, each with a different probability (0, 33, 66, 100%) of being followed by an aversive outcome (electric shock), were repeatedly presented to participants. We found that neural activity at omission (US-) but not occurrence of the aversive outcome (US+) encoded PEs in the medial prefrontal cortex. More expected omission of aversive outcome was associated with lower neural activity. No neural signals fulfilled axiomatic criteria, which specify necessary and sufficient components of PE signals, for signed PE representation in a whole-brain search or in a-priori regions of interest. Our results might suggest that, different from reward learning, aversive learning does not involve signed PE signals that are represented within the same brain region for all conditions.
Collapse
Affiliation(s)
- Karita E Ojala
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, Zurich 8032, Switzerland; Neuroscience Centre Zurich, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland.
| | - Athina Tzovara
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, Zurich 8032, Switzerland; Neuroscience Centre Zurich, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland; Institute of Computer Science, University of Bern, Neubrückstrasse 10, Bern 3012, Switzerland
| | - Benedikt A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55 EV 6299, Maastricht, the Netherlands
| | - Antoine Lutti
- Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne, Chemin de Mont-Paisible 16, Lausanne 1011, Switzerland
| | - Dominik R Bach
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, Zurich 8032, Switzerland; Neuroscience Centre Zurich, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland; Wellcome Centre for Human Neuroimaging and Max-Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, 10-12 Russell Square, London WC1B 5EH, United Kingdom.
| |
Collapse
|
17
|
Laing PAF, Steward T, Davey CG, Felmingham KL, Fullana MA, Vervliet B, Greaves MD, Moffat B, Glarin RK, Harrison BJ. Cortico-Striatal Activity Characterizes Human Safety Learning via Pavlovian Conditioned Inhibition. J Neurosci 2022; 42:5047-5057. [PMID: 35577553 PMCID: PMC9233447 DOI: 10.1523/jneurosci.2181-21.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 12/24/2022] Open
Abstract
Safety learning generates associative links between neutral stimuli and the absence of threat, promoting the inhibition of fear and security-seeking behaviors. Precisely how safety learning is mediated at the level of underlying brain systems, particularly in humans, remains unclear. Here, we integrated a novel Pavlovian conditioned inhibition task with ultra-high field (7 Tesla) fMRI to examine the neural basis of safety learning in 49 healthy participants. In our task, participants were conditioned to two safety signals: a conditioned inhibitor that predicted threat omission when paired with a known threat signal (A+/AX-), and a standard safety signal that generally predicted threat omission (BC-). Both safety signals evoked equivalent autonomic and subjective learning responses but diverged strongly in terms of underlying brain activation (PFDR whole-brain corrected). The conditioned inhibitor was characterized by more prominent activation of the dorsal striatum, anterior insular, and dorsolateral PFC compared with the standard safety signal, whereas the latter evoked greater activation of the ventromedial PFC, posterior cingulate, and hippocampus, among other regions. Further analyses of the conditioned inhibitor indicated that its initial learning was characterized by consistent engagement of dorsal striatal, midbrain, thalamic, premotor, and prefrontal subregions. These findings suggest that safety learning via conditioned inhibition involves a distributed cortico-striatal circuitry, separable from broader cortical regions involved with processing standard safety signals (e.g., CS-). This cortico-striatal system could represent a novel neural substrate of safety learning, underlying the initial generation of "stimulus-safety" associations, distinct from wider cortical correlates of safety processing, which facilitate the behavioral outcomes of learning.SIGNIFICANCE STATEMENT Identifying safety is critical for maintaining adaptive levels of anxiety, but the neural mechanisms of human safety learning remain unclear. Using 7 Tesla fMRI, we compared learning-related brain activity for a conditioned inhibitor, which actively predicted threat omission, and a standard safety signal (CS-), which was passively unpaired with threat. The inhibitor engaged an extended circuitry primarily featuring the dorsal striatum, along with thalamic, midbrain, and premotor/PFC regions. The CS- exclusively involved cortical safety-related regions observed in basic safety conditioning, such as the vmPFC. These findings extend current models to include learning-specific mechanisms for encoding stimulus-safety associations, which might be distinguished from expression-related cortical mechanisms. These insights may suggest novel avenues for targeting dysfunctional safety learning in psychopathology.
Collapse
Affiliation(s)
- Patrick A F Laing
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, Victoria 3053, Australia
| | - Trevor Steward
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, Victoria 3053, Australia
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Christopher G Davey
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, Victoria 3053, Australia
| | - Kim L Felmingham
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Miguel Angel Fullana
- Adult Psychiatry and Psychology Department, Institute of Neurosciences, Hospital Clinic, Barcelona 08001, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédia en Red de Salud Mental, Barcelona 08036, Spain
| | - Bram Vervliet
- Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, KU Leuven 3000, Belgium
- Leuven Brain Institute, KU Leuven 3000, Belgium
| | - Matthew D Greaves
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, Victoria 3053, Australia
| | - Bradford Moffat
- The Melbourne Brain Centre Imaging Unit, Department of Radiology, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Rebecca K Glarin
- The Melbourne Brain Centre Imaging Unit, Department of Radiology, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, Victoria 3053, Australia
| |
Collapse
|
18
|
Abstract
Humans, like other animals, are fundamentally motivated to pursue rewarding outcomes and avoid aversive ones. Anxiety disorders are conceptualized, defined, and treated based on heightened sensitivity to perceived aversive outcomes, including imminent threats as well as those that are uncertain yet could occur in the future. Avoidance is the central strategy used to mitigate anticipated aversive outcomes - often at the cost of sacrificing potential rewards and hindering people from obtaining desired outcomes. It is for these reasons that people are often motivated to seek treatment. In this chapter, we consider whether and how anhedonia - the loss of interest in pursuing and/or reduced responsiveness to rewarding outcomes - may serve as a barrier to recovering from clinically impairing anxiety. Increasingly recognized as a prominent symptom in many individuals with elevated anxiety, anhedonia is not explicitly considered within prevailing theoretical models or treatment approaches of anxiety. Our goal, therefore, is to review what is known about anhedonia within the anxiety disorders and then integrate this knowledge into a functional perspective to consider how anhedonia could maintain anxiety and limit treatment response. Our overarching thesis is that anhedonia disrupts the key processes that are central to supporting anxiety recovery. We end this chapter by considering how explicitly targeting anhedonia in treatment can optimize outcomes for anxiety disorders.
Collapse
Affiliation(s)
- Charles T Taylor
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA.
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA.
| | - Samantha N Hoffman
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Amanda J Khan
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| |
Collapse
|