1
|
Turi GF, Teng S, Chen X, Lim ECY, Dias C, Hu R, Wang R, Zhen F, Peng Y. Serotonin modulates infraslow oscillation in the dentate gyrus during non-REM sleep. eLife 2025; 13:RP100196. [PMID: 40178074 PMCID: PMC11968106 DOI: 10.7554/elife.100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01-0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.
Collapse
Affiliation(s)
- Gergely F Turi
- New York State Psychiatric Institute, Division of Systems Neuroscience New YorkNew YorkUnited States
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia UniversityNew YorkUnited States
| | - Sasa Teng
- Institute for Genomic Medicine, Vagelos College of Physicians and Surgeons, Columbia UniversityNew YorkUnited States
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia UniversityNew YorkUnited States
| | - Xinyue Chen
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia UniversityNew YorkUnited States
- Department of Neuroscience, Vagelos College of Physicians and Surgeons, Columbia UniversityNew YorkUnited States
| | - Emily CY Lim
- Columbia College, Columbia UniversityNew YorkUnited States
| | - Carla Dias
- New York State Psychiatric Institute, Division of Systems Neuroscience New YorkNew YorkUnited States
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia UniversityNew YorkUnited States
| | - Ruining Hu
- Institute for Genomic Medicine, Vagelos College of Physicians and Surgeons, Columbia UniversityNew YorkUnited States
| | - Ruizhi Wang
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia UniversityNew YorkUnited States
| | - Fenghua Zhen
- Institute for Genomic Medicine, Vagelos College of Physicians and Surgeons, Columbia UniversityNew YorkUnited States
| | - Yueqing Peng
- Institute for Genomic Medicine, Vagelos College of Physicians and Surgeons, Columbia UniversityNew YorkUnited States
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia UniversityNew YorkUnited States
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia UniversityNew YorkUnited States
| |
Collapse
|
2
|
Ding C, Pan X, Fu R, Qiu H, Zhu H. rTMS improves cognitive function and its real-time and cumulative effect on neuronal excitability in aged mice. Brain Res 2025; 1851:149474. [PMID: 39870341 DOI: 10.1016/j.brainres.2025.149474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/02/2025] [Indexed: 01/29/2025]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is acknowledged for its critical role in modulating neuronal excitability and enhancing cognitive function. The dentate gyrus of the hippocampus is closely linked to cognitive processes; however, the precise mechanisms by which changes in its excitability influence cognition are not yet fully understood. This study aimed to elucidate the effects on granule cell excitability and the effects on cognition of high-frequency rTMS in naturally aging mice, as well as to investigate the potential interactions between these two factors. It was observed that 20 Hz high-frequency rTMS attenuated granule cell loss in aged mice, demonstrating both cumulative and real-time effects on neural excitability. Importantly, this intervention significantly ameliorated age-related cognitive decline. The findings suggest that one of the potential mechanisms underlying the amelioration of age-related cognitive decline through high-frequency rTMS may involve the attenuation of granule cell apoptosis and the enhancement of their neural excitability.
Collapse
Affiliation(s)
- Chong Ding
- School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300130, PR China; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Bioelectromagnetics and Neural Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Xueting Pan
- School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300130, PR China; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, PR China
| | - Rui Fu
- School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300130, PR China; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, PR China
| | - Haoyu Qiu
- Key Laboratory of Digital Medical Engineering of Hebei Province, College of Electronic & Information Engineering, Hebei University, Baoding, Hebei 071002, PR China
| | - Haijun Zhu
- Key Laboratory of Digital Medical Engineering of Hebei Province, College of Electronic & Information Engineering, Hebei University, Baoding, Hebei 071002, PR China.
| |
Collapse
|
3
|
Chen X, Cheng N, Wang C, Knierim JJ. Impaired spatial coding of the hippocampus in a dentate gyrus hypoplasia mouse model. Proc Natl Acad Sci U S A 2025; 122:e2416214122. [PMID: 39883841 PMCID: PMC11804539 DOI: 10.1073/pnas.2416214122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/28/2024] [Indexed: 02/01/2025] Open
Abstract
The hippocampal dentate gyrus (DG) is thought to orthogonalize inputs from the entorhinal cortex (pattern separation) and relay this information to the CA3 region. In turn, attractor dynamics in CA3 perform a pattern completion or error correction operation before sending its output to CA1. In a mouse model of congenital hypoplasia of the DG, a deficiency in the Wntless (Wls) gene, specifically in cells expressing Gfap-Cre, which targets neuronal progenitors, led to an almost total absence of dentate granule cells and modestly impaired performance in spatial tasks. Here, we investigated the physiological consequences of granule cell loss in these mice by conducting in vivo calcium imaging from CA1 principal cells during behavior. The spatial selectivity of these cells was preserved without the DG. On a linear track, place fields in mutant mice were more likely to be near track terminals and to encode the distance from the start point in each running direction. In an open box, CA1 cells in mutant mice exhibited reductions in the percentage of place cells, in spatial information, and in place field stability. The reduction in place field stability across repeated exposures to the same environment resulted in a reduction in the differential representations of two different contexts in mutant mice compared to wild-type mice. These results suggest that DG helps to stabilize CA1 spatial representations, especially in 2-D environments, and that the lack of stability across similar environments may play a key role in the deficits of animals with DG dysfunction in discriminating different environments.
Collapse
Affiliation(s)
- Xiaojing Chen
- Brain Research Centre, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD21218
| | - Ning Cheng
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Cheng Wang
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD21218
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - James J. Knierim
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD21218
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD21218
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD21218
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD21218
| |
Collapse
|
4
|
Turi GF, Teng S, Chen X, Lim ECY, Dias C, Hu R, Wang R, Zhen F, Peng Y. Serotonin modulates infraslow oscillation in the dentate gyrus during Non-REM sleep. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.05.12.540575. [PMID: 38854102 PMCID: PMC11160574 DOI: 10.1101/2023.05.12.540575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01 - 0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by 5-HT1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.
Collapse
Affiliation(s)
- Gergely F. Turi
- New York State Psychiatric Institute, Division of Systems Neuroscience New York, NY 10032, USA
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Sasa Teng
- Institute for Genomic Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Xinyue Chen
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Department of Neuroscience, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Emily CY Lim
- Columbia College, Columbia University, New York, NY 10027, USA
| | - Carla Dias
- New York State Psychiatric Institute, Division of Systems Neuroscience New York, NY 10032, USA
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Ruining Hu
- Institute for Genomic Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Ruizhi Wang
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Fenghua Zhen
- Institute for Genomic Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Present address: National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20894, USA
| | - Yueqing Peng
- Institute for Genomic Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
5
|
Fink R, Imai S, Gockel N, Lauer G, Renken K, Wietek J, Lamothe-Molina PJ, Fuhrmann F, Mittag M, Ziebarth T, Canziani A, Kubitschke M, Kistmacher V, Kretschmer A, Sebastian E, Schmitz D, Terai T, Gründemann J, Hassan S, Patriarchi T, Reiner A, Fuhrmann M, Campbell RE, Masseck OA. PinkyCaMP a mScarlet-based calcium sensor with exceptional brightness, photostability, and multiplexing capabilities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.16.628673. [PMID: 39763884 PMCID: PMC11702558 DOI: 10.1101/2024.12.16.628673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Genetically encoded calcium (Ca2+) indicators (GECIs) are widely used for imaging neuronal activity, yet current limitations of existing red fluorescent GECIs have constrained their applicability. The inherently dim fluorescence and low signal-to-noise ratio of red-shifted GECIs have posed significant challenges. More critically, several red-fluorescent GECIs exhibit photoswitching when exposed to blue light, thereby limiting their applicability in all-optical experimental approaches. Here, we present the development of PinkyCaMP, the first mScarlet-based Ca2+ sensor that outperforms current red fluorescent sensors in brightness, photostability, signal-to-noise ratio, and compatibility with optogenetics and neurotransmitter imaging. PinkyCaMP is well-tolerated by neurons, showing no toxicity or aggregation, both in vitro and in vivo. All imaging approaches, including single-photon excitation methods such as fiber photometry, widefield imaging, miniscope imaging, as well as two-photon imaging in awake mice, are fully compatible with PinkyCaMP.
Collapse
Affiliation(s)
- Ryan Fink
- Synthetic Biology, University of Bremen, Bremen, Germany
| | - Shosei Imai
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Nala Gockel
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - German Lauer
- Cellular Neurobiology, Department of Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Kim Renken
- Synthetic Biology, University of Bremen, Bremen, Germany
| | - Jonas Wietek
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Neuroscience Research Center, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, 10117 Berlin, Germany
| | | | - Falko Fuhrmann
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Manuel Mittag
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Tim Ziebarth
- Cellular Neurobiology, Department of Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Annika Canziani
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | | | | | - Anny Kretschmer
- Network Dysfunction, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Eva Sebastian
- Neural Circuit Computation, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Neuroscience Research Center, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, 10117 Berlin, Germany
- Network Dysfunction, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, Einstein Center for Neuroscience, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, NeuroCure Cluster of Excellence, Berlin, Germany
- Humboldt-Universität zu Berlin, Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Takuya Terai
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Jan Gründemann
- Neural Circuit Computation, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Sami Hassan
- System Neurobiology,University of Bremen, Bremen, Germany
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Neuroscience Center Zürich, University and ETH Zürich, Switzerland
| | - Andreas Reiner
- Cellular Neurobiology, Department of Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Martin Fuhrmann
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Robert E Campbell
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- CERVO Brain Research Center and Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Québec, Canada
| | | |
Collapse
|
6
|
Gandit B, Posani L, Zhang CL, Saha S, Ortiz C, Allegra M, Schmidt-Hieber C. Transformation of spatial representations along hippocampal circuits. iScience 2024; 27:110361. [PMID: 39071886 PMCID: PMC11277690 DOI: 10.1016/j.isci.2024.110361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/01/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024] Open
Abstract
The hippocampus is thought to provide the brain with a cognitive map of the external world by processing various types of spatial information. To understand how essential spatial variables such as direction, position, and distance are transformed along its circuits to construct this global map, we perform single-photon widefield microendoscope calcium imaging in the dentate gyrus and CA3 of mice freely navigating along a narrow corridor. We find that spatial activity maps in the dentate gyrus, but not in CA3, are correlated after aligning them to the running directions, suggesting that they represent the distance traveled along the track in egocentric coordinates. Together with population activity decoding, our data suggest that while spatial representations in the dentate gyrus and CA3 are anchored in both egocentric and allocentric coordinates, egocentric distance coding is more prevalent in the dentate gyrus than in CA3, providing insights into the assembly of the cognitive map.
Collapse
Affiliation(s)
- Bérénice Gandit
- Institut Pasteur, Université Paris Cité, Neural Circuits for Spatial Navigation and Memory, Department of Neuroscience, F-75015 Paris, France
- Sorbonne Université, Collège Doctoral, F-75005 Paris, France
| | - Lorenzo Posani
- Center for Theoretical Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Chun-Lei Zhang
- Institut Pasteur, Université Paris Cité, Neural Circuits for Spatial Navigation and Memory, Department of Neuroscience, F-75015 Paris, France
| | - Soham Saha
- Institut Pasteur, Université Paris Cité, Neural Circuits for Spatial Navigation and Memory, Department of Neuroscience, F-75015 Paris, France
| | - Cantin Ortiz
- Institut Pasteur, Université Paris Cité, Neural Circuits for Spatial Navigation and Memory, Department of Neuroscience, F-75015 Paris, France
- Sorbonne Université, Collège Doctoral, F-75005 Paris, France
| | - Manuela Allegra
- Institut Pasteur, Université Paris Cité, Neural Circuits for Spatial Navigation and Memory, Department of Neuroscience, F-75015 Paris, France
| | - Christoph Schmidt-Hieber
- Institut Pasteur, Université Paris Cité, Neural Circuits for Spatial Navigation and Memory, Department of Neuroscience, F-75015 Paris, France
- Institute for Physiology I, Jena University Hospital, 07743 Jena, Germany
| |
Collapse
|
7
|
Mizuta K, Sato M. Multiphoton imaging of hippocampal neural circuits: techniques and biological insights into region-, cell-type-, and pathway-specific functions. NEUROPHOTONICS 2024; 11:033406. [PMID: 38464393 PMCID: PMC10923542 DOI: 10.1117/1.nph.11.3.033406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Significance The function of the hippocampus in behavior and cognition has long been studied primarily through electrophysiological recordings from freely moving rodents. However, the application of optical recording methods, particularly multiphoton fluorescence microscopy, in the last decade or two has dramatically advanced our understanding of hippocampal function. This article provides a comprehensive overview of techniques and biological findings obtained from multiphoton imaging of hippocampal neural circuits. Aim This review aims to summarize and discuss the recent technical advances in multiphoton imaging of hippocampal neural circuits and the accumulated biological knowledge gained through this technology. Approach First, we provide a brief overview of various techniques of multiphoton imaging of the hippocampus and discuss its advantages, drawbacks, and associated key innovations and practices. Then, we review a large body of findings obtained through multiphoton imaging by region (CA1 and dentate gyrus), cell type (pyramidal neurons, inhibitory interneurons, and glial cells), and cellular compartment (dendrite and axon). Results Multiphoton imaging of the hippocampus is primarily performed under head-fixed conditions and can reveal detailed mechanisms of circuit operation owing to its high spatial resolution and specificity. As the hippocampus lies deep below the cortex, its imaging requires elaborate methods. These include imaging cannula implantation, microendoscopy, and the use of long-wavelength light sources. Although many studies have focused on the dorsal CA1 pyramidal cells, studies of other local and inter-areal circuitry elements have also helped provide a more comprehensive picture of the information processing performed by the hippocampal circuits. Imaging of circuit function in mouse models of Alzheimer's disease and other brain disorders such as autism spectrum disorder has also contributed greatly to our understanding of their pathophysiology. Conclusions Multiphoton imaging has revealed much regarding region-, cell-type-, and pathway-specific mechanisms in hippocampal function and dysfunction in health and disease. Future technological advances will allow further illustration of the operating principle of the hippocampal circuits via the large-scale, high-resolution, multimodal, and minimally invasive imaging.
Collapse
Affiliation(s)
- Kotaro Mizuta
- RIKEN BDR, Kobe, Japan
- New York University Abu Dhabi, Department of Biology, Abu Dhabi, United Arab Emirates
| | - Masaaki Sato
- Hokkaido University Graduate School of Medicine, Department of Neuropharmacology, Sapporo, Japan
| |
Collapse
|
8
|
Chartampila E, Elayouby KS, Leary P, LaFrancois JJ, Alcantara-Gonzalez D, Jain S, Gerencer K, Botterill JJ, Ginsberg SD, Scharfman HE. Choline supplementation in early life improves and low levels of choline can impair outcomes in a mouse model of Alzheimer's disease. eLife 2024; 12:RP89889. [PMID: 38904658 PMCID: PMC11192536 DOI: 10.7554/elife.89889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
Maternal choline supplementation (MCS) improves cognition in Alzheimer's disease (AD) models. However, the effects of MCS on neuronal hyperexcitability in AD are unknown. We investigated the effects of MCS in a well-established mouse model of AD with hyperexcitability, the Tg2576 mouse. The most common type of hyperexcitability in Tg2576 mice are generalized EEG spikes (interictal spikes [IIS]). IIS also are common in other mouse models and occur in AD patients. In mouse models, hyperexcitability is also reflected by elevated expression of the transcription factor ∆FosB in the granule cells (GCs) of the dentate gyrus (DG), which are the principal cell type. Therefore, we studied ΔFosB expression in GCs. We also studied the neuronal marker NeuN within hilar neurons of the DG because reduced NeuN protein expression is a sign of oxidative stress or other pathology. This is potentially important because hilar neurons regulate GC excitability. Tg2576 breeding pairs received a diet with a relatively low, intermediate, or high concentration of choline. After weaning, all mice received the intermediate diet. In offspring of mice fed the high choline diet, IIS frequency declined, GC ∆FosB expression was reduced, and hilar NeuN expression was restored. Using the novel object location task, spatial memory improved. In contrast, offspring exposed to the relatively low choline diet had several adverse effects, such as increased mortality. They had the weakest hilar NeuN immunoreactivity and greatest GC ΔFosB protein expression. However, their IIS frequency was low, which was surprising. The results provide new evidence that a diet high in choline in early life can improve outcomes in a mouse model of AD, and relatively low choline can have mixed effects. This is the first study showing that dietary choline can regulate hyperexcitability, hilar neurons, ΔFosB, and spatial memory in an animal model of AD.
Collapse
Affiliation(s)
- Elissavet Chartampila
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Karim S Elayouby
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Paige Leary
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
- Department of Neuroscience and Physiology, New York University Grossman School of MedicineNew YorkUnited States
| | - John J LaFrancois
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
- Departments of Child and Adolescent Psychiatry, New York University Grossman School of MedicineNew YorkUnited States
| | - David Alcantara-Gonzalez
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
- Departments of Child and Adolescent Psychiatry, New York University Grossman School of MedicineNew YorkUnited States
| | - Swati Jain
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Kasey Gerencer
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Justin J Botterill
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Stephen D Ginsberg
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
- Department of Neuroscience and Physiology, New York University Grossman School of MedicineNew YorkUnited States
- Department of Psychiatry, New York University Grossman School of MedicineNew YorkUnited States
- NYU Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - Helen E Scharfman
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
- Department of Neuroscience and Physiology, New York University Grossman School of MedicineNew YorkUnited States
- Departments of Child and Adolescent Psychiatry, New York University Grossman School of MedicineNew YorkUnited States
- Department of Psychiatry, New York University Grossman School of MedicineNew YorkUnited States
- NYU Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| |
Collapse
|
9
|
Chartampila E, Elayouby KS, Leary P, LaFrancois JJ, Alcantara-Gonzalez D, Jain S, Gerencer K, Botterill JJ, Ginsberg SD, Scharfman HE. Choline supplementation in early life improves and low levels of choline can impair outcomes in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.12.540428. [PMID: 37214805 PMCID: PMC10197642 DOI: 10.1101/2023.05.12.540428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Maternal choline supplementation (MCS) improves cognition in Alzheimer's disease (AD) models. However, effects of MCS on neuronal hyperexcitability in AD are unknown. We investigated effects of MCS in a well-established mouse model of AD with hyperexcitability, the Tg2576 mouse. The most common type of hyperexcitability in Tg2576 mice are generalized EEG spikes (interictal spikes; IIS). IIS also are common in other mouse models and occur in AD patients. Im mouse models, hyperexcitability is also reflected by elevated expression of the transcription factor ΔFosB in the granule cells (GCs) of the dentate gyrus (DG), which are the principal cell type. Therefore we studied ΔFosB expression in GCs. We also studied the the neuronal marker NeuN within hilar neurons of the DG because other studies have reduced NeuN protein expression is a sign of oxidative stress or other pathology. This is potentially important because hilar neurons regulate GC excitability. Tg2576 breeding pairs received a diet with a relatively low, intermediate or high concentration of choline. After weaning, all mice received the intermediate diet. In offspring of mice fed the high choline diet, IIS frequency declined, GC ΔFosB expression was reduced, and NeuN expression was restored. Using the novel object location task, spatial memory improved. In contrast, offspring exposed to the relatively low choline diet had several adverse effects, such as increased mortality. They had the weakest hilar NeuN immunoreactivity and greatest GC ΔFosB protein expression. However, their IIS frequency was low, which was surprising. The results provide new evidence that a diet high in choline in early life can improve outcomes in a mouse model of AD, and relatively low choline can have mixed effects. This is the first study showing that dietary choline can regulate hyperexcitability, hilar neurons, ΔFosB and spatial memory in an animal model of AD.
Collapse
Affiliation(s)
- Elissavet Chartampila
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Current address:Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27510
| | - Karim S. Elayouby
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Current address: Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029
| | - Paige Leary
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 100016
| | - John J. LaFrancois
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Department of Child and Adolescent Psychiatry , New York University Grossman School of Medicine, New York, NY 10016
| | - David Alcantara-Gonzalez
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Department of Child and Adolescent Psychiatry , New York University Grossman School of Medicine, New York, NY 10016
| | - Swati Jain
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
| | - Kasey Gerencer
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Current address: Department of Psychology, University of Maine, Orono, ME 04469
| | - Justin J. Botterill
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Current address: Department of Anatomy, Physiology, & Pharmacology, College of Medicine, Saskatoon, SK S7N 5E5
| | - Stephen D. Ginsberg
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 100016
- Department of Psychiatry, New York University Grossman School of Medicine New York, NY 10016
- NYU Neuroscience Institute,, New York University Grossman School of Medicine, New York, NY 10016
| | - Helen E. Scharfman
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 100016
- Department of Child and Adolescent Psychiatry , New York University Grossman School of Medicine, New York, NY 10016
- Department of Psychiatry, New York University Grossman School of Medicine New York, NY 10016
- NYU Neuroscience Institute,, New York University Grossman School of Medicine, New York, NY 10016
| |
Collapse
|
10
|
Farrell JS, Hwaun E, Dudok B, Soltesz I. Neural and behavioural state switching during hippocampal dentate spikes. Nature 2024; 628:590-595. [PMID: 38480889 PMCID: PMC11023929 DOI: 10.1038/s41586-024-07192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 02/01/2024] [Indexed: 04/06/2024]
Abstract
Distinct brain and behavioural states are associated with organized neural population dynamics that are thought to serve specific cognitive functions1-3. Memory replay events, for example, occur during synchronous population events called sharp-wave ripples in the hippocampus while mice are in an 'offline' behavioural state, enabling cognitive mechanisms such as memory consolidation and planning4-11. But how does the brain re-engage with the external world during this behavioural state and permit access to current sensory information or promote new memory formation? Here we found that the hippocampal dentate spike, an understudied population event that frequently occurs between sharp-wave ripples12, may underlie such a mechanism. We show that dentate spikes are associated with distinctly elevated brain-wide firing rates, primarily observed in higher order networks, and couple to brief periods of arousal. Hippocampal place coding during dentate spikes aligns to the mouse's current spatial location, unlike the memory replay accompanying sharp-wave ripples. Furthermore, inhibiting neural activity during dentate spikes disrupts associative memory formation. Thus, dentate spikes represent a distinct brain state and support memory during non-locomotor behaviour, extending the repertoire of cognitive processes beyond the classical offline functions.
Collapse
Affiliation(s)
- Jordan S Farrell
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
- F.M. Kirby Neurobiology Center and Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
| | - Ernie Hwaun
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Barna Dudok
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Departments of Neurology and Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
11
|
Nikbakht N, Pofahl M, Miguel-López A, Kamali F, Tchumatchenko T, Beck H. Efficient encoding of aversive location by CA3 long-range projections. Cell Rep 2024; 43:113957. [PMID: 38489262 DOI: 10.1016/j.celrep.2024.113957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/09/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Memorizing locations that are harmful or dangerous is a key capability of all organisms and requires an integration of affective and spatial information. In mammals, the dorsal hippocampus mainly processes spatial information, while the intermediate to ventral hippocampal divisions receive affective information via the amygdala. However, how spatial and aversive information is integrated is currently unknown. To address this question, we recorded the activity of hippocampal long-range CA3 axons at single-axon resolution in mice forming an aversive spatial memory. We show that intermediate CA3 to dorsal CA3 (i-dCA3) projections rapidly overrepresent areas preceding the location of an aversive stimulus due to a spatially selective addition of new place-coding axons followed by spatially non-specific stabilization. This sequence significantly improves the encoding of location by the i-dCA3 axon population. These results suggest that i-dCA3 axons transmit a precise, denoised, and stable signal indicating imminent danger to the dorsal hippocampus.
Collapse
Affiliation(s)
- Negar Nikbakht
- University of Bonn, Medical Faculty, Institute for Experimental Epileptology and Cognition Research, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Martin Pofahl
- University of Bonn, Medical Faculty, Institute for Experimental Epileptology and Cognition Research, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Albert Miguel-López
- University of Bonn, Medical Faculty, Institute for Experimental Epileptology and Cognition Research, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Fateme Kamali
- University of Bonn, Medical Faculty, Institute for Experimental Epileptology and Cognition Research, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Tatjana Tchumatchenko
- University of Bonn, Medical Faculty, Institute for Experimental Epileptology and Cognition Research, Venusberg-Campus 1, 53127 Bonn, Germany; University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Heinz Beck
- University of Bonn, Medical Faculty, Institute for Experimental Epileptology and Cognition Research, Venusberg-Campus 1, 53127 Bonn, Germany; University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Bonn, Germany.
| |
Collapse
|
12
|
Bird AD, Cuntz H, Jedlicka P. Robust and consistent measures of pattern separation based on information theory and demonstrated in the dentate gyrus. PLoS Comput Biol 2024; 20:e1010706. [PMID: 38377108 PMCID: PMC10906873 DOI: 10.1371/journal.pcbi.1010706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/01/2024] [Accepted: 12/13/2023] [Indexed: 02/22/2024] Open
Abstract
Pattern separation is a valuable computational function performed by neuronal circuits, such as the dentate gyrus, where dissimilarity between inputs is increased, reducing noise and increasing the storage capacity of downstream networks. Pattern separation is studied from both in vivo experimental and computational perspectives and, a number of different measures (such as orthogonalisation, decorrelation, or spike train distance) have been applied to quantify the process of pattern separation. However, these are known to give conclusions that can differ qualitatively depending on the choice of measure and the parameters used to calculate it. We here demonstrate that arbitrarily increasing sparsity, a noticeable feature of dentate granule cell firing and one that is believed to be key to pattern separation, typically leads to improved classical measures for pattern separation even, inappropriately, up to the point where almost all information about the inputs is lost. Standard measures therefore both cannot differentiate between pattern separation and pattern destruction, and give results that may depend on arbitrary parameter choices. We propose that techniques from information theory, in particular mutual information, transfer entropy, and redundancy, should be applied to penalise the potential for lost information (often due to increased sparsity) that is neglected by existing measures. We compare five commonly-used measures of pattern separation with three novel techniques based on information theory, showing that the latter can be applied in a principled way and provide a robust and reliable measure for comparing the pattern separation performance of different neurons and networks. We demonstrate our new measures on detailed compartmental models of individual dentate granule cells and a dentate microcircuit, and show how structural changes associated with epilepsy affect pattern separation performance. We also demonstrate how our measures of pattern separation can predict pattern completion accuracy. Overall, our measures solve a widely acknowledged problem in assessing the pattern separation of neural circuits such as the dentate gyrus, as well as the cerebellum and mushroom body. Finally we provide a publicly available toolbox allowing for easy analysis of pattern separation in spike train ensembles.
Collapse
Affiliation(s)
- Alexander D. Bird
- Computer-Based Modelling in the field of 3R Animal Protection, ICAR3R, Faculty of Medicine, Justus Liebig University, Giessen, Germany
- Ernst Strüngmann Institute (ESI) for Neuroscience in cooperation with the Max Planck Society, Frankfurt-am-Main, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt-am-Main, Germany
- Translational Neuroscience Network Giessen, Germany
| | - Hermann Cuntz
- Ernst Strüngmann Institute (ESI) for Neuroscience in cooperation with the Max Planck Society, Frankfurt-am-Main, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt-am-Main, Germany
- Translational Neuroscience Network Giessen, Germany
| | - Peter Jedlicka
- Computer-Based Modelling in the field of 3R Animal Protection, ICAR3R, Faculty of Medicine, Justus Liebig University, Giessen, Germany
- Translational Neuroscience Network Giessen, Germany
| |
Collapse
|
13
|
Banks E, Gutekunst CA, Vargish GA, Eaton A, Pelkey KA, McBain CJ, Zheng JQ, Oláh VJ, Rowan MJM. An enhancer-AAV approach selectively targeting dentate granule cells of the mouse hippocampus. CELL REPORTS METHODS 2024; 4:100684. [PMID: 38211592 PMCID: PMC10831952 DOI: 10.1016/j.crmeth.2023.100684] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/29/2023] [Accepted: 12/13/2023] [Indexed: 01/13/2024]
Abstract
The mammalian brain contains a diverse array of cell types, including dozens of neuronal subtypes with distinct anatomical and functional characteristics. The brain leverages these neuron-type specializations to perform diverse circuit operations and thus execute different behaviors properly. Through the use of Cre lines, access to specific neuron types has improved over past decades. Despite their extraordinary utility, development and cross-breeding of Cre lines is time consuming and expensive, presenting a significant barrier to entry for investigators. Furthermore, cell-based therapeutics developed in Cre mice are not clinically translatable. Recently, several adeno-associated virus (AAV) vectors utilizing neuron-type-specific regulatory transcriptional sequences (enhancer-AAVs) were developed that overcome these limitations. Using a publicly available RNA sequencing (RNA-seq) dataset, we evaluated the potential of several candidate enhancers for neuron-type-specific targeting in the hippocampus. Here, we demonstrate that a previously identified enhancer-AAV selectively targets dentate granule cells over other excitatory neuron types in the hippocampus of wild-type adult mice.
Collapse
Affiliation(s)
- Emmie Banks
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; GDBBS Graduate Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Claire-Anne Gutekunst
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Geoffrey A Vargish
- Section on Cellular and Synaptic Physiology, NICHD - Eunice Kennedy Shriver National Institute of Child Health, Bethesda, MD, USA
| | - Anna Eaton
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30322, USA; Human Development, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kenneth A Pelkey
- Section on Cellular and Synaptic Physiology, NICHD - Eunice Kennedy Shriver National Institute of Child Health, Bethesda, MD, USA
| | - Chris J McBain
- Section on Cellular and Synaptic Physiology, NICHD - Eunice Kennedy Shriver National Institute of Child Health, Bethesda, MD, USA
| | - James Q Zheng
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Viktor Janos Oláh
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Matthew J M Rowan
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
14
|
Lisgaras CP, Scharfman HE. Interictal spikes in Alzheimer's disease: Preclinical evidence for dominance of the dentate gyrus and cholinergic control by the medial septum. Neurobiol Dis 2023; 187:106294. [PMID: 37714307 PMCID: PMC10617404 DOI: 10.1016/j.nbd.2023.106294] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023] Open
Abstract
Interictal spikes (IIS) are a common type of abnormal electrical activity in Alzheimer's disease (AD) and preclinical models. The brain regions where IIS are largest are not known but are important because such data would suggest sites that contribute to IIS generation. Because hippocampus and cortex exhibit altered excitability in AD models, we asked which areas dominate the activity during IIS along the cortical-CA1-dentate gyrus (DG) dorso-ventral axis. Because medial septal (MS) cholinergic neurons are overactive when IIS typically occur, we also tested the novel hypothesis that silencing the MS cholinergic neurons selectively would reduce IIS. We used mice that simulate aspects of AD: Tg2576 mice, presenilin 2 (PS2) knockout mice and Ts65Dn mice. To selectively silence MS cholinergic neurons, Tg2576 mice were bred with choline-acetyltransferase (ChAT)-Cre mice and offspring were injected in the MS with AAV encoding inhibitory designer receptors exclusively activated by designer drugs (DREADDs). We recorded local field potentials along the cortical-CA1-DG axis using silicon probes during wakefulness, slow-wave sleep (SWS) and rapid eye movement (REM) sleep. We detected IIS in all transgenic or knockout mice but not age-matched controls. IIS were detectable throughout the cortical-CA1-DG axis and occurred primarily during REM sleep. In all 3 mouse lines, IIS amplitudes were significantly greater in the DG granule cell layer vs. CA1 pyramidal layer or overlying cortex. Current source density analysis showed robust and early current sources in the DG, and additional sources in CA1 and the cortex also. Selective chemogenetic silencing of MS cholinergic neurons significantly reduced IIS rate during REM sleep without affecting the overall duration, number of REM bouts, latency to REM sleep, or theta power during REM. Notably, two control interventions showed no effects. Consistent maximal amplitude and strong current sources of IIS in the DG suggest that the DG is remarkably active during IIS. In addition, selectively reducing MS cholinergic tone, at times when MS is hyperactive, could be a new strategy to reduce IIS in AD.
Collapse
Affiliation(s)
- Christos Panagiotis Lisgaras
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute New York University Langone Health, 550 First Ave., New York, NY 10016, United States of America; Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric Research, New York State Office of Mental Health, 140 Old Orangeburg Road, Bldg. 35, Orangeburg, NY 10962, United States of America.
| | - Helen E Scharfman
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute New York University Langone Health, 550 First Ave., New York, NY 10016, United States of America; Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric Research, New York State Office of Mental Health, 140 Old Orangeburg Road, Bldg. 35, Orangeburg, NY 10962, United States of America
| |
Collapse
|
15
|
Müller-Komorowska D, Kuru B, Beck H, Braganza O. Phase information is conserved in sparse, synchronous population-rate-codes via phase-to-rate recoding. Nat Commun 2023; 14:6106. [PMID: 37777512 PMCID: PMC10543394 DOI: 10.1038/s41467-023-41803-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/19/2023] [Indexed: 10/02/2023] Open
Abstract
Neural computation is often traced in terms of either rate- or phase-codes. However, most circuit operations will simultaneously affect information across both coding schemes. It remains unclear how phase and rate coded information is transmitted, in the face of continuous modification at consecutive processing stages. Here, we study this question in the entorhinal cortex (EC)- dentate gyrus (DG)- CA3 system using three distinct computational models. We demonstrate that DG feedback inhibition leverages EC phase information to improve rate-coding, a computation we term phase-to-rate recoding. Our results suggest that it i) supports the conservation of phase information within sparse rate-codes and ii) enhances the efficiency of plasticity in downstream CA3 via increased synchrony. Given the ubiquity of both phase-coding and feedback circuits, our results raise the question whether phase-to-rate recoding is a recurring computational motif, which supports the generation of sparse, synchronous population-rate-codes in areas beyond the DG.
Collapse
Affiliation(s)
- Daniel Müller-Komorowska
- Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan.
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany.
| | - Baris Kuru
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Heinz Beck
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V, Bonn, Germany
| | - Oliver Braganza
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany.
- Institute for Socio-Economics, University of Duisburg-Essen, Duisburg, Germany.
| |
Collapse
|
16
|
Goirand-Lopez L, Moulinier M, Vigier A, Boileau C, Carleton A, Muldoon SF, Marissal T, Crépel V. Kainate receptors modulate the microstructure of synchrony during dentate gyrus epileptiform activity. Neurobiol Dis 2023; 185:106260. [PMID: 37573957 DOI: 10.1016/j.nbd.2023.106260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/28/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023] Open
Abstract
Temporal Lobe Epilepsy (TLE) is the most common form of epilepsy in adults. In TLE, recurrent mossy fiber (rMF) sprouting from dentate gyrus granule cells (DGCs) forms an aberrant epileptogenic network between dentate granule cells (DGCs) that operates via ectopically expressed kainate receptors (KARs). It was previously shown that KARs expressed at the rMF-DGC synapses play a prominent role in epileptiform network events in TLE. However, it is not well understood how KARs influence neuronal network dynamics and contribute to the generation of epileptiform network activity in the dentate gyrus. To address this question, we monitored the activity of DGCs using single-cell resolution calcium imaging performed in a reliable in vitro model of TLE. Under our experimental conditions, the most prominent DGC activity patterns were interictal-like epileptiform network events, which were correlated with high levels of neuronal synchronization. The pharmacological blockade of KARs reduced the frequency as well as the number of neurons involved in these events, without altering their spatiotemporal dynamics. Analysis of the microstructure of synchrony showed that blockade of KARs diminished the fraction of neurons forming the main functional cluster. Therefore, we propose that KARs act as modulators in the epileptic network by facilitating the recruitment of neurons into coactive cell assemblies, thereby contributing to the occurrence of epileptiform network events.
Collapse
Affiliation(s)
| | - Marie Moulinier
- Department of Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | | | - Alan Carleton
- Department of Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sarah F Muldoon
- Mathematics Department, Institute for Artificial Intelligence and Data Science, and Neuroscience Program, University at Buffalo, SUNY, Buffalo NY14260, USA
| | | | | |
Collapse
|
17
|
Kloc ML, Chen Y, Daglian JM, Holmes GL, Baram TZ, Barry JM. Spatial learning impairments and discoordination of entorhinal-hippocampal circuit coding following prolonged febrile seizures. Hippocampus 2023; 33:970-992. [PMID: 37096324 PMCID: PMC10529121 DOI: 10.1002/hipo.23541] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/30/2023] [Accepted: 04/08/2023] [Indexed: 04/26/2023]
Abstract
How the development and function of neural circuits governing learning and memory are affected by insults in early life remains poorly understood. The goal of this study was to identify putative changes in cortico-hippocampal signaling mechanisms that could lead to learning and memory deficits in a clinically relevant developmental pathophysiological rodent model, Febrile status epilepticus (FSE). FSE in both pediatric cases and the experimental animal model, is associated with enduring physiological alterations of the hippocampal circuit and cognitive impairment. Here, we deconstruct hippocampal circuit throughput by inducing slow theta oscillations in rats under urethane anesthesia and isolating the dendritic compartments of CA1 and dentate gyrus subfields, their reception of medial and lateral entorhinal cortex inputs, and the efficacy of signal propagation to each somatic cell layer. We identify FSE-induced theta-gamma decoupling at cortical synaptic input pathways and altered signal phase coherence along the CA1 and dentate gyrus somatodendritic axes. Moreover, increased DG synaptic activity levels are predictive of poor cognitive outcomes. We propose that these alterations in cortico-hippocampal coordination interfere with the ability of hippocampal dendrites to receive, decode and propagate neocortical inputs. If this frequency-specific syntax is necessary for cortico-hippocampal coordination and spatial learning and memory, its loss could be a mechanism for FSE cognitive comorbidities.
Collapse
Affiliation(s)
- Michelle L. Kloc
- Epilepsy Cognition and Development Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Yuncai Chen
- Departments of Pediatrics, University California-Irvine, Irvine, California, USA
- Departments of Anatomy/Neurobiology, University California-Irvine, Irvine, California, USA
| | - Jennifer M. Daglian
- Departments of Pediatrics, University California-Irvine, Irvine, California, USA
| | - Gregory L. Holmes
- Epilepsy Cognition and Development Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Tallie Z. Baram
- Departments of Pediatrics, University California-Irvine, Irvine, California, USA
- Departments of Anatomy/Neurobiology, University California-Irvine, Irvine, California, USA
- Departments of Neurology, University California-Irvine, Irvine, California, USA
| | - Jeremy M. Barry
- Epilepsy Cognition and Development Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| |
Collapse
|
18
|
Banks E, Gutekunst CA, Vargish GA, Eaton A, Pelkey KA, McBain CJ, Zheng JQ, Oláh VJ, Rowan MJ. A novel enhancer-AAV approach selectively targeting dentate granule cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.527045. [PMID: 37214904 PMCID: PMC10197561 DOI: 10.1101/2023.02.03.527045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The mammalian brain contains the most diverse array of cell types of any organ, including dozens of neuronal subtypes with distinct anatomical and functional characteristics. The brain leverages these neuron-type-specializations to perform diverse circuit operations and thus execute different behaviors properly. Through the use of Cre lines, access to specific neuron types has steadily improved over past decades. Despite their extraordinary utility, development and cross-breeding of Cre lines is time-consuming and expensive, presenting a significant barrier to entry for many investigators. Furthermore, cell-based therapeutics developed in Cre mice are not clinically translatable. Recently, several AAV vectors utilizing neuron-type-specific regulatory transcriptional sequences (enhancer-AAVs) were developed which overcome these limitations. Using a publicly available RNAseq dataset, we evaluated the potential of several candidate enhancers for neuron-type-specific targeting in the hippocampus. Here we identified a promising enhancer-AAV for targeting dentate granule cells and validated its selectivity in wild-type adult mice.
Collapse
|
19
|
Gonzalez JC, Lee H, Vincent AM, Hill AL, Goode LK, King GD, Gamble KL, Wadiche JI, Overstreet-Wadiche L. Circadian regulation of dentate gyrus excitability mediated by G-protein signaling. Cell Rep 2023; 42:112039. [PMID: 36749664 PMCID: PMC10404305 DOI: 10.1016/j.celrep.2023.112039] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/27/2022] [Accepted: 01/12/2023] [Indexed: 02/08/2023] Open
Abstract
The central circadian regulator within the suprachiasmatic nucleus transmits time of day information by a diurnal spiking rhythm driven by molecular clock genes controlling membrane excitability. Most brain regions, including the hippocampus, harbor similar intrinsic circadian transcriptional machinery, but whether these molecular programs generate oscillations of membrane properties is unclear. Here, we show that intrinsic excitability of mouse dentate granule neurons exhibits a 24-h oscillation that controls spiking probability. Diurnal changes in excitability are mediated by antiphase G-protein regulation of potassium and sodium currents that reduce excitability during the Light phase. Disruption of the circadian transcriptional machinery by conditional deletion of Bmal1 enhances excitability selectively during the Light phase by removing G-protein regulation. These results reveal that circadian transcriptional machinery regulates intrinsic excitability by coordinated regulation of ion channels by G-protein signaling, highlighting a potential novel mechanism of cell-autonomous oscillations.
Collapse
Affiliation(s)
- Jose Carlos Gonzalez
- Department of Neurobiology and McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Haeun Lee
- Department of Neurobiology and McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Angela M Vincent
- Department of Neurobiology and McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Angela L Hill
- Department of Neurobiology and McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lacy K Goode
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gwendalyn D King
- Department of Biology, Creighton University, Omaha, NE 68178, USA
| | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jacques I Wadiche
- Department of Neurobiology and McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Linda Overstreet-Wadiche
- Department of Neurobiology and McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
20
|
Day-Cooney J, Dalangin R, Zhong H, Mao T. Genetically encoded fluorescent sensors for imaging neuronal dynamics in vivo. J Neurochem 2023; 164:284-308. [PMID: 35285522 PMCID: PMC11322610 DOI: 10.1111/jnc.15608] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 11/29/2022]
Abstract
The brain relies on many forms of dynamic activities in individual neurons, from synaptic transmission to electrical activity and intracellular signaling events. Monitoring these neuronal activities with high spatiotemporal resolution in the context of animal behavior is a necessary step to achieve a mechanistic understanding of brain function. With the rapid development and dissemination of highly optimized genetically encoded fluorescent sensors, a growing number of brain activities can now be visualized in vivo. To date, cellular calcium imaging, which has been largely used as a proxy for electrical activity, has become a mainstay in systems neuroscience. While challenges remain, voltage imaging of neural populations is now possible. In addition, it is becoming increasingly practical to image over half a dozen neurotransmitters, as well as certain intracellular signaling and metabolic activities. These new capabilities enable neuroscientists to test previously unattainable hypotheses and questions. This review summarizes recent progress in the development and delivery of genetically encoded fluorescent sensors, and highlights example applications in the context of in vivo imaging.
Collapse
Affiliation(s)
- Julian Day-Cooney
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Rochelin Dalangin
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California, USA
| | - Haining Zhong
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Tianyi Mao
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
21
|
Rukundo P, Feng T, Pham V, Pieraut S. Moderate effect of early-life experience on dentate gyrus function. Mol Brain 2022; 15:92. [PMID: 36411441 PMCID: PMC9677655 DOI: 10.1186/s13041-022-00980-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/06/2022] [Indexed: 11/22/2022] Open
Abstract
The development, maturation, and plasticity of neural circuits are strongly influenced by experience and the interaction of an individual with their environment can have a long-lasting effect on cognitive function. Using an enriched environment (EE) paradigm, we have recently demonstrated that enhancing social, physical, and sensory activity during the pre-weaning time in mice led to an increase of inhibitory and excitatory synapses in the dentate gyrus (DG) of the hippocampus. The structural plasticity induced by experience may affect information processing in the circuit. The DG performs pattern separation, a computation that enables the encoding of very similar and overlapping inputs into dissimilar outputs. In the presented study, we have tested the hypothesis that an EE in juvenile mice will affect DG's functions that are relevant for pattern separation: the decorrelation of the inputs from the entorhinal cortex (EC) and the recruitment of the principal excitatory granule cell (GC) during behavior. First, using a novel slice electrophysiology protocol, we found that the transformation of the incoming signal from the EC afferents by individual GC is moderately affected by EE. We further show that EE does not affect behaviorally induced recruitment of principal excitatory GC. Lastly, using the novel object recognition task, a hippocampus-dependent memory test, we show that the ontogeny of this discrimination task was similar among the EE mice and the controls. Taken together, our work demonstrates that pre-weaning enrichment moderately affects DG function.
Collapse
Affiliation(s)
- Pacifique Rukundo
- grid.266818.30000 0004 1936 914XDepartment of Biology, University of Nevada, Reno, NV 89557 USA
| | - Ting Feng
- grid.266818.30000 0004 1936 914XDepartment of Biology, University of Nevada, Reno, NV 89557 USA
| | - Vincent Pham
- grid.266818.30000 0004 1936 914XDepartment of Biology, University of Nevada, Reno, NV 89557 USA
| | - Simon Pieraut
- grid.266818.30000 0004 1936 914XDepartment of Biology, University of Nevada, Reno, NV 89557 USA
| |
Collapse
|
22
|
Lehtonen S, Waselius T, Penttonen M, Nokia MS. Hippocampal responses to electrical stimulation of the major input pathways are modulated by dentate spikes. Hippocampus 2022; 32:808-817. [PMID: 36111841 PMCID: PMC9825843 DOI: 10.1002/hipo.23470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/24/2022] [Accepted: 09/07/2022] [Indexed: 01/11/2023]
Abstract
Dentate gyrus (DG) is important for pattern separation and spatial memory, and it is thought to gate information flow to the downstream hippocampal subregions. Dentate spikes (DSs) are high-amplitude, fast, positive local-field potential events taking place in the DG during immobility and sleep, and they have been connected to memory consolidation in rodents. DSs are a result of signaling from the entorhinal cortex (EC) to the DG, and they suppress firing of pyramidal cells in the CA3 and CA1. To study the effects of DSs to signaling in the hippocampal tri-synaptic loop, we electrically stimulated the afferent fibers of the DG, CA3, and CA1 in adult male Sprague-Dawley rats at different delays from DSs. Responses to stimulation were increased in the EC-DG synapse during DSs, and the effect was amplified after theta-burst stimulation. We concluded that DSs strengthen the excitatory signal from the EC to the DG, which is reinforced by synapse potentiation and increased excitability of granule cells after theta-burst stimulation. This signal boosting may function in enhancing plastic changes in the DG-CA3 synapse. As responses in the CA3 and CA1 remained unaffected by the DS, the DS-contingent silencing of pyramidal cells seems to be a result of a decrease in excitatory input rather than a decrease in the excitability of the pyramidal cells themselves. In addition, we found that the DSs occur asynchronously in the left and right hippocampi, giving novel evidence of lateralization of the rodent hippocampus.
Collapse
Affiliation(s)
| | - Tomi Waselius
- Department of PsychologyUniversity of JyvaskylaJyvaskylaFinland
| | | | - Miriam S. Nokia
- Department of PsychologyUniversity of JyvaskylaJyvaskylaFinland
| |
Collapse
|
23
|
Lamothe-Molina PJ, Franzelin A, Beck L, Li D, Auksutat L, Fieblinger T, Laprell L, Alhbeck J, Gee CE, Kneussel M, Engel AK, Hilgetag CC, Morellini F, Oertner TG. ΔFosB accumulation in hippocampal granule cells drives cFos pattern separation during spatial learning. Nat Commun 2022; 13:6376. [PMID: 36289226 PMCID: PMC9606265 DOI: 10.1038/s41467-022-33947-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/07/2022] [Indexed: 12/25/2022] Open
Abstract
Mice display signs of fear when neurons that express cFos during fear conditioning are artificially reactivated. This finding gave rise to the notion that cFos marks neurons that encode specific memories. Here we show that cFos expression patterns in the mouse dentate gyrus (DG) change dramatically from day to day in a water maze spatial learning paradigm, regardless of training level. Optogenetic inhibition of neurons that expressed cFos on the first training day affected performance days later, suggesting that these neurons continue to be important for spatial memory recall. The mechanism preventing repeated cFos expression in DG granule cells involves accumulation of ΔFosB, a long-lived splice variant of FosB. CA1 neurons, in contrast, repeatedly expressed cFos. Thus, cFos-expressing granule cells may encode new features being added to the internal representation during the last training session. This form of timestamping is thought to be required for the formation of episodic memories.
Collapse
Affiliation(s)
- Paul J. Lamothe-Molina
- grid.13648.380000 0001 2180 3484Institute for Synaptic Physiology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Franzelin
- grid.13648.380000 0001 2180 3484Institute for Synaptic Physiology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lennart Beck
- grid.13648.380000 0001 2180 3484Institute for Synaptic Physiology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dong Li
- grid.13648.380000 0001 2180 3484Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lea Auksutat
- grid.13648.380000 0001 2180 3484Research Group Behavioral Biology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Fieblinger
- grid.13648.380000 0001 2180 3484Institute for Synaptic Physiology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Laprell
- grid.13648.380000 0001 2180 3484Institute for Synaptic Physiology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joachim Alhbeck
- grid.13648.380000 0001 2180 3484Department of Neurophysiology and Pathophysiology, Center for Experimental Medicine (ZEM), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christine E. Gee
- grid.13648.380000 0001 2180 3484Institute for Synaptic Physiology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Kneussel
- grid.13648.380000 0001 2180 3484Institute for Molecular Neurogenetics, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas K. Engel
- grid.13648.380000 0001 2180 3484Department of Neurophysiology and Pathophysiology, Center for Experimental Medicine (ZEM), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claus C. Hilgetag
- grid.13648.380000 0001 2180 3484Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabio Morellini
- grid.13648.380000 0001 2180 3484Research Group Behavioral Biology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas G. Oertner
- grid.13648.380000 0001 2180 3484Institute for Synaptic Physiology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
24
|
Nokia MS, Penttonen M. Rhythmic Memory Consolidation in the Hippocampus. Front Neural Circuits 2022; 16:885684. [PMID: 35431819 PMCID: PMC9011342 DOI: 10.3389/fncir.2022.885684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Functions of the brain and body are oscillatory in nature and organized according to a logarithmic scale. Brain oscillations and bodily functions such as respiration and heartbeat appear nested within each other and coupled together either based on phase or based on phase and amplitude. This facilitates communication in wide-spread neuronal networks and probably also between the body and the brain. It is a widely accepted view, that nested electrophysiological brain oscillations involving the neocortex, thalamus, and the hippocampus form the basis of memory consolidation. This applies especially to declarative memories, that is, memories of life events, for example. Here, we present our view of hippocampal contribution to the process of memory consolidation based on the general ideas stated above and on some recent findings on the topic by us and by other research groups. We propose that in addition to the interplay between neocortical slow oscillations, spindles, and hippocampal sharp-wave ripples during sleep, there are also additional mechanisms available in the hippocampus to control memory consolidation: a rather non-oscillatory hippocampal electrophysiological phenomenon called the dentate spike might provide a means to not only consolidate but to also modify the neural representation of declarative memories. Further, we suggest that memory consolidation in the hippocampus might be in part paced by breathing. These considerations might open new possibilities for regulating memory consolidation in rest and sleep.
Collapse
Affiliation(s)
- Miriam S. Nokia
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
- Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
- *Correspondence: Miriam S. Nokia
| | - Markku Penttonen
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
- Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
25
|
Larkum ME, Wu J, Duverdin SA, Gidon A. The guide to dendritic spikes of the mammalian cortex in vitro and in vivo. Neuroscience 2022; 489:15-33. [PMID: 35182699 DOI: 10.1016/j.neuroscience.2022.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 02/01/2022] [Accepted: 02/10/2022] [Indexed: 12/23/2022]
Abstract
Half a century since their discovery by Llinás and colleagues, dendritic spikes have been observed in various neurons in different brain regions, from the neocortex and cerebellum to the basal ganglia. Dendrites exhibit a terrifically diverse but stereotypical repertoire of spikes, sometimes specific to subregions of the dendrite. Despite their prevalence, we only have a glimpse into their role in the behaving animal. This article aims to survey the full range of dendritic spikes found in excitatory and inhibitory neurons, compare them in vivo versus in vitro, and discuss new studies describing dendritic spikes in the human cortex. We focus on dendritic spikes in neocortical and hippocampal neurons and present a roadmap to identify and understand the broader role of dendritic spikes in single-cell computation.
Collapse
Affiliation(s)
- Matthew E Larkum
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany; NeuroCure Cluster, Charité - Universitätsmedizin Berlin, Germany
| | - Jiameng Wu
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Sarah A Duverdin
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany; Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Albert Gidon
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
26
|
Deficits in Behavioral and Neuronal Pattern Separation in Temporal Lobe Epilepsy. J Neurosci 2021; 41:9669-9686. [PMID: 34620720 PMCID: PMC8612476 DOI: 10.1523/jneurosci.2439-20.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 11/21/2022] Open
Abstract
In temporal lobe epilepsy, the ability of the dentate gyrus to limit excitatory cortical input to the hippocampus breaks down, leading to seizures. The dentate gyrus is also thought to help discriminate between similar memories by performing pattern separation, but whether epilepsy leads to a breakdown in this neural computation, and thus to mnemonic discrimination impairments, remains unknown. Here we show that temporal lobe epilepsy is characterized by behavioral deficits in mnemonic discrimination tasks, in both humans (females and males) and mice (C57Bl6 males, systemic low-dose kainate model). Using a recently developed assay in brain slices of the same epileptic mice, we reveal a decreased ability of the dentate gyrus to perform certain forms of pattern separation. This is because of a subset of granule cells with abnormal bursting that can develop independently of early EEG abnormalities. Overall, our results linking physiology, computation, and cognition in the same mice advance our understanding of episodic memory mechanisms and their dysfunction in epilepsy.SIGNIFICANCE STATEMENT People with temporal lobe epilepsy (TLE) often have learning and memory impairments, sometimes occurring earlier than the first seizure, but those symptoms and their biological underpinnings are poorly understood. We focused on the dentate gyrus, a brain region that is critical to avoid confusion between similar memories and is anatomically disorganized in TLE. We show that both humans and mice with TLE experience confusion between similar situations. This impairment coincides with a failure of the dentate gyrus to disambiguate similar input signals because of pathologic bursting in a subset of neurons. Our work bridges seizure-oriented and memory-oriented views of the dentate gyrus function, suggests a mechanism for cognitive symptoms in TLE, and supports a long-standing hypothesis of episodic memory theories.
Collapse
|
27
|
Pofahl M, Nikbakht N, Haubrich AN, Nguyen T, Masala N, Distler F, Braganza O, Macke JH, Ewell LA, Golcuk K, Beck H. Synchronous activity patterns in the dentate gyrus during immobility. eLife 2021; 10:65786. [PMID: 33709911 PMCID: PMC7987346 DOI: 10.7554/elife.65786] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/11/2021] [Indexed: 01/25/2023] Open
Abstract
The hippocampal dentate gyrus is an important relay conveying sensory information from the entorhinal cortex to the hippocampus proper. During exploration, the dentate gyrus has been proposed to act as a pattern separator. However, the dentate gyrus also shows structured activity during immobility and sleep. The properties of these activity patterns at cellular resolution, and their role in hippocampal-dependent memory processes have remained unclear. Using dual-color in vivo two-photon Ca2+ imaging, we show that in immobile mice dentate granule cells generate sparse, synchronized activity patterns associated with entorhinal cortex activation. These population events are structured and modified by changes in the environment; and they incorporate place- and speed cells. Importantly, they are more similar than expected by chance to population patterns evoked during self-motion. Using optogenetic inhibition, we show that granule cell activity is not only required during exploration, but also during immobility in order to form dentate gyrus-dependent spatial memories.
Collapse
Affiliation(s)
- Martin Pofahl
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Negar Nikbakht
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - André N Haubrich
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Theresa Nguyen
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Nicola Masala
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Fabian Distler
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Oliver Braganza
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Jakob H Macke
- Machine Learning in Science, Cluster of Excellence "Machine Learning", University of Tübingen, Germany & Department Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany
| | - Laura A Ewell
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Kurtulus Golcuk
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Heinz Beck
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen e.V, Bonn, Germany
| |
Collapse
|