1
|
Takeda K, Watanabe K, Iijima S, Nagahiro T, Suzuki H, Izumo K, Ikegaya Y, Matsumoto N. Ramelteon coordinates theta and gamma oscillations in the hippocampus for novel object recognition memory in mice. J Pharmacol Sci 2025; 158:121-130. [PMID: 40288822 DOI: 10.1016/j.jphs.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/14/2025] [Accepted: 03/29/2025] [Indexed: 04/29/2025] Open
Abstract
Object recognition memory is an animal's ability to discriminate between novel and familiar items and is supported by neural activities in not only the perirhinal cortex but also the hippocampus and prefrontal cortex. Since we previously demonstrated that ramelteon enhanced object recognition memory in mice, we sought neural correlates of the memory improvement. We recorded neural activity in the hippocampus and prefrontal cortex of mice while they performed a novel object recognition task. We found that theta oscillations in the hippocampus were enhanced when ramelteon-treated mice explored both novel and familiar objects. Moreover, we showed high coherence in phases at low gamma frequencies between the hippocampus and prefrontal cortex. We assume that theta enhancement is indicative of increased cholinergic activity by melatonin receptor activation. High coherence of low gamma oscillations between the hippocampal and prefrontal network in ramelteon-treated mice sampling novel objects suggests better cognitive operations for discrimination between novelty and familiarity. The current study sheds light upon physiological consequences of melatonin receptor activation, further contributing improved cognitive functions.
Collapse
Affiliation(s)
- Kinjiro Takeda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kisa Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Sena Iijima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takeshi Nagahiro
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Haruka Suzuki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kano Izumo
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo, 113-0033, Japan; Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, 565-0871, Japan
| | - Nobuyoshi Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
2
|
Prince SM, Cushing SD, Yassine TA, Katragadda N, Roberts TC, Singer AC. New information triggers prospective codes to adapt for flexible navigation. Nat Commun 2025; 16:4822. [PMID: 40410173 PMCID: PMC12102184 DOI: 10.1038/s41467-025-60122-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 05/13/2025] [Indexed: 05/25/2025] Open
Abstract
Navigating a dynamic world requires rapidly updating choices by integrating past experiences with new information. In hippocampus and prefrontal cortex, neural activity representing future goals is theorized to support navigational planning. However, it remains unknown how prospective goal representations incorporate new, pivotal information. Accordingly, we designed a navigation task that precisely introduces new information using virtual reality, and we recorded neural activity as male mice flexibly adapted their planned destinations. Here we show that new information triggered increased hippocampal prospective representations of both possible goals; while in prefrontal cortex, new information caused prospective representations of choices to rapidly shift to the new choice. When mice did not adapt, prefrontal choice codes failed to switch. Prospective codes were dependent on the amount of behavioral adaptation needed; the new goal arm was represented more strongly when animals needed to change their behavior more. Thus, we show how prospective codes update with new information to flexibly adapt ongoing navigational plans.
Collapse
Affiliation(s)
- Stephanie M Prince
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Sarah Danielle Cushing
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Teema A Yassine
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Navya Katragadda
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Tyler C Roberts
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Annabelle C Singer
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
3
|
Fang W, Jiang X, Chen J, Zhang C, Wang L. Oscillatory control over representational geometry of sequence working memory in macaque frontal cortex. Curr Biol 2025; 35:1495-1507.e5. [PMID: 40086442 DOI: 10.1016/j.cub.2025.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/27/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025]
Abstract
To process sequential streams of information, e.g., language, the brain must encode multiple items in sequence working memory (SWM) according to their ordinal relationship. While the geometry of neural states could represent sequential events in the frontal cortex, the control mechanism over these neural states remains unclear. Using high-throughput electrophysiology recording in the macaque frontal cortex, we observed widespread theta responses after each stimulus entry. Crucially, by applying targeted dimensionality reduction to extract task-relevant neural subspaces from both local field potential (LFP) and spike data, we found that theta power transiently encoded each sequentially presented stimulus regardless of its order. At the same time, theta-spike interaction was rank-selectively associated with memory subspaces, thereby potentially supporting the binding of items to appropriate ranks. Furthermore, this putative theta control can generalize to length-variable and error sequences, predicting behavior. Thus, decomposed entry/rank-WM subspaces and theta-spike interactions may underlie the control of SWM.
Collapse
Affiliation(s)
- Wen Fang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xi Jiang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jingwen Chen
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Cong Zhang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liping Wang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Academy of Natural Sciences (SANS), Fudan University, Shanghai 200031, China.
| |
Collapse
|
4
|
Coulter ME, Gillespie AK, Chu J, Denovellis EL, Nguyen TTK, Liu DF, Wadhwani K, Sharma B, Wang K, Deng X, Eden UT, Kemere C, Frank LM. Closed-loop modulation of remote hippocampal representations with neurofeedback. Neuron 2025; 113:949-961.e3. [PMID: 39837322 PMCID: PMC12067296 DOI: 10.1016/j.neuron.2024.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/23/2024] [Accepted: 12/19/2024] [Indexed: 01/23/2025]
Abstract
Humans can remember specific remote events without acting on them and influence which memories are retrieved based on internal goals. However, animal models typically present sensory cues to trigger memory retrieval and then assess retrieval based on action. Thus, it is difficult to determine whether measured neural activity patterns relate to the cue(s), the memory, or the behavior. We therefore asked whether retrieval-related neural activity could be generated in animals without cues or a behavioral report. We focused on hippocampal "place cells," which primarily represent the animal's current location (local representations) but can also represent locations away from the animal (remote representations). We developed a neurofeedback system to reward expression of remote representations and found that rats could learn to generate specific spatial representations that often jumped directly to the experimenter-defined target location. Thus, animals can deliberately engage remote representations, enabling direct study of retrieval-related activity in the brain.
Collapse
Affiliation(s)
- Michael E Coulter
- Kavli Institute and Department of Physiology, UCSF, San Francisco, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Anna K Gillespie
- Departments of Neurobiology and Biophysics and Lab Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Joshua Chu
- Department of Electrical and Computer Engineering and Neuroengineering Initiative, Rice University, Houston, TX, USA
| | - Eric L Denovellis
- Kavli Institute and Department of Physiology, UCSF, San Francisco, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Trevor Thai K Nguyen
- Kavli Institute and Department of Physiology, UCSF, San Francisco, CA, USA; SpikeGadgets Inc., San Francisco, CA, USA
| | - Daniel F Liu
- Kavli Institute and Department of Physiology, UCSF, San Francisco, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Katherine Wadhwani
- Kavli Institute and Department of Physiology, UCSF, San Francisco, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Baibhav Sharma
- Kavli Institute and Department of Physiology, UCSF, San Francisco, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Kevin Wang
- SpikeGadgets Inc., San Francisco, CA, USA
| | - Xinyi Deng
- Department of Statistics, Beijing University of Technology, Beijing, China
| | - Uri T Eden
- Department of Mathematics and Statistics, Boston University, Boston, MA, USA
| | - Caleb Kemere
- Department of Electrical and Computer Engineering and Neuroengineering Initiative, Rice University, Houston, TX, USA
| | - Loren M Frank
- Kavli Institute and Department of Physiology, UCSF, San Francisco, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
5
|
Papale AE, Brown VM, Ianni AM, Hallquist MN, Luna B, Dombrovski AY. Prefrontal default-mode network interactions with posterior hippocampus during exploration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642890. [PMID: 40161797 PMCID: PMC11952374 DOI: 10.1101/2025.03.12.642890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Hippocampal maps and ventral prefrontal cortex (vPFC) value and goal representations support foraging in continuous spaces. How might hippocampal-vPFC interactions control the balance between behavioral exploration and exploitation? Using fMRI and reinforcement learning modeling, we investigated vPFC and hippocampal responses as humans explored and exploited a continuous one-dimensional space, with out-of-session and out-of-sample replication. The spatial distribution of rewards, or value landscape, modulated activity in the hippocampus and default network vPFC subregions, but not in ventrolateral prefrontal control subregions or medial orbitofrontal limbic subregions. While prefrontal default network and hippocampus displayed higher activity in less complex, easy-to-exploit value landscapes, vPFC-hippocampal connectivity increased in uncertain landscapes requiring exploration. Further, synchronization between prefrontal default network and posterior hippocampus scaled with behavioral exploration. Considered alongside electrophysiological studies, our findings suggest that locations to be explored are identified through coordinated activity binding prefrontal default network value representations to posterior hippocampal maps.
Collapse
Affiliation(s)
- Andrew E. Papale
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Angela M. Ianni
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael N. Hallquist
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
6
|
Marciniak E, Osuch B, Młotkowska P, Kowalczyk P, Roszkowicz-Ostrowska K, Misztal T. Gene Expression and Activity of Selected Antioxidant and DNA Repair Enzymes in the Prefrontal Cortex of Sheep as Affected by Kynurenic Acid. Int J Mol Sci 2025; 26:2381. [PMID: 40141025 PMCID: PMC11942221 DOI: 10.3390/ijms26062381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
The prefrontal cortex (PCx) is involved in many higher-order cognitive processes, including decision making, reasoning, personality expression, and social cognition. These functions are associated with high energy demand and the production of harmful oxygen radicals. Recent studies indicate that kynurenic acid (KYNA) exerts neuroprotective effects, largely due to its anti-inflammatory and antioxidant properties. To further evaluate the antioxidant potential of this compound, we tested the hypothesis that increasing KYNA levels in the sheep cerebroventricular circulation would positively affect the mRNA expression and activity of selected antioxidant and DNA repair enzymes in the distal part of the brain, i.e., the PCx. Anestrous sheep were infused intracerebroventricularly with a series of two KYNA doses: lower (4 × 5 μg/60 μL/30 min) and higher (4 × 25 μg/60 μL/30 min) at 30 min intervals. The results demonstrated that KYNA exerted significant dose-dependent stimulatory effects on the activity of superoxide dismutase 2, catalase, and glutathione peroxidase 1 while inhibiting their transcription in a similar manner. In addition, KYNA was also found to dose-dependently activate the base excision repair pathway, as determined by the increased transcript levels of glycosylases: N-methylpurine DNA glycosylase, thymine-DNA glycosylase, 8-oxoguanine DNA glycosylase-1, and apurinic/apyrimidinic endonuclease 1. The excision efficiency of damaged nucleobases, such as εA, εC and 8-oxoG, by these enzymes was also increased in response to central KYNA infusion. These findings expand the knowledge on KYNA as a potential protective factor against oxidative stress in the central nervous system.
Collapse
Affiliation(s)
| | | | | | | | | | - Tomasz Misztal
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, 05-110 Jabłonna, Poland; (E.M.); (B.O.); (P.M.); (P.K.); (K.R.-O.)
| |
Collapse
|
7
|
Rosenblum HL, Kim S, Stout JJ, Klintsova AY, Griffin AL. Choice Behaviors and Prefrontal-Hippocampal Coupling Are Disrupted in a Rat Model of Fetal Alcohol Spectrum Disorders. J Neurosci 2025; 45:e1241242025. [PMID: 39900497 PMCID: PMC11884398 DOI: 10.1523/jneurosci.1241-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/12/2024] [Accepted: 01/15/2025] [Indexed: 02/05/2025] Open
Abstract
Fetal alcohol spectrum disorders (FASDs) are characterized by a range of physical, cognitive, and behavioral impairments. Determining how temporally specific alcohol exposure (AE) affects neural circuits is crucial to understanding the FASD phenotype. Third trimester AE can be modeled in rats by administering alcohol during the first two postnatal weeks, which damages the medial prefrontal cortex (mPFC) and hippocampus (HPC), structures whose functional interactions are required for working memory and executive function. Therefore, we hypothesized that AE during this period would impair working memory, disrupt choice behaviors, and alter mPFC-HPC oscillatory synchrony. To test this hypothesis, we recorded local field potentials from the mPFC and dorsal HPC as male and female AE and sham-intubated (SI) rats performed a spatial working memory task in adulthood and implemented algorithms to detect vicarious trial and errors (VTEs), behaviors associated with deliberative decision-making. We found that, compared with the SI group, the AE group performed fewer VTEs and demonstrated a disturbed relationship between VTEs and choice outcomes, while spatial working memory was unimpaired. This behavioral disruption was accompanied by alterations to mPFC and HPC oscillatory activity in the theta and beta bands, respectively, and a reduced prevalence of mPFC-HPC synchronous events. When trained on multiple behavioral variables, a machine learning algorithm could accurately predict whether rats were in the AE or SI group, thus characterizing a potential phenotype following third trimester AE. Together, these findings indicate that third trimester AE disrupts mPFC-HPC oscillatory interactions and choice behaviors.
Collapse
Affiliation(s)
- Hailey L Rosenblum
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716
| | - SuHyeong Kim
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716
| | - John J Stout
- Department of Neuroscience, University of Connecticut Health, Farmington, Connecticut 06030
| | - Anna Y Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716
| | - Amy L Griffin
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716
| |
Collapse
|
8
|
Vollan AZ, Gardner RJ, Moser MB, Moser EI. Left-right-alternating theta sweeps in entorhinal-hippocampal maps of space. Nature 2025; 639:995-1005. [PMID: 39900625 PMCID: PMC11946909 DOI: 10.1038/s41586-024-08527-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 12/12/2024] [Indexed: 02/05/2025]
Abstract
Place cells in the hippocampus and grid cells in the entorhinal cortex are elements of a neural map of self position1-5. For these cells to benefit navigation, their representation must be dynamically related to the surrounding locations2. A candidate mechanism for linking places along an animal's path has been described for place cells, in which the sequence of spikes in each cycle of the hippocampal theta oscillation encodes a trajectory from the animal's current location towards upcoming locations6-8. In mazes that bifurcate, such trajectories alternately traverse the two upcoming arms when the animal approaches the choice point9,10, raising the possibility that the trajectories express available forward paths encoded on previous trials10. However, to bridge the animal's path with the wider environment, beyond places previously or subsequently visited, an experience-independent spatial sampling mechanism might be required. Here we show in freely moving rats that in individual theta cycles, ensembles of grid cells and place cells encode a position signal that sweeps linearly outwards from the animal's location into the ambient environment, with sweep direction alternating stereotypically between left and right across successive theta cycles. These sweeps are accompanied by, and aligned with, a similarly alternating directional signal in a discrete population of parasubiculum cells that have putative connections to grid cells via conjunctive grid × direction cells. Sweeps extend into never-visited locations that are inaccessible to the animal. Sweeps persist during REM sleep. The sweep directions can be explained by an algorithm that maximizes the cumulative coverage of the surrounding manifold space. The sustained and unconditional expression of theta-patterned left-right-alternating sweeps in the entorhinal-hippocampal positioning system provides an efficient 'look around' mechanism for sampling locations beyond the travelled path.
Collapse
Affiliation(s)
- Abraham Z Vollan
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Richard J Gardner
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Trondheim, Norway
| | - May-Britt Moser
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Trondheim, Norway
| | - Edvard I Moser
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
9
|
Ding M, Tomsick PL, Young RA, Jadhav SP. Ventral tegmental area dopamine neural activity switches simultaneously with rule representations in the prefrontal cortex and hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.09.611811. [PMID: 39314328 PMCID: PMC11419070 DOI: 10.1101/2024.09.09.611811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Multiple brain regions need to coordinate activity to support cognitive flexibility and behavioral adaptation. Neural activity in both the hippocampus (HPC) and prefrontal cortex (PFC) is known to represent spatial context and is sensitive to reward and rule alterations. Midbrain dopamine (DA) activity is key in reward seeking behavior and learning. There is abundant evidence that midbrain DA modulates HPC and PFC activity. However, it remains underexplored how these networks engage dynamically and coordinate temporally when animals must adjust their behavior according to changing reward contingencies. In particular, is there any relationship between DA reward prediction change during rule switching, and rule representation changes in PFC and CA1? We addressed these questions using simultaneous recording of neuronal population activity from the hippocampal area CA1, PFC and ventral tegmental area (VTA) in male TH-Cre rats performing two spatial working memory tasks with frequent rule switches in blocks of trials. CA1 and PFC ensembles showed rule-specific activity both during maze running and at reward locations, with PFC rule coding more consistent across animals compared to CA1. Optogenetically tagged VTA DA neuron firing activity responded to and predicted reward outcome. We found that the correct prediction in DA emerged gradually over trials after rule-switching in coordination with transitions in PFC and CA1 ensemble representations of the current rule after a rule switch, followed by behavioral adaptation to the correct rule sequence. Therefore, our study demonstrates a crucial temporal coordination between the rule representation in PFC/CA1, the dopamine reward signal and behavioral strategy.
Collapse
Affiliation(s)
- Mingxin Ding
- Graduate Program in Neuroscience, Brandeis University, Waltham, MA 02453, USA
| | - Porter L. Tomsick
- Undergraduate Program in Neuroscience, Brandeis University, Waltham, MA 02453, USA
- Department of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Ryan A. Young
- Department of Psychology, Brandeis University, Waltham, MA, 02453, USA
| | - Shantanu P. Jadhav
- Graduate Program in Neuroscience, Brandeis University, Waltham, MA 02453, USA
- Department of Psychology, Brandeis University, Waltham, MA, 02453, USA
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA, 02453, USA
| |
Collapse
|
10
|
Rocha-Almeida F, Conde-Moro AR, Fernández-Ruiz A, Delgado-García JM, Gruart A. Cortical and subcortical activities during food rewards versus social interaction in rats. Sci Rep 2025; 15:4389. [PMID: 39910316 PMCID: PMC11799384 DOI: 10.1038/s41598-025-87880-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025] Open
Abstract
Balancing food foraging with social interaction is crucial for survival and reproduction in many species of mammals. We wanted to investigate the reward preferences in adult male rats by allowing them to lever-press for both food and social rewards (interaction with another rat), while their performance and electrophysiological activities were recorded. Local field potentials (LFPs) were analyzed across five neuroanatomical regions involved in reward processing, decision-making, and social behavior. Despite ad libitum food availability, rats consistently prioritized food. LFP analysis revealed a decrease in nucleus accumbens (NAc) spectral power following social interaction, accompanied by specific alterations in delta and theta bands within the medial prefrontal cortex (mPFC). The spectral power of LFPs delta and/or theta bands were different for the five selected regions following food reward vs. social interactions. Cross-frequency coupling analysis provided further insights, demonstrating dynamic changes in theta-to-gamma coupling during both food and social rewards, with distinct roles for slow- and fast-gamma frequencies. These findings shed light on the intricate neural processes underlying reward preferences and/or decision-making choices, highlighting the NAc's potential role in social reward processing, and the mPFC's involvement in modulating theta-gamma rhythms during reward-related decision-making.
Collapse
Affiliation(s)
| | - Ana R Conde-Moro
- Division of Neurosciences, Pablo de Olavide University, 41013, Seville, Spain
| | | | | | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, 41013, Seville, Spain
| |
Collapse
|
11
|
Redish AD. Mental Time Travel: A Retrospective. Hippocampus 2025; 35:e23661. [PMID: 39676592 DOI: 10.1002/hipo.23661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/16/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024]
Abstract
Because imagination activates the same neural circuits used in understanding the present, one can access that imagination even in non-linguistic animals through decoding techniques applied to large neural ensembles. This personal retrospective traces the history of the initial discovery that hippocampal theta sequences sweep forward to goals during moments of deliberation and discusses the history that was necessary to put ourselves in the position to recognize this signal. It also discusses how that discovery fits into the larger picture of hippocampal function and the concept of cognition as computation.
Collapse
Affiliation(s)
- A David Redish
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
12
|
Chang H, Tang W, Wulf AM, Nyasulu T, Wolf ME, Fernandez-Ruiz A, Oliva A. Sleep microstructure organizes memory replay. Nature 2025; 637:1161-1169. [PMID: 39743590 DOI: 10.1038/s41586-024-08340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/05/2024] [Indexed: 01/04/2025]
Abstract
Recently acquired memories are reactivated in the hippocampus during sleep, an initial step for their consolidation1-3. This process is concomitant with the hippocampal reactivation of previous memories4-6, posing the problem of how to prevent interference between older and recent, initially labile, memory traces. Theoretical work has suggested that consolidating multiple memories while minimizing interference can be achieved by randomly interleaving their reactivation7-10. An alternative is that a temporal microstructure of sleep can promote the reactivation of different types of memories during specific substates. Here, to test these two hypotheses, we developed a method to simultaneously record large hippocampal ensembles and monitor sleep dynamics through pupillometry in naturally sleeping mice. Oscillatory pupil fluctuations revealed a previously unknown microstructure of non-REM sleep-associated memory processes. We found that memory replay of recent experiences dominated in sharp-wave ripples during contracted pupil substates of non-REM sleep, whereas replay of previous memories preferentially occurred during dilated pupil substates. Selective closed-loop disruption of sharp-wave ripples during contracted pupil non-REM sleep impaired the recall of recent memories, whereas the same manipulation during dilated pupil substates had no behavioural effect. Stronger extrinsic excitatory inputs characterized the contracted pupil substate, whereas higher recruitment of local inhibition was prominent during dilated pupil substates. Thus, the microstructure of non-REM sleep organizes memory replay, with previous versus new memories being temporally segregated in different substates and supported by local and input-driven mechanisms, respectively. Our results suggest that the brain can multiplex distinct cognitive processes during sleep to facilitate continuous learning without interference.
Collapse
Affiliation(s)
- Hongyu Chang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Wenbo Tang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Annabella M Wulf
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Thokozile Nyasulu
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Madison E Wolf
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | | | - Azahara Oliva
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
13
|
Van de Maele T, Dhoedt B, Verbelen T, Pezzulo G. A hierarchical active inference model of spatial alternation tasks and the hippocampal-prefrontal circuit. Nat Commun 2024; 15:9892. [PMID: 39543207 PMCID: PMC11564537 DOI: 10.1038/s41467-024-54257-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Cognitive problem-solving benefits from cognitive maps aiding navigation and planning. Physical space navigation involves hippocampal (HC) allocentric codes, while abstract task space engages medial prefrontal cortex (mPFC) task-specific codes. Previous studies show that challenging tasks, like spatial alternation, require integrating these two types of maps. The disruption of the HC-mPFC circuit impairs performance. We propose a hierarchical active inference model clarifying how this circuit solves spatial interaction tasks by bridging physical and task-space maps. Simulations demonstrate that the model's dual layers develop effective cognitive maps for physical and task space. The model solves spatial alternation tasks through reciprocal interactions between the two layers. Disrupting its communication impairs decision-making, which is consistent with empirical evidence. Additionally, the model adapts to switching between multiple alternation rules, providing a mechanistic explanation of how the HC-mPFC circuit supports spatial alternation tasks and the effects of disruption.
Collapse
Grants
- This research received funding from the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Specific Grant Agreements No. 945539 (Human Brain Project SGA3) and No. 952215 (TAILOR); the European Research Council under the Grant Agreement No. 820213 (ThinkAhead), the Italian National Recovery and Resilience Plan (NRRP), M4C2, funded by the European Union – NextGenerationEU (Project IR0000011, CUP B51E22000150006, “EBRAINS-Italy”; Project PE0000013, “FAIR”; Project PE0000006, “MNESYS”), and the PRIN PNRR P20224FESY. The GEFORCE Quadro RTX6000 and Titan GPU cards used for this research were donated by the NVIDIA Corporation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Collapse
Affiliation(s)
- Toon Van de Maele
- IDLab, Department of Information Technology, Ghent University - imec, Ghent, Belgium
- VERSES Research Lab, Los Angeles, USA
| | - Bart Dhoedt
- IDLab, Department of Information Technology, Ghent University - imec, Ghent, Belgium
| | | | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy.
| |
Collapse
|
14
|
Coulter ME, Gillespie AK, Chu J, Denovellis EL, Nguyen TTK, Liu DF, Wadhwani K, Sharma B, Wang K, Deng X, Eden UT, Kemere C, Frank LM. Closed-loop modulation of remote hippocampal representations with neurofeedback. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593085. [PMID: 38766135 PMCID: PMC11100667 DOI: 10.1101/2024.05.08.593085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Humans can remember specific remote events without acting on them and influence which memories are retrieved based on internal goals. However, animal models typically present sensory cues to trigger memory retrieval and then assess retrieval based on action. Thus, it is difficult to determine whether measured neural activity patterns relate to the cue(s), the memory, or the behavior. We therefore asked whether retrieval-related neural activity could be generated in animals without cues or a behavioral report. We focused on hippocampal "place cells" which primarily represent the animal's current location (local representations) but can also represent locations away from the animal (remote representations). We developed a neurofeedback system to reward expression of remote representations and found that rats could learn to generate specific spatial representations that often jumped directly to the experimenter-defined target location. Thus, animals can deliberately engage remote representations, enabling direct study of retrieval-related activity in the brain.
Collapse
Affiliation(s)
- Michael E Coulter
- Kavli Institute and Department of Physiology UCSF
- Howard Hughes Medical Institute
| | - Anna K Gillespie
- Departments of Biological Structure and Lab Medicine and Pathology, University of Washington
| | - Joshua Chu
- Neuroengineering Initiative, Rice University
| | - Eric L Denovellis
- Kavli Institute and Department of Physiology UCSF
- Howard Hughes Medical Institute
| | | | - Daniel F Liu
- Kavli Institute and Department of Physiology UCSF
- Howard Hughes Medical Institute
| | - Katherine Wadhwani
- Kavli Institute and Department of Physiology UCSF
- Howard Hughes Medical Institute
| | - Baibhav Sharma
- Kavli Institute and Department of Physiology UCSF
- Howard Hughes Medical Institute
| | | | - Xinyi Deng
- Dept. of Statistics, Beijing University of Technology
| | - Uri T Eden
- Dept. of Mathematics and Statistics, Boston University
| | | | - Loren M Frank
- Kavli Institute and Department of Physiology UCSF
- Howard Hughes Medical Institute
| |
Collapse
|
15
|
Russo E, Becker N, Domanski APF, Howe T, Freud K, Durstewitz D, Jones MW. Integration of rate and phase codes by hippocampal cell-assemblies supports flexible encoding of spatiotemporal context. Nat Commun 2024; 15:8880. [PMID: 39438461 PMCID: PMC11496817 DOI: 10.1038/s41467-024-52988-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Spatial information is encoded by location-dependent hippocampal place cell firing rates and sub-second, rhythmic entrainment of spike times. These rate and temporal codes have primarily been characterized in low-dimensional environments under limited cognitive demands; but how is coding configured in complex environments when individual place cells signal several locations, individual locations contribute to multiple routes and functional demands vary? Quantifying CA1 population dynamics of male rats during a decision-making task, here we show that the phase of individual place cells' spikes relative to the local theta rhythm shifts to differentiate activity in different place fields. Theta phase coding also disambiguates repeated visits to the same location during different routes, particularly preceding spatial decisions. Using unsupervised detection of cell assemblies alongside theoretical simulation, we show that integrating rate and phase coding mechanisms dynamically recruits units to different assemblies, generating spiking sequences that disambiguate episodes of experience and multiplexing spatial information with cognitive context.
Collapse
Affiliation(s)
- Eleonora Russo
- The BioRobotics Institute, Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56025, Pisa, Italy.
- Dept. of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany.
| | - Nadine Becker
- School of Physiology, Pharmacology & Neuroscience, Faculty of Health and Life Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
- Nanion Technologies GmbH, Ganghoferstr. 70A, D-80339, Munich, Germany
| | - Aleks P F Domanski
- School of Physiology, Pharmacology & Neuroscience, Faculty of Health and Life Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Timothy Howe
- School of Physiology, Pharmacology & Neuroscience, Faculty of Health and Life Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Kipp Freud
- School of Computer Science, Merchant Venturers Building, University of Bristol, Woodland Road, Bristol, BS8 1UB, UK
| | - Daniel Durstewitz
- Dept. of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Matthew W Jones
- School of Physiology, Pharmacology & Neuroscience, Faculty of Health and Life Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
16
|
Comrie AE, Monroe EJ, Kahn AE, Denovellis EL, Joshi A, Guidera JA, Krausz TA, Berke JD, Daw ND, Frank LM. Hippocampal representations of alternative possibilities are flexibly generated to meet cognitive demands. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.613567. [PMID: 39386651 PMCID: PMC11463554 DOI: 10.1101/2024.09.23.613567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The cognitive ability to go beyond the present to consider alternative possibilities, including potential futures and counterfactual pasts, can support adaptive decision making. Complex and changing real-world environments, however, have many possible alternatives. Whether and how the brain can select among them to represent alternatives that meet current cognitive needs remains unknown. We therefore examined neural representations of alternative spatial locations in the rat hippocampus during navigation in a complex patch foraging environment with changing reward probabilities. We found representations of multiple alternatives along paths ahead and behind the animal, including in distant alternative patches. Critically, these representations were modulated in distinct patterns across successive trials: alternative paths were represented proportionate to their evolving relative value and predicted subsequent decisions, whereas distant alternatives were prevalent during value updating. These results demonstrate that the brain modulates the generation of alternative possibilities in patterns that meet changing cognitive needs for adaptive behavior.
Collapse
Affiliation(s)
- Alison E Comrie
- Neuroscience Graduate Program, University of California San Francisco; San Francisco, CA 94158, USA
| | - Emily J Monroe
- Department of Physiology and Psychiatry, University of California, San Francisco; San Francisco, CA 94158, USA
| | - Ari E Kahn
- Princeton Neuroscience Institute, Princeton University; Princeton, NJ 08544, USA
| | | | | | - Jennifer A Guidera
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Timothy A Krausz
- Neuroscience Graduate Program, University of California San Francisco; San Francisco, CA 94158, USA
| | - Joshua D Berke
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco; San Francisco, CA 94158, USA
- Department of Neurology and Department of Psychiatry and Behavioral Science, and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nathaniel D Daw
- Princeton Neuroscience Institute, Princeton University; Princeton, NJ 08544, USA
- Department of Psychology, Princeton University; Princeton, NJ 08544, USA
| | - Loren M Frank
- Department of Physiology and Psychiatry, University of California, San Francisco; San Francisco, CA 94158, USA
- Howard Hughes Medical Institute; Chevy Chase, MD 20815, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco; San Francisco, CA 94158, USA
- Lead contact
| |
Collapse
|
17
|
Farkhondeh Tale Navi F, Heysieattalab S, Raoufy MR, Sabaghypour S, Nazari M, Nazari MA. Adaptive closed-loop modulation of cortical theta oscillations: Insights into the neural dynamics of navigational decision-making. Brain Stimul 2024; 17:1101-1118. [PMID: 39277130 DOI: 10.1016/j.brs.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 08/04/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024] Open
Abstract
Navigational decision-making tasks, such as spatial working memory (SWM), rely highly on information integration from several cortical and sub-cortical regions. Performance in SWM tasks is associated with theta rhythm, including low-frequency oscillations related to movement and memory. The interaction of the ventral hippocampus (vHPC) and medial prefrontal cortex (mPFC), reflected in theta synchrony, is essential in various steps of information processing during SWM. We used a closed-loop neurofeedback (CLNF) system to upregulate theta power in the mPFC and investigate its effects on circuit dynamics and behavior in animal models. Specifically, we hypothesized that enhancing the power of the theta rhythm in the mPFC might improve SWM performance. Animals were divided into three groups: closed-loop (CL), random-loop (RL), and OFF (without stimulation). We recorded local field potential (LFP) in the mPFC while electrical reward stimulation contingent on cortical theta activity was delivered to the lateral hypothalamus (LH), which is considered one of the central reward-associated regions. We also recorded LFP in the vHPC to evaluate the related subcortical neural changes. Results revealed a sustained increase in the theta power in both mPFC and vHPC for the CL group. Our analysis also revealed an increase in mPFC-vHPC synchronization in the theta range over the stimulation sessions in the CL group, as measured by coherence and cross-correlation in the theta frequency band. The reinforcement of this circuit improved spatial decision-making performance in the subsequent behavioral results. Our findings provide direct evidence of the relationship between specific theta upregulation and SWM performance and suggest that theta oscillations are integral to cognitive processes. Overall, this study highlights the potential of adaptive CLNF systems in investigating neural dynamics in various brain circuits.
Collapse
Affiliation(s)
- Farhad Farkhondeh Tale Navi
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | - Soomaayeh Heysieattalab
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Saied Sabaghypour
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | - Milad Nazari
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Mohammad Ali Nazari
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Wingert JC, Ramos JD, Reynolds SX, Gonzalez AE, Rose RM, Hegarty DM, Aicher SA, Bailey LG, Brown TE, Abbas AI, Sorg BA. Perineuronal Nets in the Rat Medial Prefrontal Cortex Alter Hippocampal-Prefrontal Oscillations and Reshape Cocaine Self-Administration Memories. J Neurosci 2024; 44:e0468242024. [PMID: 38991791 PMCID: PMC11340292 DOI: 10.1523/jneurosci.0468-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
The medial prefrontal cortex (mPFC) is a major contributor to relapse to cocaine in humans and to reinstatement in rodent models of cocaine use disorder. The output from the mPFC is potently modulated by parvalbumin (PV)-containing fast-spiking interneurons, the majority of which are surrounded by perineuronal nets. We previously showed that treatment with chondroitinase ABC (ABC) reduced the consolidation and reconsolidation of a cocaine conditioned place preference memory. However, self-administration memories are more difficult to disrupt. Here we report in male rats that ABC treatment in the mPFC attenuated the consolidation and blocked the reconsolidation of a cocaine self-administration memory. However, reconsolidation was blocked when rats were given a novel, but not familiar, type of retrieval session. Furthermore, ABC treatment prior to, but not after, memory retrieval blocked reconsolidation. This same treatment did not alter a sucrose memory, indicating specificity for cocaine-induced memory. In naive rats, ABC treatment in the mPFC altered levels of PV intensity and cell firing properties. In vivo recordings from the mPFC and dorsal hippocampus (dHIP) during the novel retrieval session revealed that ABC prevented reward-associated increases in high-frequency oscillations and synchrony of these oscillations between the dHIP and mPFC. Together, this is the first study to show that ABC treatment disrupts reconsolidation of the original memory when combined with a novel retrieval session that elicits coupling between the dHIP and mPFC. This coupling after ABC treatment may serve as a fundamental signature for how to disrupt reconsolidation of cocaine memories and reduce relapse.
Collapse
Affiliation(s)
- Jereme C Wingert
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, Oregon 97232
| | - Jonathan D Ramos
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, Oregon 97232
| | | | - Angela E Gonzalez
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, Oregon 97232
- Program in Neuroscience, Washington State University, Vancouver, Washington 98686
| | - R Mae Rose
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, Oregon 97232
| | - Deborah M Hegarty
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239
| | - Sue A Aicher
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239
| | - Lydia G Bailey
- Program in Neuroscience, Washington State University, Pullman, Washington 99164
| | - Travis E Brown
- Program in Neuroscience, Washington State University, Pullman, Washington 99164
| | - Atheir I Abbas
- Departments of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
- Psychiatry, Oregon Health & Science University, Portland, Oregon 97239
- Research Division, VA Portland Health Care System, Portland, Oregon 97239
| | - Barbara A Sorg
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, Oregon 97232
- Program in Neuroscience, Washington State University, Vancouver, Washington 98686
| |
Collapse
|
19
|
Granato G, Baldassarre G. Bridging flexible goal-directed cognition and consciousness: The Goal-Aligning Representation Internal Manipulation theory. Neural Netw 2024; 176:106292. [PMID: 38657422 DOI: 10.1016/j.neunet.2024.106292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
Goal-directed manipulation of internal representations is a key element of human flexible behaviour, while consciousness is commonly associated with higher-order cognition and human flexibility. Current perspectives have only partially linked these processes, thus preventing a clear understanding of how they jointly generate flexible cognition and behaviour. Moreover, these limitations prevent an effective exploitation of this knowledge for technological scopes. We propose a new theoretical perspective that extends our 'three-component theory of flexible cognition' toward higher-order cognition and consciousness, based on the systematic integration of key concepts from Cognitive Neuroscience and AI/Robotics. The theory proposes that the function of conscious processes is to support the alignment of representations with multi-level goals. This higher alignment leads to more flexible and effective behaviours. We analyse here our previous model of goal-directed flexible cognition (validated with more than 20 human populations) as a starting GARIM-inspired model. By bridging the main theories of consciousness and goal-directed behaviour, the theory has relevant implications for scientific and technological fields. In particular, it contributes to developing new experimental tasks and interpreting clinical evidence. Finally, it indicates directions for improving machine learning and robotics systems and for informing real-world applications (e.g., in digital-twin healthcare and roboethics).
Collapse
Affiliation(s)
- Giovanni Granato
- Laboratory of Embodied Natural and Artificial Intelligence, Institute of Cognitive Sciences and Technologies, National Research Council of Italy, Rome, Italy.
| | - Gianluca Baldassarre
- Laboratory of Embodied Natural and Artificial Intelligence, Institute of Cognitive Sciences and Technologies, National Research Council of Italy, Rome, Italy.
| |
Collapse
|
20
|
Young RA, Shin JD, Guo Z, Jadhav SP. Hippocampal-prefrontal communication subspaces align with behavioral and network patterns in a spatial memory task. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.601617. [PMID: 39026752 PMCID: PMC11257456 DOI: 10.1101/2024.07.08.601617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Rhythmic network states have been theorized to facilitate communication between brain regions, but how these oscillations influence communication subspaces, i.e, the low-dimensional neural activity patterns that mediate inter-regional communication, and in turn how subspaces impact behavior remains unclear. Using a spatial memory task in rats, we simultaneously recorded ensembles from hippocampal CA1 and the prefrontal cortex (PFC) to address this question. We found that task behaviors best aligned with low-dimensional, shared subspaces between these regions, rather than local activity in either region. Critically, both network oscillations and speed modulated the structure and performance of this communication subspace. Contrary to expectations, theta coherence did not better predict CA1-PFC shared activity, while theta power played a more significant role. To understand the communication space, we visualized shared CA1-PFC communication geometry using manifold techniques and found ring-like structures. We hypothesize that these shared activity manifolds are utilized to mediate the task behavior. These findings suggest that memory-guided behaviors are driven by shared CA1-PFC interactions that are dynamically modulated by oscillatory states, offering a novel perspective on the interplay between rhythms and behaviorally relevant neural communication.
Collapse
|
21
|
Rosenblum HL, Kim S, Stout JJ, Klintsova A, Griffin AL. Deliberative Behaviors and Prefrontal-Hippocampal Coupling are Disrupted in a Rat Model of Fetal Alcohol Spectrum Disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.605480. [PMID: 39131304 PMCID: PMC11312474 DOI: 10.1101/2024.07.28.605480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Fetal alcohol spectrum disorders (FASDs) are characterized by a range of physical, cognitive, and behavioral impairments. Determining how temporally specific alcohol exposure (AE) affects neural circuits is crucial to understanding the FASD phenotype. Third trimester AE can be modeled in rats by administering alcohol during the first two postnatal weeks, which damages the medial prefrontal cortex (mPFC), thalamic nucleus reuniens, and hippocampus (HPC), structures whose functional interactions are required for working memory and executive function. Therefore, we hypothesized that AE during this period would impair working memory, disrupt choice behaviors, and alter mPFC-HPC oscillatory synchrony. To test this hypothesis, we recorded local field potentials from the mPFC and dorsal HPC as AE and sham intubated (SI) rats performed a spatial working memory task in adulthood and implemented algorithms to detect vicarious trial and errors (VTEs), behaviors associated with deliberative decision-making. We found that, compared to the SI group, the AE group performed fewer VTEs and demonstrated a disturbed relationship between VTEs and choice outcomes, while spatial working memory was unimpaired. This behavioral disruption was accompanied by alterations to mPFC and HPC oscillatory activity in the theta and beta bands, respectively, and a reduced prevalence of mPFC-HPC synchronous events. When trained on multiple behavioral variables, a machine learning algorithm could accurately predict whether rats were in the AE or SI group, thus characterizing a potential phenotype following third trimester AE. Together, these findings indicate that third trimester AE disrupts mPFC-HPC oscillatory interactions and choice behaviors.
Collapse
Affiliation(s)
- Hailey L Rosenblum
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - SuHyeong Kim
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - John J Stout
- Department of Neuroscience, University of Connecticut Health, Farmington, CT 06030, USA
| | - Anna Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Amy L Griffin
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
22
|
Miles JT, Mullins GL, Mizumori SJY. Flexible decision-making is related to strategy learning, vicarious trial and error, and medial prefrontal rhythms during spatial set-shifting. Learn Mem 2024; 31:a053911. [PMID: 39038921 PMCID: PMC11369635 DOI: 10.1101/lm.053911.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/14/2024] [Indexed: 07/24/2024]
Abstract
Flexible decision-making requires a balance between exploring features of an environment and exploiting prior knowledge. Behavioral flexibility is typically measured by how long it takes subjects to consistently make accurate choices after reward contingencies switch or task rules change. This measure, however, only allows for tracking flexibility across multiple trials, and does not assess the degree of flexibility. Plus, although increases in decision-making accuracy are strong indicators of learning, other decision-making behaviors have also been suggested as markers of flexibility, such as the on-the-fly decision reversals known as vicarious trial and error (VTE) or switches to a different, but incorrect, strategy. We sought to relate flexibility, learning, and neural activity by comparing choice history-derived evaluation of strategy use with changes in decision-making accuracy and VTE behavior while recording from the medial prefrontal cortex (mPFC) in rats. Using a set-shifting task that required rats to repeatedly switch between spatial decision-making strategies, we show that a previously developed strategy likelihood estimation procedure could identify putative learning points based on decision history. We confirm the efficacy of learning point estimation by showing increases in decision-making accuracy aligned to the learning point. Additionally, we show increases in the rate of VTE behavior surrounding identified learning points. By calculating changes in strategy likelihoods across trials, we tracked flexibility on a trial-by-trial basis and show that flexibility scores also increased around learning points. Further, we demonstrate that VTE behaviors could be separated into indecisive and deliberative subtypes depending on whether they occurred during periods of high or low flexibility and whether they led to correct or incorrect choice outcomes. Field potential recordings from the mPFC during decisions exhibited increased beta band activity on trials with VTE compared to non-VTE trials, as well as increased gamma during periods when learned strategies could be exploited compared to prelearning, exploratory periods. This study demonstrates that increased behavioral flexibility and VTE rates are often aligned to task learning. These relationships can break down, however, suggesting that VTE is not always an indicator of deliberative decision-making. Additionally, we further implicate the mPFC in decision-making and learning by showing increased beta-based activity on VTE trials and increased gamma after learning.
Collapse
Affiliation(s)
- Jesse T Miles
- Neuroscience Graduate Program, University of Washington, Seattle, Washington 98195, USA
- Psychology Department, University of Washington, Seattle, Washington 98195, USA
| | - Ginger L Mullins
- Psychology Department, University of Washington, Seattle, Washington 98195, USA
| | - Sheri J Y Mizumori
- Neuroscience Graduate Program, University of Washington, Seattle, Washington 98195, USA
- Psychology Department, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
23
|
Elliott BL, Mohyee RA, Ballard IC, Olson IR, Ellman LM, Murty VP. In vivo structural connectivity of the reward system along the hippocampal long axis. Hippocampus 2024; 34:327-341. [PMID: 38700259 DOI: 10.1002/hipo.23608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/11/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Recent work has identified a critical role for the hippocampus in reward-sensitive behaviors, including motivated memory, reinforcement learning, and decision-making. Animal histology and human functional neuroimaging have shown that brain regions involved in reward processing and motivation are more interconnected with the ventral/anterior hippocampus. However, direct evidence examining gradients of structural connectivity between reward regions and the hippocampus in humans is lacking. The present study used diffusion MRI (dMRI) and probabilistic tractography to quantify the structural connectivity of the hippocampus with key reward processing regions in vivo. Using a large sample of subjects (N = 628) from the human connectome dMRI data release, we found that connectivity profiles with the hippocampus varied widely between different regions of the reward circuit. While the dopaminergic midbrain (ventral tegmental area) showed stronger connectivity with the anterior versus posterior hippocampus, the ventromedial prefrontal cortex showed stronger connectivity with the posterior hippocampus. The limbic (ventral) striatum demonstrated a more homogeneous connectivity profile along the hippocampal long axis. This is the first study to generate a probabilistic atlas of the hippocampal structural connectivity with reward-related networks, which is essential to investigating how these circuits contribute to normative adaptive behavior and maladaptive behaviors in psychiatric illness. These findings describe nuanced structural connectivity that sets the foundation to better understand how the hippocampus influences reward-guided behavior in humans.
Collapse
Affiliation(s)
- Blake L Elliott
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| | - Raana A Mohyee
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| | - Ian C Ballard
- Department of Psychology, University of California, Riverside, California, USA
| | - Ingrid R Olson
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| | - Lauren M Ellman
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| | - Vishnu P Murty
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
24
|
Long X, Deng B, Shen R, Yang L, Chen L, Ran Q, Du X, Zhang SJ. Border cells without theta rhythmicity in the medial prefrontal cortex. Proc Natl Acad Sci U S A 2024; 121:e2321614121. [PMID: 38857401 PMCID: PMC11194599 DOI: 10.1073/pnas.2321614121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/18/2024] [Indexed: 06/12/2024] Open
Abstract
The medial prefrontal cortex (mPFC) is a key brain structure for higher cognitive functions such as decision-making and goal-directed behavior, many of which require awareness of spatial variables including one's current position within the surrounding environment. Although previous studies have reported spatially tuned activities in mPFC during memory-related trajectory, the spatial tuning of mPFC network during freely foraging behavior remains elusive. Here, we reveal geometric border or border-proximal representations from the neural activity of mPFC ensembles during naturally exploring behavior, with both allocentric and egocentric boundary responses. Unlike most of classical border cells in the medial entorhinal cortex (MEC) discharging along a single wall, a large majority of border cells in mPFC fire particularly along four walls. mPFC border cells generate new firing fields to external insert, and remain stable under darkness, across distinct shapes, and in novel environments. In contrast to hippocampal theta entrainment during spatial working memory tasks, mPFC border cells rarely exhibited theta rhythmicity during spontaneous locomotion behavior. These findings reveal spatially modulated activity in mPFC, supporting local computation for cognitive functions involving spatial context and contributing to a broad spatial tuning property of cortical circuits.
Collapse
Affiliation(s)
- Xiaoyang Long
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing400037, China
| | - Bin Deng
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing400037, China
| | - Rui Shen
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing400037, China
| | - Lin Yang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing400037, China
| | - Liping Chen
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing400037, China
| | - Qingxia Ran
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing400037, China
| | - Xin Du
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing400037, China
| | - Sheng-Jia Zhang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing400037, China
| |
Collapse
|
25
|
Wang Y, Wang X, Wang L, Zheng L, Meng S, Zhu N, An X, Wang L, Yang J, Zheng C, Ming D. Dynamic prediction of goal location by coordinated representation of prefrontal-hippocampal theta sequences. Curr Biol 2024; 34:1866-1879.e6. [PMID: 38608677 DOI: 10.1016/j.cub.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/20/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Prefrontal (PFC) and hippocampal (HPC) sequences of neuronal firing modulated by theta rhythms could represent upcoming choices during spatial memory-guided decision-making. How the PFC-HPC network dynamically coordinates theta sequences to predict specific goal locations and how it is interrupted in memory impairments induced by amyloid beta (Aβ) remain unclear. Here, we detected theta sequences of firing activities of PFC neurons and HPC place cells during goal-directed spatial memory tasks. We found that PFC ensembles exhibited predictive representation of the specific goal location since the starting phase of memory retrieval, earlier than the hippocampus. High predictive accuracy of PFC theta sequences existed during successful memory retrieval and positively correlated with memory performance. Coordinated PFC-HPC sequences showed PFC-dominant prediction of goal locations during successful memory retrieval. Furthermore, we found that theta sequences of both regions still existed under Aβ accumulation, whereas their predictive representation of goal locations was weakened with disrupted spatial representation of HPC place cells and PFC neurons. These findings highlight the essential role of coordinated PFC-HPC sequences in successful memory retrieval of a precise goal location.
Collapse
Affiliation(s)
- Yimeng Wang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Xueling Wang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Ling Wang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China
| | - Li Zheng
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Shuang Meng
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Nan Zhu
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Xingwei An
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China
| | - Lei Wang
- School of Statistics and Data Science, Nankai University, Tianjin 300071, China.
| | - Jiajia Yang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin 300072, China.
| | - Chenguang Zheng
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin 300072, China.
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin 300072, China.
| |
Collapse
|
26
|
Dillingham CM, Wilson JJ, Vann SD. Electrophysiological Properties of the Medial Mammillary Bodies across the Sleep-Wake Cycle. eNeuro 2024; 11:ENEURO.0447-23.2024. [PMID: 38621991 PMCID: PMC11055652 DOI: 10.1523/eneuro.0447-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
The medial mammillary bodies (MBs) play an important role in the formation of spatial memories; their dense inputs from hippocampal and brainstem regions makes them well placed to integrate movement-related and spatial information, which is then extended to the anterior thalamic nuclei and beyond to the cortex. While the anatomical connectivity of the medial MBs has been well studied, much less is known about their physiological properties, particularly in freely moving animals. We therefore carried out a comprehensive characterization of medial MB electrophysiology across arousal states by concurrently recording from the medial MB and the CA1 field of the hippocampus in male rats. In agreement with previous studies, we found medial MB neurons to have firing rates modulated by running speed and angular head velocity, as well as theta-entrained firing. We extended the characterization of MB neuron electrophysiology in three key ways: (1) we identified a subset of neurons (25%) that exhibit dominant bursting activity; (2) we showed that ∼30% of theta-entrained neurons exhibit robust theta cycle skipping, a firing characteristic that implicates them in a network for prospective coding of position; and (3) a considerable proportion of medial MB units showed sharp-wave ripple (SWR) responsive firing (∼37%). The functional heterogeneity of MB electrophysiology reinforces their role as an integrative node for mnemonic processing and identifies potential roles for the MBs in memory consolidation through propagation of SWR-responsive activity to the anterior thalamus and prospective coding in the form of theta cycle skipping.
Collapse
Affiliation(s)
- Christopher M Dillingham
- School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Neuroscience and Mental Health Innovation Institute, Cardiff CF24 4HQ, United Kingdom
| | - Jonathan J Wilson
- School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Neuroscience and Mental Health Innovation Institute, Cardiff CF24 4HQ, United Kingdom
| | - Seralynne D Vann
- School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Neuroscience and Mental Health Innovation Institute, Cardiff CF24 4HQ, United Kingdom
| |
Collapse
|
27
|
Wingert JC, Ramos JD, Reynolds SX, Gonzalez AE, Rose RM, Hegarty DM, Aicher SA, Bailey LG, Brown TE, Abbas AI, Sorg BA. Perineuronal nets in the rat medial prefrontal cortex alter hippocampal-prefrontal oscillations and reshape cocaine self-administration memories. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.577568. [PMID: 38370716 PMCID: PMC10871211 DOI: 10.1101/2024.02.05.577568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The medial prefrontal cortex (mPFC) is a major contributor to relapse to cocaine in humans and to reinstatement behavior in rodent models of cocaine use disorder. Output from the mPFC is modulated by parvalbumin (PV)-containing fast-spiking interneurons, the majority of which are surrounded by perineuronal nets (PNNs). Here we tested whether chondroitinase ABC (ABC)- mediated removal of PNNs prevented the acquisition or reconsolidation of a cocaine self-administration memory. ABC injections into the dorsal mPFC prior to training attenuated the acquisition of cocaine self-administration. Also, ABC given 3 days prior to but not 1 hr after memory reactivation blocked cue-induced reinstatement. However, reduced reinstatement was present only in rats given a novel reactivation contingency, suggesting that PNNs are required for the updating of a familiar memory. In naive rats, ABC injections into mPFC did not alter excitatory or inhibitory puncta on PV cells but reduced PV intensity. Whole-cell recordings revealed a greater inter-spike interval 1 hr after ABC, but not 3 days later. In vivo recordings from the mPFC and dorsal hippocampus (dHIP) during novel memory reactivation revealed that ABC in the mPFC prevented reward-associated increases in beta and gamma activity as well as phase-amplitude coupling between the dHIP and mPFC. Together, our findings show that PNN removal attenuates the acquisition of cocaine self-administration memories and disrupts reconsolidation of the original memory when combined with a novel reactivation session. Further, reduced dHIP/mPFC coupling after PNN removal may serve as a key biomarker for how to disrupt reconsolidation of cocaine memories and reduce relapse.
Collapse
|
28
|
Stout JJ, George AE, Kim S, Hallock HL, Griffin AL. Using synchronized brain rhythms to bias memory-guided decisions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.02.535279. [PMID: 37034665 PMCID: PMC10081324 DOI: 10.1101/2023.04.02.535279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Functional interactions between the prefrontal cortex and hippocampus, as revealed by strong oscillatory synchronization in the theta (6-11 Hz) frequency range, correlate with memory-guided decision-making. However, the degree to which this form of long-range synchronization influences memory-guided choice remains unclear. We developed a brain machine interface that initiated task trials based on the magnitude of prefrontal hippocampal theta synchronization, then measured choice outcomes. Trials initiated based on strong prefrontal-hippocampal theta synchrony were more likely to be correct compared to control trials on both working memory-dependent and -independent tasks. Prefrontal-thalamic neural interactions increased with prefrontal-hippocampal synchrony and optogenetic activation of the ventral midline thalamus primarily entrained prefrontal theta rhythms, but dynamically modulated synchrony. Together, our results show that prefrontal-hippocampal theta synchronization leads to a higher probability of a correct choice and strengthens prefrontal-thalamic dialogue. Our findings reveal new insights into the neural circuit dynamics underlying memory-guided choices and highlight a promising technique to potentiate cognitive processes or behavior via brain machine interfacing.
Collapse
|
29
|
Prince SM, Yassine TA, Katragadda N, Roberts TC, Singer AC. New information triggers prospective codes to adapt for flexible navigation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564814. [PMID: 37961524 PMCID: PMC10634986 DOI: 10.1101/2023.10.31.564814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Navigating a dynamic world requires rapidly updating choices by integrating past experiences with new information. In hippocampus and prefrontal cortex, neural activity representing future goals is theorized to support planning. However, it remains unknown how prospective goal representations incorporate new, pivotal information. Accordingly, we designed a novel task that precisely introduces new information using virtual reality, and we recorded neural activity as mice flexibly adapted their planned destinations. We found that new information triggered increased hippocampal prospective representations of both possible goals; while in prefrontal cortex, new information caused prospective representations of choices to rapidly shift to the new choice. When mice did not flexibly adapt, prefrontal choice codes failed to switch, despite relatively intact hippocampal goal representations. Prospective code updating depended on the commitment to the initial choice and degree of adaptation needed. Thus, we show how prospective codes update with new information to flexibly adapt ongoing navigational plans.
Collapse
Affiliation(s)
- Stephanie M. Prince
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30332, United States
| | - Teema A. Yassine
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30332, United States
| | - Navya Katragadda
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30332, United States
| | - Tyler C. Roberts
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30332, United States
| | - Annabelle C. Singer
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30332, United States
| |
Collapse
|
30
|
Srinivasan A, Srinivasan A, Riceberg JS, Goodman MR, Guise KG, Shapiro ML. Hippocampal and medial prefrontal ensemble spiking represents episodes and rules in similar task spaces. Cell Rep 2023; 42:113296. [PMID: 37858467 PMCID: PMC10842596 DOI: 10.1016/j.celrep.2023.113296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/22/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
Episodic memory requires the hippocampus and prefrontal cortex to guide decisions by representing events in spatial, temporal, and personal contexts. Both brain regions have been described by cognitive theories that represent events in context as locations in maps or memory spaces. We query whether ensemble spiking in these regions described spatial structures as rats performed memory tasks. From each ensemble, we construct a state-space with each point defined by the coordinated spiking of single and pairs of units in 125-ms bins and investigate how state-space locations discriminate task features. Trajectories through state-spaces correspond with behavioral episodes framed by spatial, temporal, and internal contexts. Both hippocampal and prefrontal ensembles distinguish maze locations, task intervals, and goals by distances between state-space locations, consistent with cognitive mapping and relational memory space theories of episodic memory. Prefrontal modulation of hippocampal activity may guide choices by directing memory representations toward appropriate state-space goal locations.
Collapse
Affiliation(s)
- Aditya Srinivasan
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA.
| | - Arvind Srinivasan
- College of Health Sciences, California Northstate University, Rancho Cordova, CA 95670, USA
| | - Justin S Riceberg
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Hess Center for Science and Medicine, New York, NY 10029, USA
| | - Michael R Goodman
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Kevin G Guise
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, Hess Center for Science and Medicine, New York, NY 10029, USA
| | - Matthew L Shapiro
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
31
|
Liu C, Todorova R, Tang W, Oliva A, Fernandez-Ruiz A. Associative and predictive hippocampal codes support memory-guided behaviors. Science 2023; 382:eadi8237. [PMID: 37856604 PMCID: PMC10894649 DOI: 10.1126/science.adi8237] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/21/2023] [Indexed: 10/21/2023]
Abstract
Episodic memory involves learning and recalling associations between items and their spatiotemporal context. Those memories can be further used to generate internal models of the world that enable predictions to be made. The mechanisms that support these associative and predictive aspects of memory are not yet understood. In this study, we used an optogenetic manipulation to perturb the sequential structure, but not global network dynamics, of place cells as rats traversed specific spatial trajectories. This perturbation abolished replay of those trajectories and the development of predictive representations, leading to impaired learning of new optimal trajectories during memory-guided navigation. However, place cell assembly reactivation and reward-context associative learning were unaffected. Our results show a mechanistic dissociation between two complementary hippocampal codes: an associative code (through coactivity) and a predictive code (through sequences).
Collapse
Affiliation(s)
| | | | - Wenbo Tang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Azahara Oliva
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
32
|
Nardin M, Kaefer K, Stella F, Csicsvari J. Theta oscillations as a substrate for medial prefrontal-hippocampal assembly interactions. Cell Rep 2023; 42:113015. [PMID: 37632747 DOI: 10.1016/j.celrep.2023.113015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 06/21/2023] [Accepted: 08/04/2023] [Indexed: 08/28/2023] Open
Abstract
The execution of cognitive functions requires coordinated circuit activity across different brain areas that involves the associated firing of neuronal assemblies. Here, we tested the circuit mechanism behind assembly interactions between the hippocampus and the medial prefrontal cortex (mPFC) of adult rats by recording neuronal populations during a rule-switching task. We identified functionally coupled CA1-mPFC cells that synchronized their activity beyond that expected from common spatial coding or oscillatory firing. When such cell pairs fired together, the mPFC cell strongly phase locked to CA1 theta oscillations and maintained consistent theta firing phases, independent of the theta timing of their CA1 counterpart. These functionally connected CA1-mPFC cells formed interconnected assemblies. While firing together with their CA1 assembly partners, mPFC cells fired along specific theta sequences. Our results suggest that upregulated theta oscillatory firing of mPFC cells can signal transient interactions with specific CA1 assemblies, thus enabling distributed computations.
Collapse
Affiliation(s)
- Michele Nardin
- IST Austria, 3400 Klosterneuburg, Austria; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | | | | | | |
Collapse
|
33
|
Shin JD, Tang W, Jadhav SP. Protocol for geometric transformation of cognitive maps for generalization across hippocampal-prefrontal circuits. STAR Protoc 2023; 4:102513. [PMID: 37572325 PMCID: PMC10448425 DOI: 10.1016/j.xpro.2023.102513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/06/2023] [Accepted: 07/25/2023] [Indexed: 08/14/2023] Open
Abstract
Memory generalization is the ability to abstract knowledge from prior experiences and is critical for flexible behavior in novel situations. Here, we describe a protocol for simultaneous recording of hippocampal (area CA1)-prefrontal cortical neural ensembles in Long-Evans rats during task generalization across two distinct environments. We describe steps for building and assembling experimental apparatuses, animal preparation and surgery, and performing experiments. We then detail procedures for histology, data processing, and assessing population geometry using Uniform Manifold Approximation and Projection. For complete details on the use and execution of this protocol, please refer to Tang et al. (2023).1.
Collapse
Affiliation(s)
- Justin D Shin
- Neuroscience Program, Department of Psychology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA.
| | - Wenbo Tang
- Neuroscience Program, Department of Psychology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Shantanu P Jadhav
- Neuroscience Program, Department of Psychology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA.
| |
Collapse
|
34
|
Rai AR, Joy T, Poojari M, Pai MM, Massand A, Murlimanju BV. Role of Acorus calamus in preventing depression, anxiety, and oxidative stress in long-term socially isolated rats. Vet World 2023; 16:1755-1764. [PMID: 37766700 PMCID: PMC10521175 DOI: 10.14202/vetworld.2023.1755-1764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/22/2023] [Indexed: 09/29/2023] Open
Abstract
Background and Aim Social isolation stress (SIS) and individual housing have been shown to cause abnormal cognitive insufficiencies, altered anxiety levels, and signs of psychiatric diseases. Acorus calamus (AC), commonly known as Sweet Flag, has been widely used in India to treat neurological, metabolic, and respiratory disorders, indicating its potential therapeutic value. This study aimed to determine the antidepressant and antioxidative effects of AC on rats subjected to long-term, social isolation-induced stress. Materials and Methods This study involved 2-month-old male rats (24) weighing approximately 180-200 g bred in-house. The rats were divided into four groups (n = 6): Group 1 received saline, Group 2 received SIS, Group 3 received only 50 mg/kg AC, and Group 4 received 50 mg/kg AC and SIS for 6 weeks. After this, behavioral, biochemical, and neuronal assays were conducted. Results Behavioral experiments showed significantly higher activity levels (p < 0.001) in AC-treated rats than in the SIS group. In addition, rats subjected to SIS with AC treatment exhibited enhanced total antioxidants, superoxide dismutase, and neuronal assays compared to rats subjected to SIS alone. Conclusion Acorus calamus treatment improved the antidepressant and antioxidant potential against SIS in rat brain tissue. Moreover, we proved that AC can effectively reverse the neurotoxicity induced by SIS in animal models. As we battle against the coronavirus disease 2019 pandemic and social isolation, AC could be considered a supplementary treatment to alleviate depressive-like symptoms in our present-day lifestyle.
Collapse
Affiliation(s)
- Ashwin Rohan Rai
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Teresa Joy
- Department of Anatomy, American University of Antigua College of Medicine, University Park, Jabberwock Beach Road, Coolidge, St. John’s, Antigua, West Indies
| | - Meghana Poojari
- Department of Anatomy, Basaveshwara Medical College and Hospital, Chitradurga, India
| | - Mangala M. Pai
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Amit Massand
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - B. V. Murlimanju
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
35
|
Bistas K, Tabet JP. Aboulomania, a Mental Disorder Characterized by Pathological Indecisiveness. Cureus 2023; 15:e41592. [PMID: 37559848 PMCID: PMC10407977 DOI: 10.7759/cureus.41592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2023] [Indexed: 08/11/2023] Open
Abstract
The mental disorder known as aboulomania, characterized by pathological indecisiveness, is not listed in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, Text Revision (DSM-5-TR), widely used by mental health professionals to diagnose mental illnesses. However, it is frequently observed alongside other mental disorders. Aboulomania is linked to neurotic thinking or "neurosis," which pertains to a mental disorder arising from previous anxiety. This case presentation is on a 40-year-old Caucasian male, with a past psychiatric history of post-traumatic stress disorder (PTSD) and moderate cannabis use disorder, with no known medical history, who was involuntarily admitted to the psychiatric ward. Prolonged hospitalization of over two weeks was attributed to his severe and persistent indecisiveness, which hindered progress in discharge planning. In order to tackle this problem, the patient received encouragement from his treatment team to take small, concrete actions to deal with his indecisiveness. This case report emphasizes the significance of aboulomania in causing long-lasting indecisiveness and provides valuable insights on how to overcome this condition.
Collapse
Affiliation(s)
- Karlyle Bistas
- Behavioral Health, Wayne State University Detroit Medical Center, Detroit, USA
| | - Jean Paul Tabet
- School of Medicine, Medical University of the Americas, Charlestown, KNA
| |
Collapse
|
36
|
Hernandez A, Delgado-González E, Varman Durairaj R, Reyes-Haro D, Martínez-Torres A, Espinosa F. Striatal Synaptic Changes and Behavior in Adult mouse Upon Prenatal Exposure to Valproic Acid. Brain Res 2023:148461. [PMID: 37308047 DOI: 10.1016/j.brainres.2023.148461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders characterized by persistent deficits in social communication and social interaction. Altered synaptogenesis and aberrant connectivity responsible for social behavior and communication have been reported in autism pathogenesis. Autism has a strong genetic and heritable component; however, environmental factors including toxins, pesticides, infection and in utero exposure to drugs such as VPA have also been implicated in ASD. Administration of VPA during pregnancy has been used as a rodent model to study pathophysiological mechanisms involved in ASD, and in this study, we used the mouse model of prenatal exposure to VPA to assess the effects on striatal and dorsal hippocampus function in adult mice. Alterations in repetitive behaviors and shift habits were observed in mice prenatally exposed to VPA. In particular, such mice presented a better performance in learned motor skills and cognitive deficits in Y-maze learning frequently associated with striatal and hippocampal function. These behavioral changes were associated with a decreased level of proteins involved in the formation and maintenance of excitatory synapses, such as Nlgn-1 and PSD-95. In conclusion, motor skill abilities, repetitive behaviors, and impaired flexibility to shift habits are associated with reduced striatal excitatory synaptic function in the adult mouse prenatally exposed to VPA.
Collapse
Affiliation(s)
- Adan Hernandez
- Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, 76230 Santiago de Querétaro, Querétaro, México.
| | - Evangelina Delgado-González
- Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, 76230 Santiago de Querétaro, Querétaro, México
| | - Ragu Varman Durairaj
- Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, 76230 Santiago de Querétaro, Querétaro, México; Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Daniel Reyes-Haro
- Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, 76230 Santiago de Querétaro, Querétaro, México
| | - Ataúlfo Martínez-Torres
- Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, 76230 Santiago de Querétaro, Querétaro, México
| | - Felipe Espinosa
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
37
|
Tang W, Shin JD, Jadhav SP. Geometric transformation of cognitive maps for generalization across hippocampal-prefrontal circuits. Cell Rep 2023; 42:112246. [PMID: 36924498 PMCID: PMC10124109 DOI: 10.1016/j.celrep.2023.112246] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/09/2023] [Accepted: 02/26/2023] [Indexed: 03/17/2023] Open
Abstract
The ability to abstract information to guide decisions during navigation across changing environments is essential for adaptation and requires the integrity of the hippocampal-prefrontal circuitry. The hippocampus encodes navigational information in a cognitive map, but it remains unclear how cognitive maps are transformed across hippocampal-prefrontal circuits to support abstraction and generalization. Here, we simultaneously record hippocampal-prefrontal ensembles as rats generalize navigational rules across distinct environments. We find that, whereas hippocampal representational maps maintain specificity of separate environments, prefrontal maps generalize across environments. Furthermore, while both maps are structured within a neural manifold of population activity, they have distinct representational geometries. Prefrontal geometry enables abstraction of rule-informative variables, a representational format that generalizes to novel conditions of existing variable classes. Hippocampal geometry lacks such abstraction. Together, these findings elucidate how cognitive maps are structured into distinct geometric representations to support abstraction and generalization while maintaining memory specificity.
Collapse
Affiliation(s)
- Wenbo Tang
- Neuroscience Program, Department of Psychology, and Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA.
| | - Justin D Shin
- Neuroscience Program, Department of Psychology, and Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Shantanu P Jadhav
- Neuroscience Program, Department of Psychology, and Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA.
| |
Collapse
|
38
|
Oliva A, Fernandez-Ruiz A, Karaba LA. CA2 orchestrates hippocampal network dynamics. Hippocampus 2023; 33:241-251. [PMID: 36575880 PMCID: PMC9974898 DOI: 10.1002/hipo.23495] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/25/2022] [Accepted: 12/11/2022] [Indexed: 12/29/2022]
Abstract
The hippocampus is composed of various subregions: CA1, CA2, CA3, and the dentate gyrus (DG). Despite the abundant hippocampal research literature, until recently, CA2 received little attention. The development of new genetic and physiological tools allowed recent studies characterizing the unique properties and functional roles of this hippocampal subregion. Despite its small size, the cellular content of CA2 is heterogeneous at the molecular and physiological levels. CA2 has been heavily implicated in social behaviors, including social memory. More generally, the mechanisms by which the hippocampus is involved in memory include the reactivation of neuronal ensembles following experience. This process is coordinated by synchronous network events known as sharp-wave ripples (SWRs). Recent evidence suggests that CA2 plays an important role in the generation of SWRs. The unique connectivity and physiological properties of CA2 pyramidal cells make this region a computational hub at the core of hippocampal information processing. Here, we review recent findings that support the role of CA2 in coordinating hippocampal network dynamics from a systems neuroscience perspective.
Collapse
Affiliation(s)
- Azahara Oliva
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| | | | - Lindsay A Karaba
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| |
Collapse
|
39
|
Duvelle É, Grieves RM, van der Meer MAA. Temporal context and latent state inference in the hippocampal splitter signal. eLife 2023; 12:e82357. [PMID: 36622350 PMCID: PMC9829411 DOI: 10.7554/elife.82357] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/06/2022] [Indexed: 01/10/2023] Open
Abstract
The hippocampus is thought to enable the encoding and retrieval of ongoing experience, the organization of that experience into structured representations like contexts, maps, and schemas, and the use of these structures to plan for the future. A central goal is to understand what the core computations supporting these functions are, and how these computations are realized in the collective action of single neurons. A potential access point into this issue is provided by 'splitter cells', hippocampal neurons that fire differentially on the overlapping segment of trajectories that differ in their past and/or future. However, the literature on splitter cells has been fragmented and confusing, owing to differences in terminology, behavioral tasks, and analysis methods across studies. In this review, we synthesize consistent findings from this literature, establish a common set of terms, and translate between single-cell and ensemble perspectives. Most importantly, we examine the combined findings through the lens of two major theoretical ideas about hippocampal function: representation of temporal context and latent state inference. We find that unique signature properties of each of these models are necessary to account for the data, but neither theory, by itself, explains all of its features. Specifically, the temporal gradedness of the splitter signal is strong support for temporal context, but is hard to explain using state models, while its flexibility and task-dependence is naturally accounted for using state inference, but poses a challenge otherwise. These theories suggest a number of avenues for future work, and we believe their application to splitter cells is a timely and informative domain for testing and refining theoretical ideas about hippocampal function.
Collapse
Affiliation(s)
- Éléonore Duvelle
- Department of Psychological and Brain Sciences, Dartmouth CollegeHanoverUnited States
| | - Roddy M Grieves
- Department of Psychological and Brain Sciences, Dartmouth CollegeHanoverUnited States
| | | |
Collapse
|
40
|
Comrie AE, Frank LM, Kay K. Imagination as a fundamental function of the hippocampus. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210336. [PMID: 36314152 PMCID: PMC9620759 DOI: 10.1098/rstb.2021.0336] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/20/2022] [Indexed: 08/25/2023] Open
Abstract
Imagination is a biological function that is vital to human experience and advanced cognition. Despite this importance, it remains unknown how imagination is realized in the brain. Substantial research focusing on the hippocampus, a brain structure traditionally linked to memory, indicates that firing patterns in spatially tuned neurons can represent previous and upcoming paths in space. This work has generally been interpreted under standard views that the hippocampus implements cognitive abilities primarily related to actual experience, whether in the past (e.g. recollection, consolidation), present (e.g. spatial mapping) or future (e.g. planning). However, relatively recent findings in rodents identify robust patterns of hippocampal firing corresponding to a variety of alternatives to actual experience, in many cases without overt reference to the past, present or future. Given these findings, and others on hippocampal contributions to human imagination, we suggest that a fundamental function of the hippocampus is to generate a wealth of hypothetical experiences and thoughts. Under this view, traditional accounts of hippocampal function in episodic memory and spatial navigation can be understood as particular applications of a more general system for imagination. This view also suggests that the hippocampus contributes to a wider range of cognitive abilities than previously thought. This article is part of the theme issue 'Thinking about possibilities: mechanisms, ontogeny, functions and phylogeny'.
Collapse
Affiliation(s)
- Alison E. Comrie
- Neuroscience Graduate Program, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Kavli Institute for Fundamental Neuroscience, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Center for Integrative Neuroscience, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Departments of Physiology and Psychiatry, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Loren M. Frank
- Kavli Institute for Fundamental Neuroscience, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Center for Integrative Neuroscience, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Departments of Physiology and Psychiatry, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Kenneth Kay
- Zuckerman Institute, Center for Theoretical Neuroscience, Columbia University, 3227 Broadway, New York, NY 10027, USA
| |
Collapse
|
41
|
Uncovering the Hippocampal Mechanisms Underpinning Spatial Learning and Flexible Navigation. J Neurosci 2022; 42:8915-8917. [PMID: 36450594 PMCID: PMC9732818 DOI: 10.1523/jneurosci.1400-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 01/05/2023] Open
|
42
|
Maisson DJN, Wikenheiser A, Noel JPG, Keinath AT. Making Sense of the Multiplicity and Dynamics of Navigational Codes in the Brain. J Neurosci 2022; 42:8450-8459. [PMID: 36351831 PMCID: PMC9665915 DOI: 10.1523/jneurosci.1124-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Since the discovery of conspicuously spatially tuned neurons in the hippocampal formation over 50 years ago, characterizing which, where, and how neurons encode navigationally relevant variables has been a major thrust of navigational neuroscience. While much of this effort has centered on the hippocampal formation and functionally-adjacent structures, recent work suggests that spatial codes, in some form or another, can be found throughout the brain, even in areas traditionally associated with sensation, movement, and executive function. In this review, we highlight these unexpected results, draw insights from comparison of these codes across contexts, regions, and species, and finally suggest an avenue for future work to make sense of these diverse and dynamic navigational codes.
Collapse
Affiliation(s)
- David J-N Maisson
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Andrew Wikenheiser
- Department of Psychology, University of California, Los Angeles, California 90024
| | - Jean-Paul G Noel
- Center for Neural Science, New York University, New York, New York 10003
| | - Alexandra T Keinath
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, Verdun H3A 0G4, Quebec Canada
- Department of Psychology, University of IL Chicago, Chicago, Illinois 60607
| |
Collapse
|
43
|
Ujfalussy BB, Orbán G. Sampling motion trajectories during hippocampal theta sequences. eLife 2022; 11:e74058. [PMID: 36346218 PMCID: PMC9643003 DOI: 10.7554/elife.74058] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
Efficient planning in complex environments requires that uncertainty associated with current inferences and possible consequences of forthcoming actions is represented. Representation of uncertainty has been established in sensory systems during simple perceptual decision making tasks but it remains unclear if complex cognitive computations such as planning and navigation are also supported by probabilistic neural representations. Here, we capitalized on gradually changing uncertainty along planned motion trajectories during hippocampal theta sequences to capture signatures of uncertainty representation in population responses. In contrast with prominent theories, we found no evidence of encoding parameters of probability distributions in the momentary population activity recorded in an open-field navigation task in rats. Instead, uncertainty was encoded sequentially by sampling motion trajectories randomly and efficiently in subsequent theta cycles from the distribution of potential trajectories. Our analysis is the first to demonstrate that the hippocampus is well equipped to contribute to optimal planning by representing uncertainty.
Collapse
Affiliation(s)
- Balazs B Ujfalussy
- Laboratory of Biological Computation, Institute of Experimental MedicineBudapestHungary
- Laboratory of Neuronal Signalling, Institute of Experimental Medicine, BudapestBudapestHungary
| | - Gergő Orbán
- Computational Systems Neuroscience Lab, Wigner Research Center for Physics, BudapestBudapestHungary
| |
Collapse
|
44
|
Billig AJ, Lad M, Sedley W, Griffiths TD. The hearing hippocampus. Prog Neurobiol 2022; 218:102326. [PMID: 35870677 PMCID: PMC10510040 DOI: 10.1016/j.pneurobio.2022.102326] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/08/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
The hippocampus has a well-established role in spatial and episodic memory but a broader function has been proposed including aspects of perception and relational processing. Neural bases of sound analysis have been described in the pathway to auditory cortex, but wider networks supporting auditory cognition are still being established. We review what is known about the role of the hippocampus in processing auditory information, and how the hippocampus itself is shaped by sound. In examining imaging, recording, and lesion studies in species from rodents to humans, we uncover a hierarchy of hippocampal responses to sound including during passive exposure, active listening, and the learning of associations between sounds and other stimuli. We describe how the hippocampus' connectivity and computational architecture allow it to track and manipulate auditory information - whether in the form of speech, music, or environmental, emotional, or phantom sounds. Functional and structural correlates of auditory experience are also identified. The extent of auditory-hippocampal interactions is consistent with the view that the hippocampus makes broad contributions to perception and cognition, beyond spatial and episodic memory. More deeply understanding these interactions may unlock applications including entraining hippocampal rhythms to support cognition, and intervening in links between hearing loss and dementia.
Collapse
Affiliation(s)
| | - Meher Lad
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - William Sedley
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Timothy D Griffiths
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK; Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, USA
| |
Collapse
|
45
|
Shing N, Walker MC, Chang P. The Role of Aberrant Neural Oscillations in the Hippocampal-Medial Prefrontal Cortex Circuit in Neurodevelopmental and Neurological Disorders. Neurobiol Learn Mem 2022; 195:107683. [PMID: 36174886 DOI: 10.1016/j.nlm.2022.107683] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
Abstract
The hippocampus (HPC) and medial prefrontal cortex (mPFC) have well-established roles in cognition, emotion, and sensory processing. In recent years, interests have shifted towards developing a deeper understanding of the mechanisms underlying interactions between the HPC and mPFC in achieving these functions. Considerable research supports the idea that synchronized activity between the HPC and the mPFC is a general mechanism by which brain functions are regulated. In this review, we summarize current knowledge on the hippocampal-medial prefrontal cortex (HPC-mPFC) circuit in normal brain function with a focus on oscillations and highlight several neurodevelopmental and neurological disorders associated with aberrant HPC-mPFC circuitry. We further discuss oscillatory dynamics across the HPC-mPFC circuit as potentially useful biomarkers to assess interventions for neurodevelopmental and neurological disorders. Finally, advancements in brain stimulation, gene therapy and pharmacotherapy are explored as promising therapies for disorders with aberrant HPC-mPFC circuit dynamics.
Collapse
Affiliation(s)
- Nathanael Shing
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, UK; Department of Medicine, University of Central Lancashire, Preston, PR17BH, UK
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Pishan Chang
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT.
| |
Collapse
|
46
|
Rappaport MB, Corbally CJ. Neuroplasticity as a Foundation for Decision-Making in Space. NEUROSCI 2022; 3:457-475. [PMID: 39483427 PMCID: PMC11523684 DOI: 10.3390/neurosci3030033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/04/2022] [Indexed: 11/03/2024] Open
Abstract
This is an exploratory review of two very recent, intersecting segments of space science: neuroplasticity in space, and decision-making in space. The high level of neuroplasticity in humans leads to unfortunate neurological and physical deconditioning while the body adjusts to the new space environment. However, neuroplasticity may also allow recovery and continued functioning of decision-making at a level necessary for mission completion. Cosmic radiation, microgravity, heightened levels of carbon dioxide in spacecraft, and other factors are being explored as root causes of neurological and physical deconditioning in space. The goal of this paper is to explore some of the lines of causation that show how these factors affect the capacity of humans to make decisions in space. Either alone or in groups, it remains essential that humans retain an ability to make decisions that will save lives, protect equipment, complete missions, and return safely to Earth. A final section addresses healthcare, medical intervention, and remediation that could help to "harness" neuroplasticity before, during, and after spaceflight. The dual nature of human neuroplasticity renders it both a cause of problems and also potentially the foundation of remediation. The future of research on both neuroplasticity and human decision-making promises to be full of surprises, both welcome and otherwise. It is an exciting time in research on space medicine.
Collapse
|
47
|
Stoianov I, Maisto D, Pezzulo G. The hippocampal formation as a hierarchical generative model supporting generative replay and continual learning. Prog Neurobiol 2022; 217:102329. [PMID: 35870678 DOI: 10.1016/j.pneurobio.2022.102329] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
Abstract
We advance a novel computational theory of the hippocampal formation as a hierarchical generative model that organizes sequential experiences, such as rodent trajectories during spatial navigation, into coherent spatiotemporal contexts. We propose that the hippocampal generative model is endowed with inductive biases to identify individual items of experience (first hierarchical layer), organize them into sequences (second layer) and cluster them into maps (third layer). This theory entails a novel characterization of hippocampal reactivations as generative replay: the offline resampling of fictive sequences from the generative model, which supports the continual learning of multiple sequential experiences. We show that the model learns and efficiently retains multiple spatial navigation trajectories, by organizing them into spatial maps. Furthermore, the model reproduces flexible and prospective aspects of hippocampal dynamics that are challenging to explain within existing frameworks. This theory reconciles multiple roles of the hippocampal formation in map-based navigation, episodic memory and imagination.
Collapse
Affiliation(s)
- Ivilin Stoianov
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Domenico Maisto
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy.
| |
Collapse
|
48
|
Abstract
When navigating through space, we must maintain a representation of our position in real time; when recalling a past episode, a memory can come back in a flash. Interestingly, the brain's spatial representation system, including the hippocampus, supports these two distinct timescale functions. How are neural representations of space used in the service of both real-world navigation and internal mnemonic processes? Recent progress has identified sequences of hippocampal place cells, evolving at multiple timescales in accordance with either navigational behaviors or internal oscillations, that underlie these functions. We review experimental findings on experience-dependent modulation of these sequential representations and consider how they link real-world navigation to time-compressed memories. We further discuss recent work suggesting the prevalence of these sequences beyond hippocampus and propose that these multiple-timescale mechanisms may represent a general algorithm for organizing cell assemblies, potentially unifying the dual roles of the spatial representation system in memory and navigation.
Collapse
Affiliation(s)
- Wenbo Tang
- Graduate Program in Neuroscience, Brandeis University, Waltham, Massachusetts, USA;
| | - Shantanu P Jadhav
- Neuroscience Program, Department of Psychology, and Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts, USA;
| |
Collapse
|
49
|
The ventral midline thalamus coordinates prefrontal-hippocampal neural synchrony during vicarious trial and error. Sci Rep 2022; 12:10940. [PMID: 35768454 PMCID: PMC9243057 DOI: 10.1038/s41598-022-14707-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 06/10/2022] [Indexed: 11/22/2022] Open
Abstract
When faced with difficult choices, the possible outcomes are considered through a process known as deliberation. In rats, deliberation is thought to be reflected by pause-and-reorienting behaviors, better known as vicarious trial and errors (VTEs). While VTEs are thought to require medial prefrontal cortex (mPFC) and dorsal hippocampal (dHPC) interactions, no empirical evidence has yet demonstrated such a dual requirement. The nucleus reuniens (Re) of the ventral midline thalamus is anatomically connected with both the mPFC and dHPC, is required for HPC-dependent spatial memory tasks, and is critical for mPFC-dHPC neural synchronization. Currently, it is unclear if, or how, the Re is involved in deliberation. Therefore, by examining the role of the Re on VTE behaviors, we can better understand the anatomical and physiological mechanisms supporting deliberation. Here, we examined the impact of Re suppression on VTE behaviors and mPFC-dHPC theta synchrony during asymptotic performance of a HPC-dependent delayed alternation (DA) task. Pharmacological suppression of the Re increased VTE behaviors that occurred with repetitive choice errors. These errors were best characterized as perseverative behaviors, in which some rats repeatedly selected a goal arm that previously yielded no reward. We then examined the impact of Re suppression on mPFC-dHPC theta synchrony during VTEs. We found that during VTEs, Re inactivation was associated with a reduction in mPFC-dHPC theta coherence and mPFC-to-dHPC theta directionality. Our findings suggest that the Re contributes to deliberation by coordinating mPFC-dHPC neural interactions.
Collapse
|
50
|
Hippocampal-medial prefrontal cortex network dynamics predict performance during retrieval in a context-guided object memory task. Proc Natl Acad Sci U S A 2022; 119:e2203024119. [PMID: 35561217 DOI: 10.1073/pnas.2203024119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceRecovering relevant information, while ignoring the irrelevant, is crucial for episodic memory (remembering a particular event at a specific temporal and spatial context). Information presented at any time could drive the retrieval of more than one memory trace; thus, there should be a mechanism to select the retrieval of the most relevant trace. However, how the brain controls memory interference is not well understood. Here, we analyzed the communication between ventral hippocampus (vHPC) and medial prefrontal cortex (mPFC) during the resolution of an episodic memory task in rats. We found an increased synchronization between the vHPC and mPFC and identified specific mPFC neural subpopulations that selectively respond to object-context associations, and their firing preference correlates with the animals' behavioral responses.
Collapse
|