1
|
Samivel R, Alanazi MA, Khan AA, Masmali AM, Alanazi SA, Almubrad T, Akhtar S. Therapeutic efficacy of BSA formulated hydrogels in corneal wound healing and epithelial cell regeneration: an ex vivo study. Sci Rep 2025; 15:19956. [PMID: 40481091 PMCID: PMC12144276 DOI: 10.1038/s41598-025-04408-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 05/27/2025] [Indexed: 06/11/2025] Open
Abstract
Corneal injury requires both epithelial regeneration and stromal repair, and formulated biomaterials established to repair damaged corneas can be used in regenerative medicine. The challenge is to ensure that biomaterials can be incorporated into the host tissue and delivered intracellularly without causing rapid material deprivation, thus maintaining corneal transparency. Bovine serum albumin-formulated hydrogels (BHG) were prepared by dissolving with riboflavin, retinoic acid, and 2.5% glutaraldehyde solutions. Periphery-centered wounds from camel corneas (8mm diameter and 250 µm depth) were mounted on a dome-shaped agarose gel in six-well plates containing BHG-supplemented serum-free Medium 199. The plates were then incubated at 37 °C for 24, 48, and 72 h. A complete set of corneoscleral rings was procured and processed for histopathological, electron microscopy, and immunohistochemistry assays. Histological and electron microscopy results showed that all epithelial layers and anterior stroma developed faster in the BHG-treated wounds than in the untreated wounded corneas. Compared to untreated wounded corneas, BHG-treated corneas accumulated higher levels of fibronectin and ki-67 and lower levels of alpha-smooth muscle actin inductions. BHG-treated corneal wounds healed faster than untreated wounded corneas. Overall, BHG enhances epithelial regeneration and strengthens the stromal architecture by upregulating ECM and growth factors. Hence, BHG is a promising therapeutic hydrogel for wounded corneas, and further studies on corneal stromal wound healing and epithelial cell reimbursement in an in vivo model are required.
Collapse
Affiliation(s)
- Ramachandran Samivel
- Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| | - Mana A Alanazi
- Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Adnan A Khan
- Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali M Masmali
- Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Saud A Alanazi
- Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Turki Almubrad
- Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Saeed Akhtar
- College of Applied Medical Sciences, Inaya Medical Sciences, Riyadh, Saudi Arabia.
| |
Collapse
|
2
|
Fang F, A T, Chen J, Li S, Zhou T, Chen L, Fu Y, Shao C. Therapeutic potential of regulatory T cells for stem cell regulation: Insights from Treg-mediated enhancement of limbal stem cell functions. iScience 2025; 28:112515. [PMID: 40491963 PMCID: PMC12146654 DOI: 10.1016/j.isci.2025.112515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/17/2024] [Accepted: 04/18/2025] [Indexed: 06/11/2025] Open
Abstract
Regulatory T cells (Tregs) play a key role in immunomodulation and tissue regeneration. Limbal stem cells (LSCs) maintain corneal epithelial homeostasis, and LSC deficiency (LSCD) leads to visual impairment. Current LSCD treatments face donor shortages and graft rejection risks. The present study explored Tregs' therapeutic potential for LSCD in a mouse model of graded LSCD and further explored the direct effect of Tregs on LSCs function by in vitro coculturing human-derived cells. Subconjunctival Tregs injection effectively treated mild and moderate LSCD in mouse models. Coculturing human LSCs with human Tregs promoted LSCs migration, proliferation, and stemness maintenance. Furthermore, amphiregulin (AREG), secreted by Tregs, was crucial to their therapeutic effects, as AREG-/- Tregs resulted in diminished efficacy on LSCD mice compared to wild-type Tregs. These findings highlight Tregs as a promising treatment for LSCD, enhancing LSC function partially via AREG production.
Collapse
Affiliation(s)
- Fei Fang
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P.R. China
| | - Tingxi A
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P.R. China
| | - Junzhao Chen
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P.R. China
| | - Shiding Li
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P.R. China
| | - Tianyi Zhou
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P.R. China
| | - Liangbo Chen
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P.R. China
| | - Yao Fu
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P.R. China
| | - Chunyi Shao
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P.R. China
| |
Collapse
|
3
|
Varisli L, Zoumpourlis P, Spandidos DA, Zoumpourlis V, Vlahopoulos S. ALDH1A1 in breast cancer: A prospective target to overcome therapy resistance (Review). Oncol Lett 2025; 29:213. [PMID: 40093866 PMCID: PMC11905208 DOI: 10.3892/ol.2025.14959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025] Open
Abstract
The expression of cytosolic aldehyde dehydrogenases (ALDHs), which mediate the last step in the pathway of the synthesis of all-trans retinoic acid, is dysregulated in various types of human cancer, and has been associated with the development of cancer stem cells (CSCs) in solid tumors and hematological malignancies. CSCs are considered a minor fraction of cancer cells with the capacity to initiate neoplastic tumors. ALDH1A1 serves a crucial role in the emergence of the CSC phenotype, induces the malignant behavior of cancer cells and promotes treatment resistance. Notably, ALDH1A1-induced therapy resistance is not exclusive to just one group of drugs, but affects diverse types of drugs that use different mechanisms to kill cells. This diversity of drug resistance-inducing effects is associated with the stemness-supporting functions of ALDH1A1. The inhibition of ALDH1A1 activity using chemicals or the depletion of ALDH1A1 via genetic approaches, such as the use of small interfering RNA, can overcome diverse pathways of therapy resistance. In the context of breast cancer, it is critical that only a fraction of malignant cells are expected to manifest stem-like features, which include increased expression of ALDH1A1. From the angle of disease prognosis, the extent of the association of ALDH1A1 with increased malignant behavior and drug resistance remains to be determined through the application of cutting-edge methods that detect the expression of tracked biomarkers within tumors.
Collapse
Affiliation(s)
- Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey
| | - Panagiotis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
4
|
Li MX, Zhang Z, Zhang Y, Zhao FR, Li YF, Dang YF, Yue YY, Li L. Skullcapflavone II suppresses TGF-β-induced corneal epithelial mesenchymal transition in vitro. Int J Ophthalmol 2025; 18:209-215. [PMID: 39967985 PMCID: PMC11754024 DOI: 10.18240/ijo.2025.02.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/01/2024] [Indexed: 02/20/2025] Open
Abstract
AIM To investigate the effect of skullcapflavone II (SCF-II) on the epithelial-mesenchymal transition (EMT) induced by transforming growth factor beta (TGF-β) in human corneal epithelial cells (HCECs), as well as to identify the signaling pathways that may be involved. METHODS HCECs were cultured in vitro. At a SCF-II (5, 10 µmol/L) dose, cell viability was analysed with a cell counting kit-8 (CCK-8) assay, and cell migration was monitored with wound healing and Transwell migration assays. There were 4 groups: SCF-II, TGF-β, SCF-II+TGF-β and Control. Western blotting and immunofluorescence were performed to show the expression of EMT markers and the translocation of nuclear factor kappa-B (NF-κB) into the nucleus in the 4 groups. RESULTS Treatment with SCF-II decreased HCEC viability in a dose-dependent manner. A concentration below 10 µmol/L did not present obvious cell toxicity, and survival rates were more than 70% at 48h. Treatment with SCF-II (5 and 10 µmol/L) significantly impeded migration in wound healing and Transwell migration assays (P<0.05), and EMT markers and NF-κB translocation into the nucleus were inhibited. After both TGF-β and SCF-II treatment, the migration of TGF-β-treated HCECs were suppressed by SCF-II (P<0.05). The expression levels of the mesenchymal markers N-cadherin (P<0.05), α-smooth muscle actin (α-SMA; P<0.05) and NF-κB (P<0.05) in both TGF-β- and SCF-II-treated HCECs were lower than those in the HCECs treated with TGF-β alone and higher than those in HCECs treated with SCF-II alone. Immunofluorescence showed that the entry of NF-κB into the nucleus in both TGF-β- and SCF-II-treated HCECs was less than that in the TGF-β-treated HCECs. CONCLUSION SCF-II inhibit TGF-β-induced EMT in HCECs by potentially regulating the NF-κB signalling pathway. Thus, SCF-II represents a candidate putative therapeutic agent in corneal fibrotic diseases.
Collapse
Affiliation(s)
- Meng-Xi Li
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Zhen Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
- Xi'an People's Hospital (Xi'an Fourth Hospital), Shaanxi Eye Hospital, Affiliated Xi'an Fourth Hospital, Northwestern Polytechnical University, Xi'an 710000, Shaanxi Province, China
| | - Yue Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
- Xi'an People's Hospital (Xi'an Fourth Hospital), Shaanxi Eye Hospital, Affiliated Xi'an Fourth Hospital, Northwestern Polytechnical University, Xi'an 710000, Shaanxi Province, China
| | - Fan-Ru Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Yu-Fan Li
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Yu-Fei Dang
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Yang-Yang Yue
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Li Li
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| |
Collapse
|
5
|
Cosentino A, Agafonova A, Cavallaro L, Musumeci RE, Prinzi C, Lombardo C, Cambria MT, Anfuso CD, Lupo G. Polychlorinated Biphenyls Induce Cytotoxicity and Inflammation in an In Vitro Model of an Ocular Barrier. Int J Mol Sci 2025; 26:916. [PMID: 39940688 PMCID: PMC11817744 DOI: 10.3390/ijms26030916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Polychlorinated biphenyls (PCBs) are heterogeneous, synthetic, and widespread organochlorine compounds, and are one of the persistent organic pollutants present in improperly dumped waste and electronic equipment (e-waste), with a high bioaccumulation potential. In this study, the toxicity of Aroclor 1254 (a mixture of commercial PCBs) in human corneal epithelial cells (HCEpiCs), in an in vitro model of an ocular barrier, was evaluated. Aroclor 1254 (0.1-10 μg/mL) reduced cell viability, trans-endothelial electric resistance (TEER) and cell migration. Moreover, it induced an inflammatory response, as indicated by the increase in cPLA2 activity, PGE2 production, phosphorylation of ERK 1/2 and p-38, and release of inflammatory cytokines. Aroclor 1254 can damage corneal cells, compromising the integrity of the eye's outermost barrier. This damage may facilitate the occurrence of infectious processes that are physiologically prevented by the corneal barrier.
Collapse
Affiliation(s)
- Alessia Cosentino
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (A.C.); (A.A.); (C.P.); (C.L.); (G.L.)
| | - Aleksandra Agafonova
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (A.C.); (A.A.); (C.P.); (C.L.); (G.L.)
| | - Luca Cavallaro
- Department of Civil Engineering and Architecture, University of Catania, 95123 Catania, Italy; (L.C.); (R.E.M.)
| | - Rosaria Ester Musumeci
- Department of Civil Engineering and Architecture, University of Catania, 95123 Catania, Italy; (L.C.); (R.E.M.)
| | - Chiara Prinzi
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (A.C.); (A.A.); (C.P.); (C.L.); (G.L.)
| | - Cinzia Lombardo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (A.C.); (A.A.); (C.P.); (C.L.); (G.L.)
| | - Maria Teresa Cambria
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (A.C.); (A.A.); (C.P.); (C.L.); (G.L.)
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (A.C.); (A.A.); (C.P.); (C.L.); (G.L.)
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (A.C.); (A.A.); (C.P.); (C.L.); (G.L.)
| |
Collapse
|
6
|
Cao Q, Xu W, Chen X, Luo G, Reinach PS, Yan D. PRMT1-Mediated Arginine Methylation Promotes Corneal Epithelial Wound Healing via Epigenetic Regulation of ANXA3. Invest Ophthalmol Vis Sci 2025; 66:22. [PMID: 39786757 PMCID: PMC11725987 DOI: 10.1167/iovs.66.1.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/15/2024] [Indexed: 01/12/2025] Open
Abstract
Purpose Protein arginine methyltransferase 1 (PRMT1) is an integral constituent of numerous cellular processes. However, its role in corneal epithelial wound healing (CEWH) remains unclear. This study investigates the impact of PRMT1 on cellular mechanisms underlying corneal epithelial repair and its potential to improve wound healing outcomes. Methods The murine CEWH model was established using an Alger brush. Corneal epithelial-specific Prmt1 knockout mice were generated using the Cre-lox system. Quantitative reverse transcription polymerase chain reaction and Western blot analyses determined the expression of candidate genes at mRNA and protein expression levels. Human corneal epithelial cells (HCECs) were transfected with siRNA using Lipofectamine RNAiMAX or infected with lentivirus to precisely alter the expression of PRMT1 or Annexin A3 (ANXA3). EdU and a scratch wound-healing assay evaluated the effects of PRMT1 or ANXA3 on HCEC proliferation and migration, respectively. Rescue experiment and chromatin immunoprecipitation assay validate the correlation between PRMT1 and ANXA3. Results Prmt1 is significantly upregulated during CEWH, accompanied by an elevated global arginine methylation level. Knockdown of PRMT1 in HCECs or in vivo knockout impairs cell proliferation, migration, and the CEWH process. Furthermore, ANXA3 was identified as a critical target of PRMT1, with PRMT1 enhancing ANXA3 expression through histone arginine methylation at its promoter region, establishing a causal correlation between them. Moreover, PRMT1 can modulate the NF-κB and JNK signaling pathways via ANXA3. Conclusions PRMT1 is a critical epigenetic regulator in CEWH, promoting wound healing by upregulating ANXA3 via histone arginine methylation. These findings highlight the potential of targeting PRMT1 to enhance corneal epithelial repair.
Collapse
Affiliation(s)
- Qiongjie Cao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wenji Xu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyan Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Guangying Luo
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Peter S. Reinach
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dongsheng Yan
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Ge H, Di G, Song P, Han W, Chen P, Wang Y. Role of vitamin A on the ocular surface. Exp Eye Res 2025; 250:110179. [PMID: 39581361 DOI: 10.1016/j.exer.2024.110179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Vitamin A is an essential fat-soluble vitamin that cannot be endogenously synthesized by the human body. Retinoic acid (RA) is the biologically active form of vitamin A. Utilizing both nuclear and non-nuclear receptor-mediated pathways, RA plays a crucial role in regulating various biological processes, including apoptosis, differentiation, and anti-inflammatory properties within the cornea and conjunctiva. In addition, RA has been demonstrated to exert a significant influence on anti-tumor mechanisms. Disruption of RA signaling can result in corneal defects, anophthalmia, and microphthalmia. However, the beneficial effects of RA are only observed when it is administered at appropriate dosages, and higher doses have an adverse impact. Ocular abnormalities are often early indicators of a vitamin A deficiency. The lacrimal gland secretes vitamin A onto the ocular surface, where it is metabolized into RA via two sequential steps. This article provides a comprehensive overview of how vitamin A is transformed and transported from the intestine to the ocular surface, ultimately contributing to the maintenance of the normal physiological function of the ocular surface.
Collapse
Affiliation(s)
- Huanhuan Ge
- School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Guohu Di
- School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Peirong Song
- School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Wenshuo Han
- School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Peng Chen
- School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China; Department of Ophthalmology, Qingdao Eighth People's Hospital, Qingdao, Shandong, 266121, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Ye Wang
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, Shandong, 266042, China.
| |
Collapse
|
8
|
Singh RB, Koh S, Sharma N, Woreta FA, Hafezi F, Dua HS, Jhanji V. Keratoconus. Nat Rev Dis Primers 2024; 10:81. [PMID: 39448666 DOI: 10.1038/s41572-024-00565-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
Keratoconus is a progressive eye disorder primarily affecting individuals in adolescence and early adulthood. The ectatic changes in the cornea cause thinning and cone-like steepening leading to irregular astigmatism and reduced vision. Keratoconus is a complex disorder with a multifaceted aetiology and pathogenesis, including genetic, environmental, biomechanical and cellular factors. Environmental factors, such as eye rubbing, UV light exposure and contact lens wearing, are associated with disease progression. On the cellular level, a complex interplay of hormonal changes, alterations in enzymatic activity that modify extracellular membrane stiffness, and changes in biochemical and biomechanical signalling pathways disrupt collagen cross-linking within the stroma, contributing to structural integrity loss and distortion of normal corneal anatomy. Clinically, keratoconus is diagnosed through clinical examination and corneal imaging. Advanced imaging platforms have improved the detection of keratoconus, facilitating early diagnosis and monitoring of disease progression. Treatment strategies for keratoconus are tailored to disease severity and progression. In early stages, vision correction with glasses or soft contact lenses may suffice. As the condition advances, rigid gas-permeable contact lenses or scleral lenses are prescribed. Corneal cross-linking has emerged as a pivotal treatment aimed at halting the progression of corneal ectasia. In patients with keratoconus with scarring or contact lens intolerance, surgical interventions are performed.
Collapse
Affiliation(s)
- Rohan Bir Singh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Leiden University Medical Center, Leiden, Netherlands
| | - Shizuka Koh
- Department of Innovative Visual Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Namrata Sharma
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Fasika A Woreta
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Farhad Hafezi
- ELZA Institute, Zurich, Switzerland
- EMAGine AG, Zug, Switzerland
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA
| | - Harminder S Dua
- Department of Ophthalmology, University of Nottingham, Nottingham, UK
| | - Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Gao T, Kawabata Y, Kiyoshima T, Jimi E. Nuclear factor-κB p65 subunit determines the fate of aging epithelial cells. Biochem Biophys Res Commun 2024; 722:150143. [PMID: 38795451 DOI: 10.1016/j.bbrc.2024.150143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
Nuclear factor (NF)-κB signaling is not only important for the immune and inflammatory responses but also for the normal development of epithelial cells, such as those in the skin and tooth. Here, we generated epithelial cell-specific p65-deficient (p65Δepi-/-) mice to analyze the roles of NF-κB signaling in epithelial cell developent. Notably, p65Δepi-/- mice exhibited no abnormalities in their appearance compared to the control (p65flox/flox) littermates. Furthermore, no major changes were observed in the skin, hair growth, and shape and color of the incisors and molars. However, 65 % of p65Δepi-/- mice exhibited corneal thickening after 8 weeks of age, and 30 % of p65Δepi-/- mice exhibited hair growth from the mandibular incisors around 24 weeks of age. No hair growth was observed at 36 and 42 weeks of age. However, micro-computed tomography images revealed a large cavity below the mandibular incisors extending to the root of the incisor. Histological analysis revealed that the cavity was occupied by a connective tissue containing hair-like structures with many dark brown granules that disappeared after melanin bleaching, confirming the presence of hair. Although inflammatory cells were also observed near the eruption site of the incisor teeth of p65Δepi-/- mice, no major disturbance was observed in the arrangement of enamel epithelial cells. Overall, these results highlight the role of p65 in the maintenance of epithelial cell homeostasis during aging.
Collapse
Affiliation(s)
- Tian Gao
- Laboratory of Molecular and Cellular Biochemistry, Japan
| | - Yuko Kawabata
- Laboratory of Molecular and Cellular Biochemistry, Japan; Section of Oral Neuroscience, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Eijiro Jimi
- Laboratory of Molecular and Cellular Biochemistry, Japan; Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
10
|
Ge H, Di G, Li B, Han W, Song P, Han S, Wang D, Chen P. Reticulated Retinoic Acid Synthesis is Implicated in the Pathogenesis of Dry Eye in Aqp5 Deficiency Mice. Invest Ophthalmol Vis Sci 2024; 65:25. [PMID: 39017635 PMCID: PMC11262545 DOI: 10.1167/iovs.65.8.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024] Open
Abstract
Purpose Abnormalities in aquaporins are implicated in the pathological progression of dry eye syndrome. Retinoic acid (RA) regulates cellular proliferation, differentiation, and apoptosis in the cornea, thereby being associated with dry eye disease (DED). The objective of this study is to explore the underlying mechanisms responsible for RA metabolic abnormalities in corneas lacking aquaporin 5 (AQP5). Methods Dry eye (DE) models were induced via subcutaneous scopolamine hydrobromide. Aqp5 knockout (Aqp5-/-) mice and DE mice were utilized to assess corneal epithelial alterations. Tear secretion, goblet cell counts, and corneal punctate defects were evaluated. The impact of Aqp5 on RA-related enzymes and receptors was investigated using pharmacological RA or SR (A JunB inhibitor), a transcription factor JunB inhibitor, treatment in mouse corneal epithelial cells (CECs), or human corneal epithelial cells (HCECs). The HCECs and NaCl-treated HCECs underwent quantitative real-time PCR (qRT-PCR), immunofluorescent, Western blot, and TUNEL assays. The regulation of transcription factor JunB on Aldh1a1 was explored via ChIP-PCR. Results Aqp5 and Aldh1a1 were reduced in both CECs of DE mice and NaCl-induced HCECs. Aqp5-/- mice exhibited DE phenotype and reduced Aldh1a1. RA treatment reduced apoptosis, promoted proliferation, and improved the DE phenotype in Aqp5-/- mice. JunB enrichment in the Aldh1a1 promoter was identified by ChIP-PCR. SR significantly increased Aldh1a1 expression, Ki67, and ΔNp63-positive cells, and decreased TUNEL-positive cells in CECs and HCECs. Conclusions Our findings demonstrated the downregulation of Aqp5 expression and aberrant RA metabolism in DE conditions. Knockout of Aqp5 resulted in reduced production of RA through activation of JunB, subsequently leading to the manifestation of DE symptoms.
Collapse
Affiliation(s)
- Huanhuan Ge
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Guohu Di
- School of Basic Medicine, Qingdao University, Qingdao, China
- Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Bin Li
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wenshuo Han
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Peirong Song
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shiheng Han
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Dianqiang Wang
- Aier School Ophthalmology, Central South University, Changsha, Hunan, P. R. China
- Department of Ophthalmology, Qingdao Aier Eye Hospital, Qingdao, China
| | - Peng Chen
- School of Basic Medicine, Qingdao University, Qingdao, China
- Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Abu-Romman A, Scholand KK, Govindarajan G, Yu Z, Pal-Ghosh S, Stepp MA, de Paiva CS. Age-Related Differences in the Mouse Corneal Epithelial Transcriptome and Their Impact on Corneal Wound Healing. Invest Ophthalmol Vis Sci 2024; 65:21. [PMID: 38739085 PMCID: PMC11098051 DOI: 10.1167/iovs.65.5.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024] Open
Abstract
Purpose Aging is a risk factor for dry eye. We sought to identify changes in the aged mouse corneal epithelial transcriptome and determine how age affects corneal sensitivity, re-epithelialization, and barrier reformation after corneal debridement. Methods Corneal epithelium of female C57BL/6J (B6) mice of different ages (2, 12, 18, and 24 months) was collected, RNA extracted, and bulk RNA sequencing performed. Cornea sensitivity was measured with an esthesiometer in 2- to 3-month-old, 12- to 13-month-old, 18- to 19-month-old, and 22- to 25-month-old female and male mice. The 2-month-old and 18-month-old female and male mice underwent unilateral corneal debridement using a blunt blade. Wound size and fluorescein staining were visualized and photographed at different time points, and a re-epithelialization rate curve was calculated. Results There were 157 differentially expressed genes in aged mice compared with young mice. Several pathways downregulated with age control cell migration, proteoglycan synthesis, and collagen trimerization, assembly, biosynthesis, and degradation. Male mice had decreased corneal sensitivity compared with female mice at 12 and 24 months of age. Aged mice, irrespective of sex, had delayed corneal re-epithelialization in the first 48 hours and worse corneal fluorescein staining intensity at day 14 than young mice. Conclusions Aged corneal epithelium has an altered transcriptome. Aged mice regardless of sex heal more slowly and displayed more signs of corneal epithelial defects after wounding than young mice. These results indicate that aging significantly alters the corneal epithelium and its ability to coordinate healing.
Collapse
Affiliation(s)
- Anmar Abu-Romman
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Kaitlin K. Scholand
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Department of Biosciences, Rice University, Houston, Texas, United States
| | - Gowthaman Govindarajan
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Zhiyuan Yu
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Sonali Pal-Ghosh
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Mary A. Stepp
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
- Department of Ophthalmology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Cintia S. de Paiva
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Department of Biosciences, Rice University, Houston, Texas, United States
| |
Collapse
|
12
|
Chai N, Stachon T, Berger T, Li Z, Seitz B, Langenbucher A, Szentmáry N. Short-Term Effect of Rose Bengal Photodynamic Therapy (RB-PDT) on Collagen I, Collagen V, NF-κB, LOX, TGF-β and IL-6 Expression of Human Corneal Fibroblasts, In Vitro. Curr Eye Res 2024; 49:150-157. [PMID: 37921272 DOI: 10.1080/02713683.2023.2276057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
PURPOSE To investigate collagen I, collagen V, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), lysyl oxidase (LOX), transforming growth factor β1 (TGF-β1) and interleukin-6 (IL-6) expression in healthy and keratoconus human corneal fibroblasts (HCFs and KC-HCFs), 24 h after Rose Bengal photodynamic therapy (RB-PDT). METHODS HCFs were isolated from healthy human corneal donors (n = 5) and KC-HCFs from elective penetrating keratoplasties (n = 5). Both cell cultures underwent RB-PDT (0.001% RB concentration, 0.17 J/cm2 fluence) and 24 h later collagen I, collagen V, NF-κB, LOX, TGF-β1 and IL-6 mRNA and protein expression have been determined using qPCR and Western blot, IL-6 concentration in the cell culture supernatant by ELISA. RESULTS TGF-β1 mRNA expression was significantly lower (p = 0.02) and IL-6 mRNA expression was significantly higher in RB-PDT treated HCFs (p = 0.01), than in HCF controls. COL1A1, COL5A1 and TGF-β1 mRNA expression was significantly lower (p = 0.04; p = 0.02 and p = 0.003) and IL-6 mRNA expression was significantly higher (p = 0.02) in treated KC-HCFs, than in KC-HCF controls. TGF-β1 protein expression in treated HCFs was significantly higher than in HCF controls (p = 0.04). IL-6 protein concentration in the HCF and KC-HCF culture supernatant after RB-PDT was significantly higher than in controls (p = 0.02; p = 0.01). No other analyzed mRNA and protein expression differed significantly between the RB-PDT treated and untreated groups. CONCLUSIONS Our study demonstrates that RB-PDT reduces collagen I, collagen V and TGF-β1 mRNA expression, while increasing IL-6 mRNA and protein expression in KC-HCFs. In HCFs, RB-PDT increases TGF-β1 and IL-6 protein level after 24 h.
Collapse
Affiliation(s)
- Ning Chai
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - Tanja Stachon
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - Tim Berger
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Zhen Li
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | | | - Nóra Szentmáry
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg, Saar, Germany
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
13
|
Yang Y, Zhong J, Cui D, Jensen LD. Up-to-date molecular medicine strategies for management of ocular surface neovascularization. Adv Drug Deliv Rev 2023; 201:115084. [PMID: 37689278 DOI: 10.1016/j.addr.2023.115084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Ocular surface neovascularization and its resulting pathological changes significantly alter corneal refraction and obstruct the light path to the retina, and hence is a major cause of vision loss. Various factors such as infection, irritation, trauma, dry eye, and ocular surface surgery trigger neovascularization via angiogenesis and lymphangiogenesis dependent on VEGF-related and alternative mechanisms. Recent advances in antiangiogenic drugs, nanotechnology, gene therapy, surgical equipment and techniques, animal models, and drug delivery strategies have provided a range of novel therapeutic options for the treatment of ocular surface neovascularization. In this review article, we comprehensively discuss the etiology and mechanisms of corneal neovascularization and other types of ocular surface neovascularization, as well as emerging animal models and drug delivery strategies that facilitate its management.
Collapse
Affiliation(s)
- Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Junmu Zhong
- Department of Ophthalmology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan 364000, Fujian Province, China
| | - Dongmei Cui
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518040, Guangdong Province, China
| | - Lasse D Jensen
- Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine, Unit of Cardiovascular Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
14
|
Song X, Liang Y, Zhou S, Xie W, Yang Q, Ma N, Shen X. Glutamine alleviates Lipopolysaccharide-induced corneal epithelial inflammation and oxidative stress in dogs. Exp Eye Res 2023; 234:109607. [PMID: 37517541 DOI: 10.1016/j.exer.2023.109607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Pseudomonas aeruginosa is a common pathogenic bacteria in canine ophthalmology. Lipopolysaccharide (LPS), a component in the cell wall of gram-negative bacteria, is released following bacterial lysis and causes pathology and inflammation of the cornea. Antibiotics are used to treat bacterial keratitis, and the reuse of antibiotics can easily cause bacterial resistance. Research has shown that glutamine (GLN) has anti-inflammatory and antioxidant biological functions. Herein, we explored the effects and underlying mechanisms of GLN and established an LPS-induced cornea inflammation model. Treatment groups comprised: control check (CK), LPS, LPS + GLN, and Sham groups. Topical GLN treatment alleviated corneal opacity, reduced corneal injury, and accelerated corneal wound healing. Furthermore, GLN treatment altered the uniform distribution of corneal epithelial cells and transformed the healing approach of these cells in the corneal wound from crawling to filling. The expression of Toll-like receptor 4 (TLR4), IL-6, TNF-α, and p-p65 and the activity of myeloperoxidase and superoxide dismutase decreased while the content of malondialdehyde increased in the LPS + GLN group compared with those in the LPS group. Thus, our study suggests that LPS-induced inflammation and oxidative stress may be suppressed via the TLR4/NF-κB signaling pathway by GLN and that GLN could be used as an adjunct therapy to reduce antibiotic use.
Collapse
Affiliation(s)
- Xiaokun Song
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Yuxuan Liang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Shendong Zhou
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Wan Xie
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Qifeng Yang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Nana Ma
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Xiangzhen Shen
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
15
|
Arts JA, Laberthonnière C, Lima Cunha D, Zhou H. Single-Cell RNA Sequencing: Opportunities and Challenges for Studies on Corneal Biology in Health and Disease. Cells 2023; 12:1808. [PMID: 37443842 PMCID: PMC10340756 DOI: 10.3390/cells12131808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The structure and major cell types of the multi-layer human cornea have been extensively studied. However, various cell states in specific cell types and key genes that define the cell states are not fully understood, hindering our comprehension of corneal homeostasis, related diseases, and therapeutic discovery. Single-cell RNA sequencing is a revolutionary and powerful tool for identifying cell states within tissues such as the cornea. This review provides an overview of current single-cell RNA sequencing studies on the human cornea, highlighting similarities and differences between them, and summarizing the key genes that define corneal cell states reported in these studies. In addition, this review discusses the opportunities and challenges of using single-cell RNA sequencing to study corneal biology in health and disease.
Collapse
Affiliation(s)
- Julian A. Arts
- Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands; (J.A.A.)
| | - Camille Laberthonnière
- Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands; (J.A.A.)
| | - Dulce Lima Cunha
- Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands; (J.A.A.)
| | - Huiqing Zhou
- Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands; (J.A.A.)
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
16
|
Lu ZJ, Ye JG, Wang DL, Li MK, Zhang QK, Liu Z, Huang YJ, Pan CN, Lin YH, Shi ZX, Zheng YF. Integrative Single-Cell RNA-Seq and ATAC-Seq Analysis of Mouse Corneal Epithelial Cells. Invest Ophthalmol Vis Sci 2023; 64:30. [PMID: 36943152 PMCID: PMC10043503 DOI: 10.1167/iovs.64.3.30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Purpose Corneal epithelial homeostasis is maintained by coordinated gene expression across distinct cell populations, but the gene regulatory programs underlying this cellular diversity remain to be characterized. Here we applied single-cell multi-omics analysis to delineate the gene regulatory profile of mouse corneal epithelial cells under normal homeostasis. Methods Single cells isolated from the cornea epithelium (with marginal conjunctiva) of adult mice were subjected to scRNA-seq and scATAC-seq using the 10×Genomics platform. Cell types were clustered by the graph-based visualization method uniform manifold approximation and projection and unbiased computational informatics analysis. The scRNA-seq and scATAC-seq datasets were integrated following the integration pipeline described in ArchR and Seurat. Results We characterized diverse corneal epithelial cell types based on gene expression signatures and chromatin accessibility. We found that cell type-specific accessibility regions were mainly located at distal regions, suggesting essential roles of distal regulatory elements in determining corneal epithelial cell diversity. Trajectory analyses revealed a continuum of cell state transition and higher coordination between transcription factor (TF) motif accessibility and gene expression during corneal epithelial cell differentiation. By integrating transcriptomic and chromatin accessibility analysis, we identified cell type-specific and shared gene regulation programs. We also uncovered critical TFs driving corneal epithelial cell differentiation, such as nuclear factor I (NFI) family members, Rarg, Elf3. We found that nuclear factor-κB (NF-κB) family members were positive TFs in limbal cells and some superficial cells, but they were involved in regulating distinct biological processes. Conclusions Our study presents a comprehensive gene regulatory landscape of mouse cornea epithelial cells, and provides valuable foundations for future investigation of corneal epithelial homeostasis in the context of cornea pathologies and regenerative medicine.
Collapse
Affiliation(s)
- Zhao-Jing Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, China
| | - Jin-Guo Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Dong-Liang Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Meng-Ke Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qi-Kai Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhong Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yan-Jing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Cai-Neng Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yu-Heng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhuo-Xing Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ying-Feng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, China
| |
Collapse
|
17
|
He X, Shi Y, Zeng Z, Tang B, Xiao X, Yu J, Zou P, Liu J, Xiao Y, Luo Y, Xiao R. Intimate intertwining of the pathogenesis of hypoxia and systemic sclerosis: A transcriptome integration analysis. Front Immunol 2022; 13:929289. [PMID: 36389675 PMCID: PMC9660309 DOI: 10.3389/fimmu.2022.929289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/13/2022] [Indexed: 03/30/2024] Open
Abstract
OBJECTIVES Systemic sclerosis (SSc) is an autoimmune disease caused by various pathogenic factors, including hypoxia. Hypoxia stimulates the production of the extracellular matrix to promote fibrosis. However, the integrated function and the underlying mechanism of hypoxia in SSc are unclear. METHODS In the present study, we used Agilent SurePrint G3 Human Gene Expression v3 for the transcriptional sequencing of fibroblasts with and without hypoxia to detect differentially expressed genes (DEGs) in hypoxia. We analyzed the results with the transcriptome data of SSc lesions (GSE95065) to select the co-DEGs. Then, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed on the basis of the co-DEGs using the R package ClusterProfiler, which showed that hypoxia and cross talk of hypoxia with other pathogenic factors are involved in the pathogenesis of SSc. Furthermore, we constructed a protein-protein interaction (PPI) network of co-DEGs and screened two significant functional expression modules. RESULTS We identified nine hub genes (ALDH1A1, EGF, NOX4, LYN, DNTT, PTGS2, TKT, ACAA2, and ALDH3A1). These genes affect the pentose phosphate pathway, oxidative stress, and lipolysis. CONCLUSION Our study provides insights into the mechanisms underlying the effects of hypoxia on SSc pathogenesis, which will help to better understand SSc pathogenesis and develop new therapeutic strategies for SSc.
Collapse
Affiliation(s)
- Xinglan He
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yaqian Shi
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhuotong Zeng
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bingsi Tang
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Xiao
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiangfan Yu
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Puyu Zou
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiani Liu
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yangfan Xiao
- Department of Anesthesiology, Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yangyang Luo
- Department of Dermatology, Hunan Children's Hospital, Changsha, China
| | - Rong Xiao
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Biswas S, Shafiquzzaman M, Yu G, Li P, Yu Q, Zhao P, Li B, Li J. Notch1 signaling in keratocytes maintains corneal transparency by suppressing VEGF expression. Stem Cell Reports 2022; 17:1442-1457. [PMID: 35623350 PMCID: PMC9214072 DOI: 10.1016/j.stemcr.2022.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022] Open
Abstract
The cornea fends off chemicals, dirt, and infectious particles and provides most of the eye's focusing power. Corneal transparency is of paramount importance to normal vision, yet how it is established and maintained remains unclear. Here, we ablated Notch1 in keratocytes using Twist2-Cre mice and found that Twist2-Cre; Notch1f/f mice developed stroma expansion and neovascularization, followed by hyperproliferation and metaplasia of corneal epithelial progenitor cells and plaque formation at central cornea, leading to loss of transparency. Development of these phenotypes does not involve bacteria-caused inflammation; instead, Notch1 deletion upregulates Vegfa and Vegfc via Hif1α in keratocytes. Vascular endothelial growth factor (VEGF) receptor inhibitor axitinib prevented development of these anomalies in Twist2-Cre; Notch1f/f mice, suggesting that VEGFs secreted by keratocytes promote not only neovascularization but also proliferation and metaplasia of epithelial progenitor cells at central cornea. This study uncovers a Notch1-Hif1α-VEGF pathway in keratocytes that maintains corneal transparency and represents a potential target for treatment of related corneal disorders.
Collapse
Affiliation(s)
- Soma Biswas
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Md Shafiquzzaman
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China; School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Guo Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ping Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baojie Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China; Institute of Traditional Chinese Medicine and Stem Cell Research, School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Li
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|