1
|
Chrisp R, Masterson M, Pope R, Roberts CJ, Collins HM, Watson DJG, O'Neil D, Aagaard KM, Gibson CL, Heery DM, Moran PM. Sex-specific attenuation of constant light-induced memory impairment and Clock gene expression in brain in hepatic Npas2 knockout mice. Sci Rep 2025; 15:8347. [PMID: 40069567 PMCID: PMC11897300 DOI: 10.1038/s41598-025-92938-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/04/2025] [Indexed: 03/15/2025] Open
Abstract
NPAS2 (Neuronal PAS Domain Protein 2) is a component of the core circadian clock and the coordinated activity between central brain and peripheral liver clock proteins postulated to be instrumental for linking behaviour and metabolism. We investigated a conditional liver-specific knockout mouse model (Npas2-/- or cKO) to explore its function in activity, circadian rhythms and cognition (novel object recognition-NOR). Circadian rhythms showed no genotype differences. Constant-light reduced NOR in floxxed controls but remarkably not in Npas2-/- mice, particularly females. Consistent with entrainment of systemic and central circadian biology, Npas2-/- mice showed altered expression of circadian gene Clock in frontal cortex. Sex differences independent of genotype were found in expression of circadian genes Clock, Bmal1 and Reverb-b in brain. Sex differences in Clock were absent in Npas2-/- mice. Females showed greater period length and phase response to constant light independently of genotype. The data suggest that a role for peripheral NPAS2 in constant light-induced memory impairment in females, and potential mediation by altered cortical circadian Clock gene expression, merit further investigation. These findings have implications for the interaction between peripheral and central circadian clocks, circadian sex differences and the deleterious effects of constant light on cognition.
Collapse
Affiliation(s)
- Ruby Chrisp
- Gene Regulation and RNA Biology Laboratory, School of Pharmacy, BioDiscovery Institute, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
- School of Psychology, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Mitchell Masterson
- Gene Regulation and RNA Biology Laboratory, School of Pharmacy, BioDiscovery Institute, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
- School of Psychology, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Rebecca Pope
- School of Psychology, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Christopher J Roberts
- Gene Regulation and RNA Biology Laboratory, School of Pharmacy, BioDiscovery Institute, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Hilary M Collins
- Gene Regulation and RNA Biology Laboratory, School of Pharmacy, BioDiscovery Institute, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - David J G Watson
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Derek O'Neil
- Division of Maternal-Fetal Medicine, Departments of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Bioinformatics Research Laboratory, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kjersti M Aagaard
- Division of Maternal-Fetal Medicine, Departments of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Bioinformatics Research Laboratory, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Claire L Gibson
- School of Psychology, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - David M Heery
- Gene Regulation and RNA Biology Laboratory, School of Pharmacy, BioDiscovery Institute, University Park, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Paula M Moran
- School of Psychology, University Park, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
2
|
Baldwin CM, Tucker SJ, Imes CC, Reynaga-Ornelas L, Trinkoff AM, Weinstein SM, Dunbar-Jacob J. American Academy of Nursing Policy Recommendations to Reduce and Prevent Negative Health Outcomes and Health Care Costs Among Night Shift Nurses: An AAN Consensus Paper. Nurs Outlook 2025; 73:102344. [PMID: 39729696 DOI: 10.1016/j.outlook.2024.102344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 12/29/2024]
Abstract
A growing body of evidence demonstrates occupational night shift hazards. Decades of research point to health risks for nurses contributing to chronic diseases, including diabetes, cardiovascular disease, cognitive/mental health, and cancers-all associated with earlier mortality. Patient safety, recruitment and retention of quality nursing workforce, and related costs are important concerns associated with night shift work. Post COVID-19, nurses have advocated and lobbied for many changes in their work environments, yet little emphasis has been placed on addressing night shift health and patient safety hazards, and concomitant personal, insurer, organizational, and federal costs. Nurses are also recipients of health care, and their work-related risks must be prioritized. Innovative solutions targeting individuals, work environments, novel schedules, virtual nursing, and artificial intelligence have been examined and must continue to be studied and implemented. Policy and legislation must be among the strategies for nurses, no different than other night shift workers (e.g., flight crews).
Collapse
Affiliation(s)
- Carol M Baldwin
- Health Behavior Expert Panel; Global Health Expert Panel; Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ
| | - Sharon J Tucker
- Health Behavior Expert Panel; Department of Nursing Practice, University of Central Florida, Orlando, FL
| | | | | | - Alison M Trinkoff
- Health Behavior Expert Panel; School of Nursing, University of Maryland, Baltimore, MD
| | - Sharon M Weinstein
- Health Behavior Expert Panel; Global Health Expert Panel; School of Nursing, Purdue University Global, West Lafayette, IN
| | | |
Collapse
|
3
|
Zhu Z, Wang Y, Wang Y, Fu M, Luo X, Wang G, Zhang J, Yang X, Shan W, Li C, Liu T. The association of mixed multi-metal exposure with sleep duration and self-reported sleep disorder: A subgroup analysis from the National Health and Nutrition Examination Survey (NHANES). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124798. [PMID: 39197640 DOI: 10.1016/j.envpol.2024.124798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
Sleep disorders significantly affect sleep duration and constitute a major public health issue. However, the relationship between metal exposure and sleep is not fully elucidated. This study utilized publicly available data from the National Health and Nutrition Examination Survey (NHANES) to measure blood concentrations of seven metals-copper (Cu), zinc (Zn), selenium (Se), manganese (Mn), mercury (Hg), cadmium (Cd), and lead (Pb)-in a cohort of 4263 American adults. The relationship between metal exposure and self-reported sleep duration and sleep disorder risk was analyzed using single exposure models like logistic and linear regression and mixedexposure models such as weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR). The results indicated an absence of statistically significant findings in the single exposure model. In contrast, the mixed exposure model revealed a positive correlation between selenium levels and the risk of sleep disorders across the entire population. A "U-shaped" association was identified between copper levels and the risk of sleep disorders in males, females, and individuals aged 60 and above. Moreover, a positive trend was observed between manganese levels and the risk of sleep disorders in individuals aged 60 and above. Additionally, elevated concentrations of metal mixtures were significantly associated with reduced sleep duration among females. Sensitivity analyses corroborated these findings. In conclusion, within the context of metal mixtures, selenium may be a risk factor for sleep disorders in the general population. Manganese may be a unique risk factor in older adults. Copper levels have a "U" shaped link to sleep disorder risk in specific population subgroups. Finally, the accumulation of blood metal mixtures in females, mainly due to lead and mercury, may reduce sleep duration. Further research is necessary to validate these findings.
Collapse
Affiliation(s)
- Zifan Zhu
- Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, 518118, China; School of Mental Health and Psychological Science, Anhui Medical University, Hefei, Anhui, 230032, China.
| | - Yongjun Wang
- Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, 518118, China.
| | - Yuanlong Wang
- Department of Psychiatry, The Third People's Hospital of Zhongshan City, Zhongshan, 528451, China.
| | - Maoling Fu
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xinxin Luo
- Department of Psychiatry, The Third People's Hospital of Zhongshan City, Zhongshan, 528451, China.
| | - Guojun Wang
- Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, 518118, China.
| | - Jian Zhang
- Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, 518118, China.
| | - Xiujuan Yang
- Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, 518118, China; State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Wei Shan
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Cunxue Li
- Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, 518118, China.
| | - Tiebang Liu
- Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, 518118, China; School of Mental Health and Psychological Science, Anhui Medical University, Hefei, Anhui, 230032, China.
| |
Collapse
|
4
|
Zong G, Mao W, Wen M, Cheng X, Liu G. Association of sleep patterns and disorders with metabolic dysfunction-associated steatotic liver disease and liver fibrosis in contemporary American adults. Ann Hepatol 2024; 30:101583. [PMID: 39270980 DOI: 10.1016/j.aohep.2024.101583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
INTRODUCTION AND OBJECTIVES The impact of sleep on metabolic dysfunction-associated steatotic liver disease (MASLD) in American adults remains unclear. This study aimed to address the relationship of sleep patterns and disorders with MASLD and liver fibrosis comprehensively. MATERIALS AND METHODS This cross-sectional study included adult participants from the National Health and Nutrition Examination Survey 2017-2020. Multivariate adjusted regression analysis were used to examine the association of sleep with MASLD and liver fibrosis. We further addressed these associations using restricted cubic splines, mediation analysis, stratified analysis and multiple sensitivity analysis. RESULTS We enrolled 5368 participants. Certain sleep disorders, sleep duration, high sleep debt and specific sleep-wake time were associated with MASLD. Late workday sleep was a shared risk factor for MASLD and liver fibrosis. Short sleep on workdays and free days favored MASLD, whereas average weekly long sleep protected against MASLD. Workday, free day and average weekly optimal sleep duration was 7.5 h, 8 h and 7.78 h, respectively. Mediation analysis suggested that fasting glucose and high-density lipoprotein cholesterol indirectly mediated the relationship between sleep duration and MASLD, whereas stratified analysis showed that sex influenced the relationship, and that the correlation was only observed in women and specific age groups. CONCLUSIONS Sleep duration independently affected MASLD but only in women and specific age groups. Moreover, late sleep on workdays was a shared risk factor for MASLD and liver fibrosis. These results suggest targeting sleep behaviors for MASLD prevention and developing age- and sex-specific strategies.
Collapse
Affiliation(s)
- Guannan Zong
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wangjia Mao
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ming Wen
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoyun Cheng
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guanghui Liu
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
5
|
Jones CW, Larson O, Basner M, Dinges DF. The dynamic responses of mood and sleep physiology to chronic sleep restriction and subsequent recovery sleep. Sleep 2024; 47:zsae091. [PMID: 38602131 PMCID: PMC11381564 DOI: 10.1093/sleep/zsae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/09/2024] [Indexed: 04/12/2024] Open
Abstract
Healthy sleep of sufficient duration preserves mood and disturbed sleep is a risk factor for a range of psychiatric disorders. As adults commonly experience chronic sleep restriction (SR), an enhanced understanding of the dynamic relationship between sleep and mood is needed, including whether susceptibility to SR-induced mood disturbance differs between sexes. To address these gaps, data from N = 221 healthy adults who completed one of the two multi-day laboratory studies with identical 9-day SR protocols were analyzed. Participants randomized to the SR (n = 205) condition underwent 5 nights of SR to 4 hours of time-in-bed and were then randomized to one of the seven sleep doses that ranged from 0 to 12 hours in 2 hours increments; participants randomized to the control (n = 16) condition received 10 hours time-in-bed on all study nights. The Profile of Mood States (POMS) was used to assess mood every 2 hours during wakefulness and markers of sleep homeostasis (EEG slow-wave activity (SWA)) were derived via polysomnography. Mood progressively deteriorated across SR with marked disturbances in somatic mood components. Altered sleep physiology contributed to mood disturbance whereby increased EEG SWA was associated with increased POMS Total Mood Disturbance scores, a finding specific to males. The mood was restored in a dose-response fashion where improvements were greater with longer sleep doses. These findings suggest that when lifestyle and environmental factors are inhibited in the laboratory, the affective consequences of chronic sleep loss are primarily somatic mood disturbances. Altered sleep homeostasis may contribute to mood disturbance, yet sleep-dependent mechanisms may be sex-specific.
Collapse
Affiliation(s)
- Christopher W Jones
- Unit for Experimental Psychiatry, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Olivia Larson
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Mathias Basner
- Unit for Experimental Psychiatry, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David F Dinges
- Unit for Experimental Psychiatry, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Brown T, Ackerman RA, Kroon E, Kuhns L, Cousijn J, Filbey FM. The role of sleep in the link between cannabis use and memory function: evidence from a cross-sectional study. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2024; 50:547-556. [PMID: 38917114 DOI: 10.1080/00952990.2024.2362832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/29/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
Background: It is known that cannabis use affects memory and sleep problems independently. However, to date, how memory and sleep problems may interact as a result of cannabis use remains unknown.Objectives: We performed a secondary analysis of existing data to determine whether sleep quality mediates the association between cannabis use and memory and whether sex moderated these effects.Methods: A total of 141 adults with cannabis use disorder (CUD) (83 men) and 87 without CUD (39 men) participated in this study. Outcome measures included self-reported sleep problems from the past 7 days (Marijuana Withdrawal Checklist), learning and memory performance via the short visual object learning task (sVOLT), short visual object learning task delayed (sVOLTd), and verbal memory via the N-back. Bootstrapped mediation and moderated mediation analyses were run to test if sleep quality mediated the association between cannabis use and memory outcomes and whether sex moderated these effects, respectively.Results: Sleep quality mediated the effect of group (i.e. adults with and without CUD) on sVOLT efficiency scores (indirect effect ß = -.08, 95% CI [-0.14, -0.04]) and sVOLTd efficiency scores (indirect effect ß = -.09, 95% CI [-0.14, -0.04]), where greater sleep difficulties was associated with poorer memory performance (decreased efficiency scores). Sex did not moderate these relationships.Conclusion: These initial findings of a mediating role of sleep in the association between CUD and visual learning memory highlight potential critical downstream effects of disrupted sleep in those with CUD and suggest the importance of investigating sleep in CUD.
Collapse
Affiliation(s)
- T Brown
- Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas, USA
| | - R A Ackerman
- Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas, USA
| | - E Kroon
- Neuroscience of Addiction (NofA) Lab, Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - L Kuhns
- Neuroscience of Addiction (NofA) Lab, Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - J Cousijn
- Neuroscience of Addiction (NofA) Lab, Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - F M Filbey
- Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas, USA
| |
Collapse
|
7
|
Shi T, Shah I, Dang Q, Taylor L, Jagannath A. Sex-specific regulation of the cortical transcriptome in response to sleep deprivation. Front Neurosci 2024; 17:1303727. [PMID: 38504908 PMCID: PMC10948409 DOI: 10.3389/fnins.2023.1303727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/07/2023] [Indexed: 03/21/2024] Open
Abstract
Multiple studies have documented sex differences in sleep behaviour, however, the molecular determinants of such differences remain unknown. Furthermore, most studies addressing molecular mechanisms have been performed only in males, leaving the current state of knowledge biased towards the male sex. To address this, we studied the differences in the transcriptome of the cerebral cortex of male and female C57Bl/6 J mice after 6 h of sleep deprivation. We found that several genes, including the neurotrophin growth factor Bdnf, immediate early genes Fosb and Fosl2, and the adenylate cyclase Adcy7 are differentially upregulated in males compared to females. We identified the androgen-receptor activating transcription factor EZH2 as the upstream regulatory element specifying sex differences in the sleep deprivation transcriptome. We propose that the pathways downstream of these transcripts, which impact on cellular re-organisation, synaptic signalling, and learning may underpin the differential response to sleep deprivation in the two sexes.
Collapse
Affiliation(s)
- Tianyi Shi
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, Oxford, United Kingdom
| | - Ishani Shah
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Quang Dang
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, Oxford, United Kingdom
- Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Lewis Taylor
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, Oxford, United Kingdom
| | - Aarti Jagannath
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Zare MJ, Masoumi SJ, Zare M. The association between energy-adjusted dietary inflammatory index and physical activity with sleep quality: a cross-sectional study. BMC Nutr 2024; 10:26. [PMID: 38310318 PMCID: PMC10838418 DOI: 10.1186/s40795-024-00834-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 01/30/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND The study aimed to assess the independent and interactive association of energy-adjusted dietary inflammatory index (E-DII) and physical activity (PA) with sleep quality. METHOD A cross-sectional study was conducted on the 2466 participants (60% women). A 116-item food frequency questionnaire (FFQ) was applied to calculate E-DII, the International Physical Activity Questionnaire (IPAQ) long form for PA, and the Pittsburgh sleep quality index (PSQI) to assess sleep quality were collected via interview. Multivariate logistic regression was applied to assess independent and interactive associations of E-DII and PA with sleep quality. RESULT No significant association was observed between E-DII and sleep quality (OR: 0.96, 95% CI: 0.92_1.01). Also, there was no significant association between the levels of PA and sleep quality. Women had 70% increased odds for poor sleep quality (OR: 1.7, 95% CI: 1.39_2.09) compared with men. No interactive association was observed between E-DII and PA levels with sleep quality. CONCLUSION No significant association was observed between E-DII and PA levels with sleep quality. The study indicates a gender difference in sleep quality. Future prospective studies are required to confirm these findings.
Collapse
Affiliation(s)
- Mohammad Javad Zare
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Science, Razi Boulevard, Shiraz, Iran
| | - Seyed Jalil Masoumi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Science, Razi Boulevard, Shiraz, Iran.
- Center for Cohort Study of SUMS Employees' Health, Shiraz University of Medical Sciences, Shiraz, Iran.
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Morteza Zare
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Science, Razi Boulevard, Shiraz, Iran
| |
Collapse
|
9
|
Lévi FA, Okyar A, Hadadi E, Innominato PF, Ballesta A. Circadian Regulation of Drug Responses: Toward Sex-Specific and Personalized Chronotherapy. Annu Rev Pharmacol Toxicol 2024; 64:89-114. [PMID: 37722720 DOI: 10.1146/annurev-pharmtox-051920-095416] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Today's challenge for precision medicine involves the integration of the impact of molecular clocks on drug pharmacokinetics, toxicity, and efficacy toward personalized chronotherapy. Meaningful improvements of tolerability and/or efficacy of medications through proper administration timing have been confirmed over the past decade for immunotherapy and chemotherapy against cancer, as well as for commonly used pharmacological agents in cardiovascular, metabolic, inflammatory, and neurological conditions. Experimental and human studies have recently revealed sexually dimorphic circadian drug responses. Dedicated randomized clinical trials should now aim to issue personalized circadian timing recommendations for daily medical practice, integrating innovative technologies for remote longitudinal monitoring of circadian metrics, statistical prediction of molecular clock function from single-timepoint biopsies, and multiscale biorhythmic mathematical modelling. Importantly, chronofit patients with a robust circadian function, who would benefit most from personalized chronotherapy, need to be identified. Conversely, nonchronofit patients could benefit from the emerging pharmacological class of chronobiotics targeting the circadian clock.
Collapse
Affiliation(s)
- Francis A Lévi
- Chronotherapy, Cancers and Transplantation Research Unit, Faculty of Medicine, Paris-Saclay University, Villejuif, France;
- Gastrointestinal and General Oncology Service, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, Villejuif, France
- Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Alper Okyar
- Faculty of Pharmacy, Department of Pharmacology, Istanbul University, Beyazit-Istanbul, Turkey
| | - Eva Hadadi
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory for Myeloid Cell Immunology, Center for Inflammation Research VIB, Zwijnaarde, Belgium
| | - Pasquale F Innominato
- Oncology Department, Ysbyty Gwynedd Hospital, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
- Warwick Medical School and Cancer Research Centre, University of Warwick, Coventry, United Kingdom
| | - Annabelle Ballesta
- Inserm Unit 900, Cancer Systems Pharmacology, Institut Curie, MINES ParisTech CBIO-Centre for Computational Biology, PSL Research University, Saint-Cloud, France
| |
Collapse
|
10
|
Carrero L, Antequera D, Alcalde I, Megias D, Ordoñez-Gutierrez L, Gutierrez C, Merayo-Lloves J, Wandosell F, Municio C, Carro E. Altered Clock Gene Expression in Female APP/PS1 Mice and Aquaporin-Dependent Amyloid Accumulation in the Retina. Int J Mol Sci 2023; 24:15679. [PMID: 37958666 PMCID: PMC10648501 DOI: 10.3390/ijms242115679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia, is a neurodegenerative disorder characterized by different pathological symptomatology, including disrupted circadian rhythm. The regulation of circadian rhythm depends on the light information that is projected from the retina to the suprachiasmatic nucleus in the hypothalamus. Studies of AD patients and AD transgenic mice have revealed AD retinal pathology, including amyloid-β (Aβ) accumulation that can directly interfere with the regulation of the circadian cycle. Although the cause of AD pathology is poorly understood, one of the main risk factors for AD is female gender. Here, we found that female APP/PS1 mice at 6- and 12-months old display severe circadian rhythm disturbances and retinal pathological hallmarks, including Aβ deposits in retinal layers. Since brain Aβ transport is facilitated by aquaporin (AQP)4, the expression of AQPs were also explored in APP/PS1 retina to investigate a potential correlation between retinal Aβ deposits and AQPs expression. Important reductions in AQP1, AQP4, and AQP5 were detected in the retinal tissue of these transgenic mice, mainly at 6-months of age. Taken together, our findings suggest that abnormal transport of Aβ, mediated by impaired AQPs expression, contributes to the retinal degeneration in the early stages of AD.
Collapse
Affiliation(s)
- Laura Carrero
- Neurobiology of Alzheimer’s Disease Unit, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28029 Madrid, Spain; (L.C.); (D.A.); (C.G.)
- PhD Program in Neuroscience, Autonoma de Madrid University, 28049 Madrid, Spain
| | - Desireé Antequera
- Neurobiology of Alzheimer’s Disease Unit, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28029 Madrid, Spain; (L.C.); (D.A.); (C.G.)
| | - Ignacio Alcalde
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, Fundación de Investigación Oftalmológica, 28012 Oviedo, Spain; (I.A.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Diego Megias
- Advanced Optical Microscopy Unit, Unidades Centrales Científico-Técnicas, Instituto de Salud Carlos III, 28222 Madrid, Spain;
| | - Lara Ordoñez-Gutierrez
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma de Madrid, Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28029 Madrid, Spain; (L.O.-G.); (F.W.)
| | - Cristina Gutierrez
- Neurobiology of Alzheimer’s Disease Unit, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28029 Madrid, Spain; (L.C.); (D.A.); (C.G.)
| | - Jesús Merayo-Lloves
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, Fundación de Investigación Oftalmológica, 28012 Oviedo, Spain; (I.A.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Francisco Wandosell
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma de Madrid, Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28029 Madrid, Spain; (L.O.-G.); (F.W.)
| | - Cristina Municio
- Neurobiology of Alzheimer’s Disease Unit, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28029 Madrid, Spain; (L.C.); (D.A.); (C.G.)
| | - Eva Carro
- Neurobiology of Alzheimer’s Disease Unit, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28029 Madrid, Spain; (L.C.); (D.A.); (C.G.)
| |
Collapse
|
11
|
von Gall C, Holub L, Pfeffer M, Eickhoff S. Chronotype-Dependent Sleep Loss Is Associated with a Lower Amplitude in Circadian Rhythm and a Higher Fragmentation of REM Sleep in Young Healthy Adults. Brain Sci 2023; 13:1482. [PMID: 37891848 PMCID: PMC10605513 DOI: 10.3390/brainsci13101482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
In modern society, the time and duration of sleep on workdays are primarily determined by external factors, e.g., the alarm clock. This can lead to a misalignment of the intrinsically determined sleep timing, which is dependent on the individual chronotype, resulting in reduced sleep quality. Although this is highly relevant given the high incidence of sleep disorders, little is known about the effect of this misalignment on sleep architecture. Using Fitbit trackers and questionnaire surveys, our study aims to elucidate sleep timing, sleep architecture, and subjective sleep quality in young healthy adults (n = 59) under real-life conditions (average of 82.4 ± 9.7 days). Correlations between variables were calculated to identify the direction of relationships. On workdays, the midpoint of sleep was earlier, the sleep duration was shorter, and tiredness upon waking was higher than on free days. A higher discrepancy between sleep duration on workdays and free days was associated with a lower stability of the circadian rhythm of REM sleep and also with a higher fragmentation of REM sleep. Similarly, a higher tiredness upon waking on free days, thus under intrinsically determined sleep timing conditions, was associated with a lower proportion and a higher fragmentation of REM sleep. This suggests that the misalignment between extrinsically and intrinsically determined sleep timing affects the architecture of sleep stages, particularly REM sleep, which is closely connected to sleep quality.
Collapse
Affiliation(s)
- Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (L.H.); (M.P.)
| | - Leon Holub
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (L.H.); (M.P.)
| | - Martina Pfeffer
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (L.H.); (M.P.)
| | - Simon Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, 52425 Jülich, Germany
| |
Collapse
|
12
|
Zeng PY, Tsai YH, Lee CL, Ma YK, Kuo TH. Minimal influence of estrous cycle on studies of female mouse behaviors. Front Mol Neurosci 2023; 16:1146109. [PMID: 37470056 PMCID: PMC10352621 DOI: 10.3389/fnmol.2023.1146109] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/15/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Sex bias has been an issue in many biomedical fields, especially in neuroscience. In rodent research, many scientists only focused on male animals due to the belief that female estrous cycle gives rise to unacceptable, high levels of variance in the experiments. However, even though female sexual behaviors are well known to be regulated by estrous cycle, which effects on other non-sexual behaviors were not always consistent in previous reports. Recent reviews analyzing published literature even suggested that there is no evidence for larger variation in female than male in several phenotypes. Methods To further investigate the impact of estrous cycle on the variability of female behaviors, we conducted multiple behavioral assays, including the open field test, forced swimming test, and resident-intruder assay to assess anxiety-, depression-like behaviors, as well as social interaction respectively. We compared females in the estrus and diestrus stages across four different mouse strains: C57BL/6, BALB/c, C3H, and DBA/2. Results Our results found no significant difference in most behavioral parameters between females in these two stages. On the other hand, the differences in behaviors among certain strains are relatively consistent in both stages, suggesting a very minimal effect of estrous cycle for detecting the behavioral difference. Last, we compared the behavioral variation between male and female and found very similar variations in most behaviors between the two sexes. Discussion While our study successfully identified behavioral differences among strains and between the sexes, we did not find solid evidence to support the notion that female behaviors are influenced by the estrous cycle. Additionally, we observed similar levels of behavioral variability between males and females. Female mice, therefore, have no reason to be excluded in future behavioral research.
Collapse
Affiliation(s)
- Pei-Yun Zeng
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Ya-Hsuan Tsai
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Lin Lee
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Kai Ma
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Tsung-Han Kuo
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
13
|
Arrona-Palacios A, Díaz-Morales JF, Duffy JF. The influence of a permanent double-shift school start time on adolescent sleep and chronotype across different age groups. Chronobiol Int 2023; 40:850-863. [PMID: 37212086 DOI: 10.1080/07420528.2023.2215343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/27/2023] [Accepted: 05/12/2023] [Indexed: 05/23/2023]
Abstract
The main objective of this study was to explore the differences in sleep habits and chronotype across different age groups in Mexican adolescents attending a permanent double-shift school system. This cross-sectional study consisted of 1,969 (1,084 girls) students from public elementary, secondary, and high schools, as well as undergraduate university students from Mexico. Age range was 10-22 [15.33 ± 3.28 (mean ± SD)] years, 988 morning shift and 981 afternoon shift students. Questions regarding usual self-reported bedtime and rise time were collected, and from that, estimates for time in bed, midpoint of sleep, social jetlag, and chronotype were evaluated. Afternoon shift students reported later rise times, bedtimes, midpoint of sleep, and longer time in bed on school days than morning shift students, as well as less social jetlag. Overall, afternoon shift students reported a later chronotype than morning shift students. Peak lateness of chronotype in afternoon shift students was at age 15, with girls peaking at age 14 and boys at age 15. Meanwhile, morning shift students reported peak lateness of chronotype around age 20. In this study, adolescents from different age ranges attending an extremely delayed school start time reported adequate sleep compared with adolescents attending a fixed morning school start time. In addition, the analysis presented in this study seems to suggest that the peak of late chronotype may be influenced by school start times.
Collapse
Affiliation(s)
- Arturo Arrona-Palacios
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Writing Lab, Institute for the Future of Education, Tecnologico de Monterrey, Monterrey, Mexico
| | - Juan F Díaz-Morales
- Department of Social Psychology, Work and Individual Differences, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Jeanne F Duffy
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Beekly BG, Rupp A, Burgess CR, Elias CF. Fast neurotransmitter identity of MCH neurons: Do contents depend on context? Front Neuroendocrinol 2023; 70:101069. [PMID: 37149229 PMCID: PMC11190671 DOI: 10.1016/j.yfrne.2023.101069] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/07/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Abstract
Hypothalamic melanin-concentrating hormone (MCH) neurons participate in many fundamental neuroendocrine processes. While some of their effects can be attributed to MCH itself, others appear to depend on co-released neurotransmitters. Historically, the subject of fast neurotransmitter co-release from MCH neurons has been contentious, with data to support MCH neurons releasing GABA, glutamate, both, and neither. Rather than assuming a position in that debate, this review considers the evidence for all sides and presents an alternative explanation: neurochemical identity, including classical neurotransmitter content, is subject to change. With an emphasis on the variability of experimental details, we posit that MCH neurons may release GABA and/or glutamate at different points according to environmental and contextual factors. Through the lens of the MCH system, we offer evidence that the field of neuroendocrinology would benefit from a more nuanced and dynamic interpretation of neurotransmitter identity.
Collapse
Affiliation(s)
- B G Beekly
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States; Elizabeth W. Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, United States.
| | - A Rupp
- Elizabeth W. Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, United States
| | - C R Burgess
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - C F Elias
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States; Elizabeth W. Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
15
|
Abstract
Biomedical research on mammals has traditionally neglected females, raising the concern that some scientific findings may generalize poorly to half the population. Although this lack of sex inclusion has been broadly documented, its extent within circadian genomics remains undescribed. To address this gap, we examined sex inclusion practices in a comprehensive collection of publicly available transcriptome studies on daily rhythms. Among 148 studies having samples from mammals in vivo, we found strong underrepresentation of females across organisms and tissues. Overall, only 23 of 123 studies in mice, 0 of 10 studies in rats, and 9 of 15 studies in humans included samples from females. In addition, studies having samples from both sexes tended to have more samples from males than from females. These trends appear to have changed little over time, including since 2016, when the US National Institutes of Health began requiring investigators to consider sex as a biological variable. Our findings highlight an opportunity to dramatically improve representation of females in circadian research and to explore sex differences in daily rhythms at the genome level.
Collapse
Affiliation(s)
- Dora Obodo
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee,Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Elliot H. Outland
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jacob J. Hughey
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee,Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee,Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee,Jacob J. Hughey, Department of Biomedical Informatics, Vanderbilt University Medical Center, 2525 West End Ave., Suite 1475, Nashville, TN 37232, USA; e-mail:
| |
Collapse
|
16
|
Liu LP, Li MH, Zheng YW. Hair Follicles as a Critical Model for Monitoring the Circadian Clock. Int J Mol Sci 2023; 24:2407. [PMID: 36768730 PMCID: PMC9916850 DOI: 10.3390/ijms24032407] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/30/2022] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Clock (circadian) genes are heterogeneously expressed in hair follicles (HFs). The genes can be modulated by both the central circadian system and some extrinsic factors, such as light and thyroid hormones. These circadian genes participate in the regulation of several physiological processes of HFs, including hair growth and pigmentation. On the other hand, because peripheral circadian genes are synchronized with the central clock, HFs could provide a noninvasive and practical method for monitoring and evaluating multiple circadian-rhythm-related conditions and disorders among humans, including day and night shifts, sleep-wake disorders, physical activities, energy metabolism, and aging. However, due to the complexity of circadian biology, understanding how intrinsic oscillation operates using peripheral tissues only may be insufficient. Combining HF sampling with multidimensional assays such as detection of body temperature, blood samples, or certain validated questionnaires may be helpful in improving HF applications. Thus, HFs can serve as a critical model for monitoring the circadian clock and can help provide an understanding of the potential mechanisms of circadian-rhythm-related conditions; furthermore, chronotherapy could support personalized treatment scheduling based on the gene expression profile expressed in HFs.
Collapse
Affiliation(s)
- Li-Ping Liu
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
- Institute of Regenerative Medicine, Jiangsu University, Zhenjiang 212001, China
| | - Meng-Huan Li
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
- Institute of Regenerative Medicine, Jiangsu University, Zhenjiang 212001, China
| | - Yun-Wen Zheng
- Institute of Regenerative Medicine, Jiangsu University, Zhenjiang 212001, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
- Department of Regenerative Medicine, Yokohama City University School of Medicine, Yokohama 234-0006, Japan
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
17
|
Noh SG, Jung HJ, Kim S, Arulkumar R, Kim DH, Park D, Chung HY. Regulation of Circadian Genes Nr1d1 and Nr1d2 in Sex-Different Manners during Liver Aging. Int J Mol Sci 2022; 23:ijms231710032. [PMID: 36077427 PMCID: PMC9456386 DOI: 10.3390/ijms231710032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Circadian rhythm is associated with the aging process and sex differences; however, how age and sex can change circadian regulation systems remains unclear. Thus, we aimed to evaluate age- and sex-related changes in gene expression and identify sex-specific target molecules that can regulate aging. Methods: Rat livers were categorized into four groups, namely, young male, old male, young female, and old female, and the expression of several genes involved in the regulation of the circadian rhythm was confirmed by in silico and in vitro studies. Results: Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses showed that the expression of genes related to circadian rhythms changed more in males than in females during liver aging. In addition, differentially expressed gene analysis and quantitative real-time polymerase chain reaction/western blotting analysis revealed that Nr1d1 and Nr1d2 expression was upregulated in males during liver aging. Furthermore, the expression of other circadian genes, such as Arntl, Clock, Cry1/2, Per1/2, and Rora/c, decreased in males during liver aging; however, these genes showed various gene expression patterns in females during liver aging. Conclusions: Age-related elevation of Nr1d1/2 downregulates the expression of other circadian genes in males, but not females, during liver aging. Consequently, age-related upregulation of Nr1d1/2 may play a more crucial role in the change in circadian rhythms in males than in females during liver aging.
Collapse
Affiliation(s)
- Sang Gyun Noh
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Hee Jin Jung
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Seungwoo Kim
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Radha Arulkumar
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Dae Hyun Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Daeui Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141, Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea
| | - Hae Young Chung
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
- Correspondence: ; Tel.: +82-51-510-2814
| |
Collapse
|