1
|
Guan L, Qiu M, Li N, Zhou Z, Ye R, Zhong L, Xu Y, Ren J, Liang Y, Shao X, Fang J, Fang J, Du J. Inhibitory gamma-aminobutyric acidergic neurons in the anterior cingulate cortex participate in the comorbidity of pain and emotion. Neural Regen Res 2025; 20:2838-2854. [PMID: 39314159 PMCID: PMC11826466 DOI: 10.4103/nrr.nrr-d-24-00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/19/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Pain is often comorbid with emotional disorders such as anxiety and depression. Hyperexcitability of the anterior cingulate cortex has been implicated in pain and pain-related negative emotions that arise from impairments in inhibitory gamma-aminobutyric acid neurotransmission. This review primarily aims to outline the main circuitry (including the input and output connectivity) of the anterior cingulate cortex and classification and functions of different gamma-aminobutyric acidergic neurons; it also describes the neurotransmitters/neuromodulators affecting these neurons, their intercommunication with other neurons, and their importance in mental comorbidities associated with chronic pain disorders. Improving understanding on their role in pain-related mental comorbidities may facilitate the development of more effective treatments for these conditions. However, the mechanisms that regulate gamma-aminobutyric acidergic systems remain elusive. It is also unclear as to whether the mechanisms are presynaptic or postsynaptic. Further exploration of the complexities of this system may reveal new pathways for research and drug development.
Collapse
Affiliation(s)
- Lu Guan
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Mengting Qiu
- Fuchun Community Health Service Center of Fuyang District, Hangzhou, Zhejiang Province, China
| | - Na Li
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Zhengxiang Zhou
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Ru Ye
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Liyan Zhong
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yashuang Xu
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Junhui Ren
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yi Liang
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Xiaomei Shao
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Junfan Fang
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Junying Du
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Jiang M, Li H, Zhang Q, Xu T, Huang L, Zhang J, Yu H, Zhang J. The role of RGS12 in tissue repair and human diseases. Genes Dis 2025; 12:101480. [PMID: 40271194 PMCID: PMC12017852 DOI: 10.1016/j.gendis.2024.101480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/05/2024] [Accepted: 11/02/2024] [Indexed: 04/25/2025] Open
Abstract
Regulator of G protein signaling 12 (RGS12) belongs to the superfamily of RGS proteins defined by a conserved RGS domain that canonically binds and deactivates heterotrimeric G-proteins. As the largest family member, RGS12 is widely expressed in many cells and tissues. In the past few decades, it has been found that RGS12 affects the activity of various cells in the human body, participates in many physiological and pathological processes, and plays an important role in the pathogenesis of many diseases. Here, we set out to comprehensively review the role of RGS12 in human diseases and its mechanisms, highlighting the possibility of RGS12 as a therapeutic target for the treatment of human diseases.
Collapse
Affiliation(s)
- Min Jiang
- Department of Geriatric Oncology and Department of Palliative Care, Chongqing University Cancer Hospital, Chongqing 400030, China
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hongmei Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qiong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Tongtong Xu
- General Department of Critical Care Medicine, Zhenjiang Traditional Chinese Medicine Hospital, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Zhenjiang, Jiangsu 212003, China
| | - Le Huang
- Army 72nd Group Military Hospital, Huzhou, Zhejiang 313000, China
| | - Jinghong Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Huiqing Yu
- Department of Geriatric Oncology and Department of Palliative Care, Chongqing University Cancer Hospital, Chongqing 400030, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Junhui Zhang
- Department of Geriatric Oncology and Department of Palliative Care, Chongqing University Cancer Hospital, Chongqing 400030, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
3
|
Payet JM, Baratta MV, Christianson JP, Lowry CA, Hale MW. Modulation of dorsal raphe nucleus connectivity and serotonergic signalling to the insular cortex in the prosocial effects of chronic fluoxetine. Neuropharmacology 2025; 272:110406. [PMID: 40081797 DOI: 10.1016/j.neuropharm.2025.110406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/22/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Long-term exposure to fluoxetine and other selective serotonin reuptake inhibitors alters social and anxiety-related behaviours, including social withdrawal, which is a symptom of several neuropsychiatric disorders. Adaptive changes in serotonergic neurotransmission likely mediate this delayed effect, although the exact mechanisms are still unclear. Here we investigated the functional circuitry underlying the biphasic effects of fluoxetine on social approach-avoidance behaviour and explored the place of serotonergic dorsal raphe nucleus (DR) ensembles in this network, using c-Fos-immunoreactivity as a correlate of activity. Graph theory-based network analysis revealed changes in patterns of functional connectivity and identified neuronal populations in the insular cortex (IC) and serotonergic populations in the DR as central targets to the prosocial effects of chronic fluoxetine. To determine the role of serotonergic projections to the IC, a retrograde tracer was micro-injected in the IC prior to fluoxetine treatment and social behaviour testing. Chronic fluoxetine increased c-Fos immunoreactivity in insula-projecting neurons of the rostral, ventral part of the DR (DRV). Using a virally delivered Tet-Off platform for temporally-controlled marking of neuronal activation, we observed that chronic fluoxetine may affect social behaviour by influencing independent but interconnected populations of serotonergic DR ensembles. These findings suggest that sustained fluoxetine exposure causes adaptive changes in functional connectivity due to altered serotonergic neurotransmission in DR projection targets, and the increased serotonergic signalling to the IC likely mediates some of the therapeutic effects of fluoxetine on social behaviour.
Collapse
Affiliation(s)
- Jennyfer M Payet
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Michael V Baratta
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80301, USA
| | - John P Christianson
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Christopher A Lowry
- Department of Integrative Physiology, Center for Neuroscience, and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Matthew W Hale
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
4
|
Rigney N, Hong W. Prosocial Helping Behavior: Conceptual Issues and Neural Mechanisms. Biol Psychiatry 2025; 97:961-970. [PMID: 40090565 DOI: 10.1016/j.biopsych.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/18/2025]
Abstract
Prosocial helping behavior, characterized by voluntary actions taken to benefit others, plays a vital role in promoting cooperation and maintaining social bonds across human and animal social groups. In this review, we examine key conceptual issues surrounding prosocial behavior, focusing specifically on targeted helping and comforting actions. We outline the behavioral paradigms used to study these two types of prosocial behaviors and summarize recent insights into their underlying neural mechanisms. Drawing on findings across species and with an emphasis on rodent models, we discuss how these behaviors are regulated by molecularly and anatomically defined neural systems and how distinct neuronal populations and circuits may differentially regulate targeted helping and comforting behaviors. Lastly, we discuss the clinical relevance of this research by addressing the implications of prosocial deficits in psychiatric disorders.
Collapse
Affiliation(s)
- Nicole Rigney
- Department of Neurobiology and Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Weizhe Hong
- Department of Neurobiology and Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California.
| |
Collapse
|
5
|
Zorab JM, Li H, Awasthi R, Schinasi A, Cho Y, O'Loughlin T, Wu X. Serotonin and neurotensin inputs in the vCA1 dictate opposing social valence. Nature 2025:10.1038/s41586-025-08809-2. [PMID: 40307550 DOI: 10.1038/s41586-025-08809-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/19/2025] [Indexed: 05/02/2025]
Abstract
The ability to evaluate valence of a social agent based on social experience is essential for an animal's survival in its social group1. Although hippocampal circuits have been implicated in distinguishing novel and familiar conspecifics2-7, it remains unclear how social valence is constructed on the basis of social history and what mechanisms underlie the heightened valence versatility in dynamic relationships. Here we demonstrate that the ventral (v)CA1 integrates serotonin (5-HT) inputs from the dorsal raphe and neurotensin inputs from the paraventricular nucleus of the thalamus (PVT) to determine positive or negative valence of conspecific representations. Specifically, during an appetitive social interaction 5-HT is released into the vCA1 and disinhibits pyramidal neurons through 5-HT1B receptors, whereas neurotensin is released during an aversive social interaction and potentiates vCA1 neurons directly through NTR1s. Optogenetic silencing of dorsal raphe 5-HT and PVT neurotensin inputs into the vCA1 impairs positive and negative social valence, respectively, and excitation flexibly switches valence assignment. These results show how aversive and rewarding social experiences are linked to conspecific identity through converging dorsal raphe 5-HT and PVT neurotensin signals in the vCA1 that instruct opposing valence, and represent a synaptic switch for flexible social valence computation.
Collapse
Affiliation(s)
- Julia M Zorab
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Huanhuan Li
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Richa Awasthi
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anna Schinasi
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yoonjeong Cho
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas O'Loughlin
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiaoting Wu
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
Zhang FR, Liu J, Wen J, Zhang ZY, Li Y, Song E, Hu L, Chen ZF. Distinct oxytocin signaling pathways synergistically mediate rescue-like behavior in mice. Proc Natl Acad Sci U S A 2025; 122:e2423374122. [PMID: 40267134 PMCID: PMC12054824 DOI: 10.1073/pnas.2423374122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/27/2025] [Indexed: 04/25/2025] Open
Abstract
Spontaneous rescue behavior enhances the well-being and survival of social animals, yet the neural mechanisms underlying the recognition and response to conspecifics in need remain unclear. Here, we report that observer mice experience distress when encountering anesthetized conspecifics, prompting spontaneous rescue-like behavior toward the unconscious mice. This behavior facilitates the earlier awakening of anesthetized mice while simultaneously alleviating stress in the helper mice. Our findings reveal that endogenous oxytocin (OXT) release from the hypothalamic paraventricular nucleus (PVN) to the oxytocin receptor (OXTR) in the central nucleus of the amygdala (CeA) regulates the emotional component of rescue-like behavior. In contrast, OXT release from the PVN to OXTR in the dorsal bed nucleus of the stria terminalis (dBNST) mediates the motor component of the behavior. Furthermore, we demonstrate that these two pathways exhibited distinct temporal dynamics and functional roles. The OXTPVN-OXTRCeA pathway is activated in a transient and intense manner, acting as a trigger for rescue-like behavior, whereas the OXTPVN-OXTRdBNST pathway responds in a sustained manner, ensuring the continuation of the behavior. These findings highlight the remarkable ability of rodents to engage in targeted helping behavior and suggest that distinct subcortical oxytocinergic pathways selectively and synergistically regulate the motor and emotional aspects of rescue-like behavior.
Collapse
Affiliation(s)
- Feng-Rui Zhang
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO63110
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing100101, People’s Republic of China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing100101, People’s Republic of China
| | - Juan Liu
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO63110
| | - Jieqi Wen
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen518132, People’s Republic of China
- Shenzhen Medical Academy of Research and Translation, Shenzhen518132, People’s Republic of China
| | - Zi-Yan Zhang
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO63110
| | - Yijia Li
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen518132, People’s Republic of China
- Shenzhen Medical Academy of Research and Translation, Shenzhen518132, People’s Republic of China
| | - Eric Song
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO63110
| | - Li Hu
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing100101, People’s Republic of China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing100101, People’s Republic of China
| | - Zhou-Feng Chen
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO63110
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen518132, People’s Republic of China
- Shenzhen Medical Academy of Research and Translation, Shenzhen518132, People’s Republic of China
- Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO63110
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
7
|
Li H, Zhao Z, Jiang S, Wu H. Brain circuits that regulate social behavior. Mol Psychiatry 2025:10.1038/s41380-025-03037-6. [PMID: 40287553 DOI: 10.1038/s41380-025-03037-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Social interactions are essential for the survival of individuals and the reproduction of populations. Social stressors, such as social defeat and isolation, can lead to emotional disorders and cognitive impairments. Furthermore, dysfunctional social behaviors are hallmark symptoms of various neuropsychiatric disorders, including autism spectrum disorder (ASD) and post-traumatic stress disorder (PTSD). Consequently, understanding the neural circuit mechanisms underlying social behaviors has become a major focus in neuroscience. Social behaviors, which encompass a wide range of expressions and phases, are regulated by complex neural networks. In this review, we summarize recent progress in identifying the circuits involved in different types of social behaviors, including general social investigation, social preference, mating, aggression, parenting, prosocial behaviors, and dominance behaviors. We also outline the circuit mechanisms associated with social deficits in neuropsychiatric disorders, such as ASD, schizophrenia, and PTSD. Given the pivotal role of rodents in social behavior research, our review primarily focuses on neural circuits in these animals. Finally, we propose future research directions, including the development of specific behavioral paradigms, the identification of circuits involved in motor output, the integration of activity, transcriptome, and connectome data, the multifunctional roles of neurons with multiple targets, and the interactions among multiple brain regions.
Collapse
Affiliation(s)
- Hao Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Zhe Zhao
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Shaofei Jiang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
8
|
Ba F, Wei J, Feng QY, Yu CY, Song MX, Hu S, Xu GY, Zhang HL, Jiang GQ. GluR2 overexpression in ACC glutamatergic neurons alleviates cancer-induced bone pain in rats. Mol Med 2025; 31:130. [PMID: 40197156 PMCID: PMC11974031 DOI: 10.1186/s10020-025-01183-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/25/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Cancer-induced bone pain (CIBP) is a complex chronic pain with poorly understood mechanisms. The anterior cingulate cortex (ACC) plays a critical role in processing and modulating chronic pain. This study investigates how the GluR2 receptors (calcium impermeable AMPA receptors) in ACC glutamatergic neurons regulate CIBP. METHODS The CIBP models were established by injecting Walker 256 cells into the tibia of SD rats. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were used as indicators of hyperalgesia. The immunofluorescence staining was employed to detect the expression of c-Fos in ACC and identify the subtypes of co-labeled c-Fos+ neurons. Real-time monitoring of calcium activity in ACC glutamatergic neurons was achieved through the fiber photometry. The excitability of glutamatergic neurons in ACC was modulated using chemicalgenetics and optogenetics techniques. The expression of GluR2 at the mRNA and protein level in ACC were assessed using RT-qPCR and Western blotting. RESULTS There were significant reductions in PWT and PWL of CIBP rats after Walker 256 cell injection. The ACC of CIBP rats showed increased c-Fos expression compared to sham rats, with mainly activated c-Fos co-localized with glutamatergic neurons. Optogenetic or chemogenetic activation of ACC glutamatergic neurons led to increased hyperalgesia in sham rats, while suppression of their activity alleviated hyperalgesia in CIBP rats. Calcium activity in ACC glutamatergic neurons of CIBP rats was increased with suprathreshold stimulation of von Frey filament. Notably, surface GluR2 protein and mRNA were reduced in ACC of CIBP rats. Furthermore, overexpression of GluR2 by AAV-CaMKII-GluR2 injection was decreased c-Fos expression in ACC and alleviated hyperalgesia in CIBP rats. CONCLUSIONS These findings suggest that decreased surface GluR2 receptors in ACC glutamatergic neurons contribute to calcium activity and excessive excitability, thereby inducing CIBP in rats. Conversely, GluR2 overexpression in ACC glutamatergic neurons alleviates CIBP in rats. This study provides a new potential therapeutic approach for targeting the GluR2 receptor to alleviate CIBP for cancer patients.
Collapse
Affiliation(s)
- Futing Ba
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, 1055 San-Xiang Road, Suzhou, 215004, China
| | - Jinrong Wei
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, 1055 San-Xiang Road, Suzhou, 215004, China
| | - Qi-Yan Feng
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, 1055 San-Xiang Road, Suzhou, 215004, China
| | - Chen-Yang Yu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, 1055 San-Xiang Road, Suzhou, 215004, China
| | - Meng-Xue Song
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, 1055 San-Xiang Road, Suzhou, 215004, China
| | - Shufen Hu
- Laboratory for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Guang-Yin Xu
- Laboratory for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Hai-Long Zhang
- Center of Translational Medicine and Clinical Laboratory, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215123, China.
| | - Guo-Qin Jiang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, 1055 San-Xiang Road, Suzhou, 215004, China.
| |
Collapse
|
9
|
Ai L, Han Y, Ge T, Sha S, Zhai XJ, Ji R, Zhou Y, Chen DD, Xie A, Zhang WX, Wu Z, Zhang MR, Yang JX, Hu AK, Cao JL, Song LZ, Zhang HX. Dorsal raphe GABA-ergic neurons regulate the susceptibility to social transfer of pain in mice. Acta Pharmacol Sin 2025:10.1038/s41401-025-01494-x. [PMID: 40011629 DOI: 10.1038/s41401-025-01494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/21/2025] [Indexed: 02/28/2025]
Abstract
Some individuals are more susceptible to developing or suffering from pain states than others. However, the brain mechanisms underlying the susceptibility to pain responses are unknown. In this study, we defined pain susceptibility by recapitulating inter-individual differences in pain responses in mice exposed to a paradigm of socially transferred allodynia (STA), and with a combination of chemogenetic, molecular, pharmacological and electrophysiological approaches, we identified GABA-ergic neurons in the dorsal raphe nucleus (DRN) as a cellular target for the development and maintenance of STA susceptibility. We showed that DRN GABA-ergic neurons were selectively activated in STA-susceptible mice when compared with the unsusceptible (resilient) or control mice. Chemogenetic activation of DRN GABA-ergic neurons promoted STA susceptibility; whereas inhibiting these neurons prevented the development of STA susceptibility and reversed established STA. In in vitro slice electrophysiological analysis, we demonstrated that melanocortin 4 receptor (MC4R) enriched in DRN GABA-ergic neurons was a molecular target for regulating pain susceptibility, possibly by affecting DRN GABA-ergic neuronal activity. These results establish the DRN GABA-ergic neurons as an essential target for controlling pain susceptibility, thus providing important information for developing conceptually innovative and more accurate analgesic strategies.
Collapse
Affiliation(s)
- Lin Ai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yi Han
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ting Ge
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Sha Sha
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiao-Jing Zhai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ran Ji
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yu Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Dan-Dan Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - An Xie
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Wen-Xin Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Zhou Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Mo-Ruo Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jun-Xia Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - An-Kang Hu
- Laboratory Animal Center of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China.
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| | - Ling-Zhen Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Hong-Xing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
10
|
Kaplan HS, Horvath PM, Rahman MM, Dulac C. The neurobiology of parenting and infant-evoked aggression. Physiol Rev 2025; 105:315-381. [PMID: 39146250 DOI: 10.1152/physrev.00036.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/19/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Parenting behavior comprises a variety of adult-infant and adult-adult interactions across multiple timescales. The state transition from nonparent to parent requires an extensive reorganization of individual priorities and physiology and is facilitated by combinatorial hormone action on specific cell types that are integrated throughout interconnected and brainwide neuronal circuits. In this review, we take a comprehensive approach to integrate historical and current literature on each of these topics across multiple species, with a focus on rodents. New and emerging molecular, circuit-based, and computational technologies have recently been used to address outstanding gaps in our current framework of knowledge on infant-directed behavior. This work is raising fundamental questions about the interplay between instinctive and learned components of parenting and the mutual regulation of affiliative versus agonistic infant-directed behaviors in health and disease. Whenever possible, we point to how these technologies have helped gain novel insights and opened new avenues of research into the neurobiology of parenting. We hope this review will serve as an introduction for those new to the field, a comprehensive resource for those already studying parenting, and a guidepost for designing future studies.
Collapse
Affiliation(s)
- Harris S Kaplan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Patricia M Horvath
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Mohammed Mostafizur Rahman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| |
Collapse
|
11
|
Miranda L. Antidepressant and anxiolytic effects of activating 5HT2A receptors in the anterior cingulate cortex and the theoretical mechanisms underlying them - A scoping review of available literature. Brain Res 2025; 1846:149226. [PMID: 39251056 DOI: 10.1016/j.brainres.2024.149226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Psychedelic drugs that activate the 5HT2A receptor have long been the target of extensive clinical research, particularly in models of psychiatric illness. The aim of this literature review was to investigate the therapeutic effects of 5HT2A receptor activation in the anterior cingulate cortex (ACC) and the respective mechanisms that underlie them. Based on the available research, I suggest that 5HT2A receptors in the ACC exert profound changes in excitatory neurotransmission and brain network connectivity in a way that reduces anxious preoccupation and obsessional thoughts, as well as promoting cognitive flexibility and long-lasting mood improvements in anhedonia. This is possibly due to a complex interplay with glutamate and gamma-butyric acid neurotransmission, particularly 5HT2A activation enhances α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor signalling, thus altering the ratio of AMPA to N-methyl-D-Aspartate (NMDA) activity in the ACC, which can dismantle previously established neuronal connections and aid the formation of new ones, an effect that may be beneficial for fear extinction and reversal learning. Psychedelics potentially change intra- and internetwork connectivity, strengthening connectivity from the dorsal ACC / Salience Network to the Default Mode Network (DMN) and Central Executive Network (CEN), which correlates with improvements in attentional shifting and anti-anhedonic effects. Additionally, they may decrease inhibitory influence of the DMN over the CEN which may reduce overevaluation of internal states and ameliorate cognitive deficits. Activation of ACC 5HT2A receptors also has important downstream effects on subcortical areas, including reducing amygdala reactivity to threatening stimuli and enhancing mesolimbic dopamine, respectively improving anxiety and the experience of natural rewards.
Collapse
|
12
|
Cao Y, Zhang J, He X, Wu C, Liu Z, Zhu B, Miao L. Empathic pain: Exploring the multidimensional impacts of biological and social aspects in pain. Neuropharmacology 2024; 258:110091. [PMID: 39059575 DOI: 10.1016/j.neuropharm.2024.110091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/25/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
Empathic pain refers to an individual's perception, judgment, and emotional response to others' pain. This complex social cognitive ability is crucial for healthy interactions in human society. In recent years, with the development of multidisciplinary research in neuroscience, psychology and sociology, empathic pain has become a focal point of widespread attention in these fields. However, the neural mechanism underlying empathic pain remain a controversial and unresolved area. This review aims to comprehensively summarize the history, influencing factors, neural mechanisms and pharmacological interventions of empathic pain. We hope to provide a comprehensive scientific perspective on how humans perceive and respond to others' pain experiences and to provide guidance for future research directions and clinical applications. This article is part of the Special Issue on "Empathic Pain".
Collapse
Affiliation(s)
- Yuchun Cao
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Jiahui Zhang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Xiaofang He
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Chenye Wu
- Department of Emergency Medicine, Changshu Hospital Affiliated to Soochow University, Changshu, 215500, China
| | - Zeyuan Liu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Bin Zhu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China.
| | - Liying Miao
- Department of Blood Purification Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu, China.
| |
Collapse
|
13
|
Zhou S, Liu C, Liu W, Wang Y. Mechanism of the anterior cingulate cortex in sleep regulation. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:1576-1581. [PMID: 40074306 PMCID: PMC11897975 DOI: 10.11817/j.issn.1672-7347.2024.240343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Indexed: 03/14/2025]
Abstract
Sleep disorders refer to conditions characterized by abnormal sleep duration and quality, including insomnia, sleep-disordered breathing, and fragmented sleep, and have become one of the major challenges to modern physical and mental health. The anterior cingulate cortex (ACC) is an important component of the limbic system, located between the cingulate sulcus and the callosal sulcus on the medial surface of the cerebral hemispheres, and plays a critical role in regulating autonomic movements, emotions, and pain. It is an important part of the sleep regulation system. In patients with primary insomnia, reduced sleep duration is associated with lower levels of gamma-aminobutyric acid in the ACC, and these patients often exhibit increased ACC volume and altered functional structure. The ACC is recognized as a central region for pain perception and the regulation of negative emotions; it participates in the control of chronic pain and regulates pain-related insomnia via descending projections. Moreover, the ACC is a key area in the pathophysiology of major depressive disorder, where individuals with depression or poor sleep quality show enhanced functional connectivity between the ACC and regions such as the lateral orbitofrontal cortex, posterior cingulate cortex, precuneus, angular gyrus, and temporal cortex. Abnormal functional connectivity within ACC subregions is implicated in anhedonia and impaired sleep quality in patients with major depressive disorder.
Collapse
Affiliation(s)
- Shangtao Zhou
- Department of Anesthesiology, Second Affiliated Hospital of University of South China, Hengyang Hunan 421000.
- Clinical Research Center for Acute and Chronic Pain in Hunan Province, Hengyang Hunan 421000, China.
| | - Chengxi Liu
- Department of Anesthesiology, Second Affiliated Hospital of University of South China, Hengyang Hunan 421000
- Clinical Research Center for Acute and Chronic Pain in Hunan Province, Hengyang Hunan 421000, China
| | - Wenjie Liu
- Department of Anesthesiology, Second Affiliated Hospital of University of South China, Hengyang Hunan 421000
- Clinical Research Center for Acute and Chronic Pain in Hunan Province, Hengyang Hunan 421000, China
| | - Yan Wang
- Department of Anesthesiology, Second Affiliated Hospital of University of South China, Hengyang Hunan 421000.
- Clinical Research Center for Acute and Chronic Pain in Hunan Province, Hengyang Hunan 421000, China.
| |
Collapse
|
14
|
Zhang H, Li L, Zhang X, Ru G, Zang W. Role of the Dorsal Raphe Nucleus in Pain Processing. Brain Sci 2024; 14:982. [PMID: 39451996 PMCID: PMC11506261 DOI: 10.3390/brainsci14100982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
The dorsal raphe nucleus (DRN) has gained attention owing to its involvement in various physiological functions, such as sleep-awake, feeding, and emotion, with its analgesic role being particularly significant. It is described as the "pain inhibitory nucleus" in the brain. The DRN has diverse projections from hypothalamus, midbrain, and pons. In turn, the DRN is a major source of projections to diverse cortex, limbic forebrain thalamus, and the midbrain and contains highly heterogeneous neuronal subtypes. The activation of DRN neurons in mice prevents the establishment of neuropathic, chronic pain symptoms. Chemogenetic or optogenetic inhibition neurons in the DRN are sufficient to establish pain phenotypes, including long-lasting tactile allodynia, that scale with the extent of stimulation, thereby promoting nociplastic pain. Recent progress has been made in identifying the neural circuits and cellular mechanisms in the DRN that are responsible for sensory modulation. However, there is still a lack of comprehensive review addressing the specific neuron types in the DRN involved in pain modulation. This review summarizes the function of specific cell types within DRN in the pain regulation, and aims to improve understanding of the mechanisms underlying pain regulation in the DRN, ultimately offering insights for further exploration.
Collapse
Affiliation(s)
- Huijie Zhang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (H.Z.); (L.L.)
| | - Lei Li
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (H.Z.); (L.L.)
| | - Xujie Zhang
- Department of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China;
| | - Guanqi Ru
- Department of Medical Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Weidong Zang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (H.Z.); (L.L.)
| |
Collapse
|
15
|
Qu Y, Zhang L, Hou W, Liu L, Liu J, Li L, Guo X, Li Y, Huang C, He Z, Tai F. Distinct medial amygdala oxytocin receptor neurons projections respectively control consolation or aggression in male mandarin voles. Nat Commun 2024; 15:8139. [PMID: 39289343 PMCID: PMC11408735 DOI: 10.1038/s41467-024-51652-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
The individuals often show consolation to distressed companions or show aggression to the intruders. The circuit mechanisms underlying switching between consolation and aggression remain unclear. In the present study, using male mandarin voles, we identified that two distinct subtypes of oxytocin receptor (OXTR) neurons in the medial amygdala (MeA) projecting to the anterior insula (AI) and ventrolateral aspect of ventromedial hypothalamus (VMHvl) response differently to stressed siblings or unfamiliar intruders using c-Fos or calcium recording. Oxytocin release and activities of PVN neurons projecting to MeA increased upon consoling and attacking. OXTR antagonist injection to the MeA reduced consoling and attacking. Apoptosis, optogenetic or pharmacogenetic manipulation of these two populations of neurons altered behavioral responses to these two social stimuli respectively. Here, we show that two subtypes of OXTR neurons in the MeA projecting to the AI or VMHvl causally control consolation or aggression that may underlie switch between consolation and aggression.
Collapse
Affiliation(s)
- Yishan Qu
- Institute of Brain and Behavioural Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Lizi Zhang
- Institute of Brain and Behavioural Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Wenjuan Hou
- Institute of Brain and Behavioural Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Limin Liu
- Institute of Brain and Behavioural Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Jing Liu
- Institute of Brain and Behavioural Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Lu Li
- Institute of Brain and Behavioural Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xing Guo
- Institute of Brain and Behavioural Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yin Li
- Institute of Brain and Behavioural Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Caihong Huang
- Institute of Brain and Behavioural Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhixiong He
- Institute of Brain and Behavioural Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| | - Fadao Tai
- Institute of Brain and Behavioural Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| |
Collapse
|
16
|
Yan C, Liu Z. The role of periaqueductal gray astrocytes in anxiety-like behavior induced by acute stress. Biochem Biophys Res Commun 2024; 720:150073. [PMID: 38754161 DOI: 10.1016/j.bbrc.2024.150073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Astrocytes in the central nervous system play a vital role in modulating synaptic transmission and neuronal activation by releasing gliotransmitters. The 5-HTergic neurons in the ventrolateral periaqueductal gray (vlPAG) are important in anxiety processing. However, it remains uncertain whether the regulation of astrocytic activity on vlPAG 5-HTergic neurons is involved in anxiety processing. Here, through chemogenetic manipulation, we explored the impact of astrocytic activity in the PAG on the regulation of anxiety. To determine the role of astrocytes in the control of anxiety, we induced anxiety-like behaviors in mice through foot shock and investigated their effects on synaptic transmission and neuronal excitability in vlPAG 5-HTergic neurons. Foot shock caused anxiety-like behaviors, which were accompanied with the increase of the amplitude and frequency of miniature excitatory postsynaptic currents (mEPSCs), the area of slow inward currents (SICs), and the spike frequency of action potentials (AP) in vlPAG 5-HTergic neurons. The chemogenetic inhibition of vlPAG astrocytes was found to attenuate stress-induced anxiety-like behaviors and decrease the heightened synaptic transmission and neuronal excitability of vlPAG 5-HTergic neurons. Conversely, chemogenetic activation of vlPAG astrocytes triggered anxiety-like behaviors, enhanced synaptic transmission, and increased the excitability of vlPAG 5-HTergic neurons in unstressed mice. In summary, this study has provided initial insights into the pathway by which astrocytes influence behavior through the rapid regulation of associated neurons. This offers a new perspective for the investigation of the biological mechanisms underlying anxiety.
Collapse
Affiliation(s)
- Chuanting Yan
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, 199 Chang'an South Road, Xi'an, 710062, China; Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, 555 Qiangye Road, Shanghai, 201210, China
| | - Zhiqiang Liu
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, 199 Chang'an South Road, Xi'an, 710062, China.
| |
Collapse
|
17
|
Gachomba MJM, Esteve-Agraz J, Márquez C. Prosocial behaviors in rodents. Neurosci Biobehav Rev 2024; 163:105776. [PMID: 38909642 DOI: 10.1016/j.neubiorev.2024.105776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Prosocial behaviors (i.e., actions that benefit others) are central for social interactions in humans and other animals, by fostering social bonding and cohesion. To study prosociality in rodents, scientists have developed behavioral paradigms where animals can display actions that benefit conspecifics in distress or need. These paradigms have provided insights into the role of social interactions and transfer of emotional states in the expression of prosociality, and increased knowledge of its neural bases. However, prosociality levels are variable: not all tested animals are prosocial. Such variation has been linked to differences in animals' ability to process another's state as well as to contextual factors. Moreover, evidence suggests that prosocial behaviors involve the orchestrated activity of multiple brain regions and neuromodulators. This review aims to synthesize findings across paradigms both at the level of behavior and neural mechanisms. Growing evidence confirms that these processes can be studied in rodents, and intense research in the past years is rapidly advancing our knowledge. We discuss a strong bias in the field towards the study of these processes in negative valence contexts (e.g., pain, fear, stress), which should be taken as an opportunity to open new venues for future research.
Collapse
Affiliation(s)
- Michael J M Gachomba
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Joan Esteve-Agraz
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Instituto de Neurociencias de Alicante, Universidad Miguel Hernández de Elche, Alicante, Spain
| | - Cristina Márquez
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
18
|
Prince N, Peralta Marzal LN, Markidi A, Ahmed S, Adolfs Y, Pasterkamp RJ, Kumar H, Roeselers G, Garssen J, Kraneveld AD, Perez-Pardo P. Prebiotic diet normalizes aberrant immune and behavioral phenotypes in a mouse model of autism spectrum disorder. Acta Pharmacol Sin 2024; 45:1591-1603. [PMID: 38589690 PMCID: PMC11272935 DOI: 10.1038/s41401-024-01268-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/19/2024] [Indexed: 04/10/2024]
Abstract
Autism spectrum disorder (ASD) is a cluster of neurodevelopmental disorders characterized by deficits in communication and behavior. Increasing evidence suggests that the microbiota-gut-brain axis and the likely related immune imbalance may play a role in the development of this disorder. Gastrointestinal deficits and gut microbiota dysfunction have been linked to the development or severity of autistic behavior. Therefore, treatments that focus on specific diets may improve gastrointestinal function and aberrant behavior in individuals with ASD. In this study, we investigated whether a diet containing specific prebiotic fibers, namely, 3% galacto-oligosaccharide/fructo-oligosaccharide (GOS/FOS; 9:1), can mitigate the adverse effects of in utero exposure to valproic acid (VPA) in mice. Pregnant BALB/cByJ dams were injected with VPA (600 mg/kg, sc.) or phosphate-buffered saline (PBS) on gestational day 11 (G11). Male offspring were divided into four groups: (1) in utero PBS-exposed with a control diet, (2) in utero PBS-exposed with GOS/FOS diet, (3) in utero VPA-exposed with a control diet, and (4) in utero VPA-exposed with GOS/FOS diet. Dietary intervention started from birth and continued throughout the duration of the experiment. We showed that the prebiotic diet normalized VPA-induced alterations in male offspring, including restoration of key microbial taxa, intestinal permeability, peripheral immune homeostasis, reduction of neuroinflammation in the cerebellum, and impairments in social behavior and cognition in mice. Overall, our research provides valuable insights into the gut-brain axis involvement in ASD development. In addition, dietary interventions might correct the disbalance in gut microbiota and immune responses and, ultimately, might improve detrimental behavioral outcomes in ASD.
Collapse
Affiliation(s)
- Naika Prince
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Lucia N Peralta Marzal
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Anastasia Markidi
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
- Division of Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Utrecht University, 3584 CL, Utrecht, The Netherlands
| | - Sabbir Ahmed
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Youri Adolfs
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Himanshu Kumar
- Danone Nutricia Research, 3584 CT, Utrecht, The Netherlands
| | - Guus Roeselers
- Danone Nutricia Research, 3584 CT, Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
- Danone Nutricia Research, 3584 CT, Utrecht, The Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
- Department of Neuroscience, Faculty of Science, VU university, 1081 HV, Amsterdam, The Netherlands
| | - Paula Perez-Pardo
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
19
|
Jia L, Yin J, Liu T, Qi W, Du T, Li Q, Ma K, Si J, Yin J, Li Y. Activation of Ventral Tegmental Area Dopaminergic Neurons Projecting to the Parabrachial Nucleus Promotes Emergence from Propofol Anesthesia in Male Rats. Neurochem Res 2024; 49:2060-2074. [PMID: 38814359 DOI: 10.1007/s11064-024-04169-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/22/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Since the clinical introduction of general anesthesia, its underlying mechanisms have not been fully elucidated. The ventral tegmental area (VTA) and parabrachial nucleus (PBN) play pivotal roles in the mechanisms underlying general anesthesia. However, whether dopaminergic (DA) projections from the VTA to the PBN play a role in mediating the effects of general anesthesia is unclear. We microinjected 6-hydroxydopamine into the PBN to damage tyrosine hydroxylase positive (TH+) neurons and found a prolonged recovery time from propofol anesthesia. We used calcium fiber photometry recording to explore the activity of TH + neurons in the PBN. Then, we used chemogenetic and optogenetic approaches either activate the VTADA-PBN pathway, shortening the propofol anesthesia emergence time, or inhibit this pathway, prolonging the emergence time. These data indicate the crucial involvement of TH + neurons in the PBN in regulating emergence from propofol anesthesia, while the activation of the VTADA-PBN pathway facilitates the emergence of propofol anesthesia.
Collapse
Affiliation(s)
- Lei Jia
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Jieting Yin
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Tielong Liu
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Wenqiang Qi
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Tongyu Du
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Quntao Li
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Ketao Ma
- Department of Physiology, School of Medicine, Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi, China
| | - Junqiang Si
- Department of Physiology, School of Medicine, Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi, China
| | - Jiangwen Yin
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.
| | - Yan Li
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.
| |
Collapse
|
20
|
Zhang D, Wei Y. Distinct Neural Mechanisms Between Anesthesia Induction and Emergence: A Narrative Review. Anesth Analg 2024:00000539-990000000-00840. [PMID: 38861419 DOI: 10.1213/ane.0000000000007114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Anesthesia induction and emergence are critical periods for perioperative safety in the clinic. Traditionally, the emergence from general anesthesia has been recognized as a simple inverse process of induction resulting from the elimination of general anesthetics from the central nervous system. However, accumulated evidence has indicated that anesthesia induction and emergence are not mirror-image processes because of the occurrence of hysteresis/neural inertia in both animals and humans. An increasing number of studies have highlighted the critical role of orexinergic neurons and their involved circuits in the selective regulation of emergence but not the induction of general anesthesia. Moreover, additional brain regions have also been implicated in distinct neural mechanisms for anesthesia induction and emergence, which extends the concept that anesthetic induction and emergence are not antiparallel processes. Here, we reviewed the current literature and summarized the evidence regarding the differential mechanism of neural modulation in anesthesia induction and emergence, which will facilitate the understanding of the underlying neural mechanism for emergence from general anesthesia.
Collapse
Affiliation(s)
- Donghang Zhang
- From the Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Department of Anesthesiology, Weill Cornell Medicine, New York, New York
| | - Yiyong Wei
- Department of Anesthesiology, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, China
| |
Collapse
|
21
|
Zhang M, Chen G, Hu RK. How is helping behavior regulated in the brain? Trends Cogn Sci 2024; 28:281-283. [PMID: 38418366 DOI: 10.1016/j.tics.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 03/01/2024]
Abstract
In humans and other animals, individuals can actively respond to the specific needs of others. However, the neural circuits supporting helping behaviors are underspecified. In recent work, Zhang, Wu, and colleagues identified a new role for the anterior cingulate cortex (ACC) in the encoding and regulation of targeted helping behavior (allolicking) in mice.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Psychological Medicine, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China; Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Guohua Chen
- Department of Psychological Medicine, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Rongfeng K Hu
- Department of Psychological Medicine, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China.
| |
Collapse
|
22
|
Khan N, Uribe Isaza J, Rouhi N, Jamani NF, Jabeen S, Gill AK, Tsutsui M, Visser F, Sargin D. Behavioral and Neurophysiological Implications of Pathological Human Tau Expression in Serotonin Neurons. ACS Chem Neurosci 2024; 15:932-943. [PMID: 38377680 PMCID: PMC10921395 DOI: 10.1021/acschemneuro.3c00626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive degenerative disorder that results in a severe loss of brain cells and irreversible cognitive decline. Memory problems are the most recognized symptoms of AD. However, approximately 90% of patients diagnosed with AD suffer from behavioral symptoms, including mood changes and social impairment years before cognitive dysfunction. Recent evidence indicates that the dorsal raphe nucleus (DRN) is among the initial regions that show tau pathology, which is a hallmark feature of AD. The DRN harbors serotonin (5-HT) neurons, which are critically involved in mood, social, and cognitive regulation. Serotonergic impairment early in the disease process may contribute to behavioral symptoms in AD. However, the mechanisms underlying vulnerability and contribution of the 5-HT system to AD progression remain unknown. Here, we performed behavioral and electrophysiological characterizations in mice expressing a phosphorylation-prone form of human tau (hTauP301L) in 5-HT neurons. We found that pathological tau expression in 5-HT neurons induces anxiety-like behavior and alterations in stress-coping strategies in female and male mice. Female mice also exhibited social disinhibition and mild cognitive impairment in response to 5-HT neuron-specific hTauP301L expression. Behavioral alterations were accompanied by disrupted 5-HT neuron physiology in female and male hTauP301L expressing mice with exacerbated excitability disruption in females only. These data provide mechanistic insights into the brain systems and symptoms impaired early in AD progression, which is critical for disease intervention.
Collapse
Affiliation(s)
- Nazmus
S. Khan
- Department
of Psychology, Department of Physiology and Pharmacology, Cumming School of
Medicine, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Juan Uribe Isaza
- Department
of Psychology, Department of Physiology and Pharmacology, Cumming School of
Medicine, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Nahid Rouhi
- Department
of Psychology, Department of Physiology and Pharmacology, Cumming School of
Medicine, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Naila F. Jamani
- Department
of Psychology, Department of Physiology and Pharmacology, Cumming School of
Medicine, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Shaista Jabeen
- Department
of Psychology, Department of Physiology and Pharmacology, Cumming School of
Medicine, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Amisha K. Gill
- Department
of Psychology, Department of Physiology and Pharmacology, Cumming School of
Medicine, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Mio Tsutsui
- Department
of Psychology, Department of Physiology and Pharmacology, Cumming School of
Medicine, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Frank Visser
- Department
of Psychology, Department of Physiology and Pharmacology, Cumming School of
Medicine, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Derya Sargin
- Department
of Psychology, Department of Physiology and Pharmacology, Cumming School of
Medicine, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
23
|
Xue M, Chen QY, Shi W, Zhou Z, Li X, Xu F, Bi G, Yang X, Lu JS, Zhuo M. Whole-brain mapping of afferents to the anterior cingulate cortex in adult mice. Mol Pain 2024; 20:17448069241300990. [PMID: 39614717 DOI: 10.1177/17448069241300990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024] Open
Abstract
The anterior cingulate cortex (ACC) is critical for pain perception, emotion and cognition. Previous studies showed that the ACC has a complex network architecture, which can receive some projection fibers from many brain regions, including the thalamus, the cerebral cortex and other brain regions. However, there was still a lack of whole-brain mapping of the ACC in adult mice. In the present study, we utilized a rabies virus-based retrograde trans-monosynaptic tracing system to map whole-brain afferents to the unilateral ACC in adult mice. We also combined with a new high-throughput, high-speed and high-resolution VISoR imaging technique to generate a three-dimensional whole-brain reconstruction. Our results showed that several principal groups of brain structures send direct monosynaptic inputs to the ACC, including the cerebral cortex, amygdala, striatum, the thalamus, and the brainstem. We also found that cortical neurons in the ACC mainly receive ipsilateral monosynaptic projections. Some cortical areas and forebrain regions also bilaterally projected to the ACC. These findings provide a complete analysis of the afferents to the ACC in adult mice, and whole-brain mapping of ACC afferents would provide important anatomic evidence for the study of pain, memory, and cognition.
Collapse
Affiliation(s)
- Man Xue
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qi-Yu Chen
- CAS Key Laboratory of Brain Connectome and Manipulation, Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Wantong Shi
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Zhaoxiang Zhou
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xuhui Li
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Fang Xu
- CAS Key Laboratory of Brain Connectome and Manipulation, Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Guoqiang Bi
- CAS Key Laboratory of Brain Connectome and Manipulation, Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Xixiao Yang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jing-Shan Lu
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Min Zhuo
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Jiang Y, Zhou J, Song BL, Wang Y, Zhang DL, Zhang ZT, Li LF, Liu YJ. 5-HT1A receptor in the central amygdala and 5-HT2A receptor in the basolateral amygdala are involved in social hierarchy in male mice. Eur J Pharmacol 2023; 957:176027. [PMID: 37659688 DOI: 10.1016/j.ejphar.2023.176027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/12/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
Most social animals self-organize into dominance hierarchies that strongly influence their behavior and health. The serotonin (5-HT) system is believed to play an important role in the formation of social hierarchy. 5-HT receptors are abundantly expressed in the amygdala, which is considered as the central node for the perception and learning of social hierarchy. In this study, we assessed the functions of various 5-HT receptor subtypes related to social rank determination in different subregions of the amygdala using the confrontation tube test in mice. We revealed that most adult C57BL/6 J male mice exhibited a linear social rank after a few days of cohousing. The tube test ranks were slightly related to anxiety-like behavioral performance. After the tube test, the amygdala and 5-HT neurons in the dorsal raphe nucleus were activated in lower-rank individuals. Quantitative real-time polymerase chain reaction analysis revealed that despite the high expression of 5-HT1A receptor mRNA in the central amygdala (CeA), 5-HT2A receptor mRNA expression was downregulated in the basolateral amygdala (BLA) in higher-rank individuals. The dominant-subordinate relationship between mouse pairs could be switched via pharmacological modulation of these receptors in CeA and BLA, suggesting that these expression changes are essential for establishing social ranks. Our findings provide novel insights into the divergent functions of 5-HT receptors in the amygdala related to social hierarchy, which is closely related to our health and welfare.
Collapse
Affiliation(s)
- Yi Jiang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Jie Zhou
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Bai-Lin Song
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Yan Wang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Dong-Lin Zhang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Zheng-Tian Zhang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Lai-Fu Li
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China.
| | - Ying-Juan Liu
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China.
| |
Collapse
|
25
|
Ng AJ, Vincelette LK, Li J, Brady BH, Christianson JP. Serotonin modulates social responses to stressed conspecifics via insular 5-HT 2C receptors in rat. Neuropharmacology 2023; 236:109598. [PMID: 37230216 PMCID: PMC10330840 DOI: 10.1016/j.neuropharm.2023.109598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/04/2023] [Accepted: 05/14/2023] [Indexed: 05/27/2023]
Abstract
Behaviors associated with distress can affect the anxiety-like states in observers and this social transfer of affect shapes social interactions among stressed individuals. We hypothesized that social reactions to stressed individuals engage the serotonergic dorsal raphe nucleus (DRN) which promotes anxiety-like behavior via postsynaptic action of serotonin at serotonin 2C (5-HT2C) receptors in the forebrain. First, we inhibited the DRN by administering an agonist (8-OH-DPAT, 1 μg in 0.5 μL) for the inhibitory 5-HT1A autoreceptors which silences 5-HT neuronal activity. 8-OH-DPAT prevented the approach and avoidance, respectively, of stressed juvenile (PN30) or stressed adult (PN60) conspecifics in the social affective preference (SAP) test in rats. Similarly, systemic administration of a 5-HT2C receptor antagonist (SB242084, 1 mg/kg, i.p.) prevented approach and avoidance of stressed juvenile or adult conspecifics, respectively. Seeking a locus of 5-HT2C action, we considered the posterior insular cortex which is critical for social affective behaviors and rich with 5-HT2C receptors. SB242084 administered directly into the insular cortex (5 μM in 0.5 μL bilaterally) interfered with the typical approach and avoidance behaviors observed in the SAP test. Finally, using fluorescent in situ hybridization, we found that 5-HT2C receptor mRNA (htr2c) is primarily colocalized with mRNA associated with excitatory glutamatergic neurons (vglut1) in the posterior insula. Importantly, the results of these treatments were the same in male and female rats. These data suggest that interactions with stressed others require the serotonergic DRN and that serotonin modulates social affective decision-making via action at insular 5-HT2C receptors.
Collapse
Affiliation(s)
- Alexandra J Ng
- Department of Psychology & Neuroscience, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA.
| | - Lindsay K Vincelette
- Department of Psychology & Neuroscience, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| | - Jiayi Li
- Department of Psychology & Neuroscience, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| | - Bridget H Brady
- Department of Psychology & Neuroscience, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| | - John P Christianson
- Department of Psychology & Neuroscience, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| |
Collapse
|
26
|
Corona A, Choe J, Muñoz-Castañeda R, Osten P, Shea SD. A circuit from the locus coeruleus to the anterior cingulate cortex modulates offspring interactions in mice. Cell Rep 2023; 42:112771. [PMID: 37421626 PMCID: PMC10529180 DOI: 10.1016/j.celrep.2023.112771] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/01/2023] [Accepted: 06/23/2023] [Indexed: 07/10/2023] Open
Abstract
Social sensitivity to other individuals in distress is crucial for survival. The anterior cingulate cortex (ACC) is a structure involved in making behavioral choices and is influenced by observed pain or distress. Nevertheless, our understanding of the neural circuitry underlying this sensitivity is incomplete. Here, we reveal unexpected sex-dependent activation of ACC when parental mice respond to distressed pups by returning them to the nest ("pup retrieval"). We observe sex differences in the interactions between excitatory and inhibitory ACC neurons during parental care, and inactivation of ACC excitatory neurons increased pup neglect. Locus coeruleus (LC) releases noradrenaline in ACC during pup retrieval, and inactivation of the LC-ACC pathway disrupts parental care. We conclude that ACC maintains sex-dependent sensitivity to pup distress under LC modulation. We propose that ACC's involvement in parenting presents an opportunity to identify neural circuits that support sensitivity to the emotional distress of others.
Collapse
Affiliation(s)
- Alberto Corona
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Cold Spring Harbor Laboratory School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jane Choe
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Stephen D Shea
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
27
|
Lv Z, Li L, Li Y, Zhang L, Guo X, Huang C, Hou W, Qu Y, Liu L, Li Y, He Z, Tai F. Involvement of Serotonergic Projections from the Dorsal Raphe to the Medial Preoptic Area in the Regulation of the Pup-Directed Paternal Response of Male Mandarin Voles. Int J Mol Sci 2023; 24:11605. [PMID: 37511364 PMCID: PMC10380723 DOI: 10.3390/ijms241411605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Male mammals display different paternal responses to pups, either attacking or killing the young offspring, or contrastingly, caring for them. The neural circuit mechanism underlying the between-individual variation in the pup-directed responsiveness of male mammals remains unclear. Monogamous mandarin voles were used to complete the present study. The male individuals were identified as paternal and infanticidal voles, according their behavioral responses to pups. It was found that the serotonin release in the medial preoptic area (MPOA), as well as the serotonergic neuron activity, significantly increased upon licking the pups, but showed no changes after attacking the pups, as revealed by the in vivo fiber photometry of the fluorescence signal from the 5-HT 1.0 sensor and the calcium imaging indicator, respectively. It was verified that the 5-HTergic neural projections to the MPOA originated mainly from the ventral part of the dorsal raphe (vDR). Furthermore, the chemogenetic inhibition of serotonergic projections from the vDR to the MPOA decreased the paternal behaviors and shortened the latency to attack the pups. In contrast, the activation of serotonergic neurons via optogenetics extended the licking duration and inhibited infanticide. Collectively, these results elucidate that the serotonergic projections from the vDR to the MPOA, a previously unrecognized pathway, regulate the paternal responses of virgin male mandarin voles to pups.
Collapse
Affiliation(s)
- Zijian Lv
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Lu Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yin Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Lizi Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Xing Guo
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Caihong Huang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wenjuan Hou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yishan Qu
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Limin Liu
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yitong Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhixiong He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
28
|
Lim KY, Hong W. Neural mechanisms of comforting: Prosocial touch and stress buffering. Horm Behav 2023; 153:105391. [PMID: 37301130 PMCID: PMC10853048 DOI: 10.1016/j.yhbeh.2023.105391] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Comforting is a crucial form of prosocial behavior that is important for maintaining social unity and improving the physical and emotional well-being of social species. It is often expressed through affiliative social touch toward someone in distress, providing relief for their distressed state. In the face of increasing global distress, these actions are paramount to the continued improvement of individual welfare and the collective good. Understanding the neural mechanisms responsible for promoting actions focused on benefitting others is particularly important and timely. Here, we review prosocial comforting behavior, emphasizing synthesizing recent studies carried out using rodent models. We discuss its underlying behavioral expression and motivations, and then explore both the neurobiology of prosocial comforting in a helper animal and the neurobiology of stress relief following social touch in a recipient as part of a feedback loop interaction.
Collapse
Affiliation(s)
- Kayla Y Lim
- Department of Neurobiology and Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Weizhe Hong
- Department of Neurobiology and Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
29
|
Higuchi Y, Tada T, Nakachi T, Arakawa H. Serotonergic circuit dysregulation underlying autism-related phenotypes in BTBR mouse model of autism. Neuropharmacology 2023:109634. [PMID: 37301467 DOI: 10.1016/j.neuropharm.2023.109634] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/12/2023]
Abstract
The inbred mouse strain, BTBR T+Itpr3tf/J (BTBR), possesses neuronal and circuit abnormalities that underlie atypical behavioral profiles resembling the major symptoms of human autism spectrum disorder (ASD). Forebrain serotonin (5-HT) transmission has been implicated in ASD-related behavioral alterations. In this study, we assessed 5-HT signals and the functional responsiveness in BTBR mice compared to standard C57BL/6J (B6) control mice to elucidate how 5-HT alterations contribute to behavioral abnormalities in BTBR mice. A lower number of 5-HT neurons in the median raphe, but not in the dorsal raphe, was observed in male and female BTBR mice. Acute systemic injection of buspirone, a 5-HT1A receptor agonist, induced c-Fos in several brain regions in both B6 and BTBR mice; however, blunted c-Fos induction in BTBR mice was documented in the cingulate cortex, basolateral amygdala (BLA), and ventral hippocampus (Hipp). Decreased c-Fos responses in these regions are associated with a lack of buspirone effects on anxiety-like behavior in BTBR mice. Analysis of mRNA expression following acute buspirone injection indicated that 5HTR1a gene downregulation (or upregulation) occurred in the BLA and Hipp of B6 mice, respectively, but not BTBR mice. The mRNA expression of factors associated with neurogenesis or the pro-inflammatory state was not consistently altered by acute buspirone injection. Therefore, 5-HT responsivity via 5-HT1A receptors in the BLA and Hipp are linked to anxiety-like behavior, in which circuits are disrupted in BTBR mice. Other distinct 5-HT circuits from the BLA and Hipp that regulate social behavior are restricted but preserved in BTBR mice.
Collapse
Affiliation(s)
- Yuki Higuchi
- Dept. Systems Physiology, Graduate School of Medicine, University of the Ryukyus, Japan
| | - Tomoaki Tada
- Dept. Systems Physiology, Faculty of Medicine, University of the Ryukyus, Japan
| | - Taiga Nakachi
- Dept. Systems Physiology, Faculty of Medicine, University of the Ryukyus, Japan
| | - Hiroyuki Arakawa
- Dept. Systems Physiology, Graduate School of Medicine, University of the Ryukyus, Japan.
| |
Collapse
|
30
|
Akbar L, Castillo VCG, Olorocisimo JP, Ohta Y, Kawahara M, Takehara H, Haruta M, Tashiro H, Sasagawa K, Ohsawa M, Akay YM, Akay M, Ohta J. Multi-Region Microdialysis Imaging Platform Revealed Dorsal Raphe Nucleus Calcium Signaling and Serotonin Dynamics during Nociceptive Pain. Int J Mol Sci 2023; 24:ijms24076654. [PMID: 37047627 PMCID: PMC10094999 DOI: 10.3390/ijms24076654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
In this research, we combined our ultralight micro-imaging device for calcium imaging with microdialysis to simultaneously visualize neural activity in the dorsal raphe nucleus (DRN) and measure serotonin release in the central nucleus of the amygdala (CeA) and the anterior cingulate cortex (ACC). Using this platform, we observed brain activity following nociception induced by formalin injection in the mouse’s hind paw. Our device showed that DRN fluorescence intensity increased after formalin injection, and the increase was highly correlated with the elevation in serotonin release in both the CeA and ACC. The increase in calcium fluorescence intensity occurred during the acute and inflammatory phases, which suggests the biphasic response of nociceptive pain. Furthermore, we found that the increase in fluorescence intensity was positively correlated with mouse licking behavior. Lastly, we compared the laterality of pain stimulation and found that DRN fluorescence activity was higher for contralateral stimulation. Microdialysis showed that CeA serotonin concentration increased only after contralateral stimulation, while ACC serotonin release responded bilaterally. In conclusion, our study not only revealed the inter-regional serotonergic connection among the DRN, the CeA, and the ACC, but also demonstrated that our device is feasible for multi-site implantation in conjunction with a microdialysis system, allowing the simultaneous multi-modal observation of different regions in the brain.
Collapse
Affiliation(s)
- Latiful Akbar
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | - Virgil Christian Garcia Castillo
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | - Joshua Philippe Olorocisimo
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | - Yasumi Ohta
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | - Mamiko Kawahara
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | - Hironari Takehara
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | - Makito Haruta
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | - Hiroyuki Tashiro
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Kiyotaka Sasagawa
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | - Masahiro Ohsawa
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Yasemin M. Akay
- Biomedical Engineering Department, University of Houston, 3517 Cullen Blvd, Houston, TX 77204, USA
| | - Metin Akay
- Biomedical Engineering Department, University of Houston, 3517 Cullen Blvd, Houston, TX 77204, USA
| | - Jun Ohta
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| |
Collapse
|
31
|
Ng AJ, Vincelette LK, Li J, Brady BH, Christianson JP. Serotonin modulates social responses to stressed conspecifics via insular 5-HT 2C receptors in rat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.18.529065. [PMID: 36824837 PMCID: PMC9949146 DOI: 10.1101/2023.02.18.529065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Social interaction allows for the transfer of affective states among individuals, and the behaviors and expressions associated with pain and fear can evoke anxiety-like states in observers which shape subsequent social interactions. We hypothesized that social reactions to stressed individuals engage the serotonergic dorsal raphe nucleus (DRN) which promotes anxiety-like behavior via postsynaptic action of serotonin at serotonin 2C (5-HT 2C ) receptors in the forebrain. First, we inhibited the DRN by administering an agonist (8-OH-DPAT, 1µg in 0.5µL) for the inhibitory 5-HT 1A autoreceptors which silences 5-HT neuronal activity via G-protein coupled inward rectifying potassium channels. 8-OH-DPAT prevented the approach and avoidance, respectively, of stressed juvenile (PN30) or stressed adult (PN50) conspecifics in the social affective preference (SAP) test in rats. Similarly, systemic administration of a 5-HT 2C receptor antagonist (SB242084, 1mg/kg, i.p.) prevented approach and avoidance of stressed juvenile or adult conspecifics, respectively. Seeking a locus of 5-HT 2C action, we considered the posterior insular cortex which is critical for social affective behaviors and rich with 5-HT 2C receptors. SB242084 administered directly into the insular cortex (5µM bilaterally in 0.5µL ) interfered with the typical approach and avoidance behaviors observed in the SAP test. Finally, using fluorescent in situ hybridization, we found that 5-HT 2C receptor mRNA ( htr2c) is primarily colocalized with mRNA associated with excitatory glutamatergic neurons ( vglut1 ) in the posterior insula. Importantly, the results of these treatments were the same in male and female rats. These data suggest that interactions with stressed others require the serotonergic DRN and that serotonin modulates social affective decision-making via action at insular 5-HT 2C receptors.
Collapse
|
32
|
Wang J, Sun J, Gao L, Zhang D, Chen L, Wu T. Common and unique dysconnectivity profiles of dorsal and median raphe in Parkinson's disease. Hum Brain Mapp 2022; 44:1070-1078. [PMID: 36334274 PMCID: PMC9875924 DOI: 10.1002/hbm.26139] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/11/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022] Open
Abstract
The serotonergic (5-HT) system, which undergoes degeneration in Parkinson's disease (PD), is involved in the pathogenesis of motor and nonmotor symptoms. The dorsal raphe (DR) and median raphe (MR) nuclei are the main source of 5-HT neurons, however, brain connectivity changes in these two nuclei have not been delineated in PD. Here we used resting-state fMRI (rs-fMRI) to characterize functional connectivity profiles of DR and MR and further examine the associations between dysconnectivity of raphe nuclei and clinical phenotypes of PD. We found that DR and MR commonly hypo-connected with the sensorimotor, temporal, and occipital cortex, limbic system, left thalamus, putamen, and cerebellum in PD. DR had unique decreased connectivity with the bilateral prefrontal and cingulate cortices, while MR had lower connectivity with the pons. Moreover, reduced connectivity of DR correlated with depression, drowsiness, and anxiety, whereas dysconnectivity of MR correlated with depression, cognitive deficits, sleep disturbances, and pain. Our findings highlight the complex roles of raphe nuclei in motor and nonmotor symptoms, providing novel insights into the neurophysiological mechanisms underlying pathogenesis of PD.
Collapse
Affiliation(s)
- Junling Wang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Junyan Sun
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Linlin Gao
- Department of General MedicineTianjin Union Medical CenterTianjinChina
| | - Dongling Zhang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Lili Chen
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Tao Wu
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
33
|
Wu YE, Hong W. Neural basis of prosocial behavior. Trends Neurosci 2022; 45:749-762. [PMID: 35853793 PMCID: PMC10039809 DOI: 10.1016/j.tins.2022.06.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 01/10/2023]
Abstract
The ability to behave in ways that benefit other individuals' well-being is among the most celebrated human characteristics crucial for social cohesiveness. Across mammalian species, animals display various forms of prosocial behaviors - comforting, helping, and resource sharing - to support others' emotions, goals, and/or material needs. In this review, we provide a cross-species view of the behavioral manifestations, proximate and ultimate drives, and neural mechanisms of prosocial behaviors. We summarize key findings from recent studies in humans and rodents that have shed light on the neural mechanisms underlying different processes essential for prosocial interactions, from perception and empathic sharing of others' states to prosocial decisions and actions.
Collapse
Affiliation(s)
- Ye Emily Wu
- Department of Neurobiology and Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Weizhe Hong
- Department of Neurobiology and Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
34
|
Keysers C, Knapska E, Moita MA, Gazzola V. Emotional contagion and prosocial behavior in rodents. Trends Cogn Sci 2022; 26:688-706. [PMID: 35667978 DOI: 10.1016/j.tics.2022.05.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 01/09/2023]
Abstract
Empathy is critical to adjusting our behavior to the state of others. The past decade dramatically deepened our understanding of the biological origin of this capacity. We now understand that rodents robustly show emotional contagion for the distress of others via neural structures homologous to those involved in human empathy. Their propensity to approach others in distress strengthens this effect. Although rodents can also learn to favor behaviors that benefit others via structures overlapping with those of emotional contagion, they do so less reliably and more selectively. Together, this suggests evolution selected mechanisms for emotional contagion to prepare animals for dangers by using others as sentinels. Such shared emotions additionally can, under certain circumstances, promote prosocial behavior.
Collapse
Affiliation(s)
- Christian Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Amsterdam, the Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands.
| | - Ewelina Knapska
- Laboratory of Emotions' Neurobiology, Center of Excellence for Neural Plasticity and Brain Disorders BRAINCITY, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marta A Moita
- Champalimaud Neuroscience Progamme, Champalimaud Foundation, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Valeria Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Amsterdam, the Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
35
|
Francis-Oliveira J, Leitzel O, Niwa M. Are the Anterior and Mid-Cingulate Cortices Distinct in Rodents? Front Neuroanat 2022; 16:914359. [PMID: 35721461 PMCID: PMC9200948 DOI: 10.3389/fnana.2022.914359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The prefrontal cortex (PFC) is involved in cognitive control, emotional regulation, and motivation. In this Perspective article, we discuss the nomenclature of the subdivisions of the medial prefrontal cortex (mPFC), since the anatomical definitions of the PFC subregions have been confusing. Although the mid-cingulate cortex (MCC) and anterior cingulate cortex (ACC) have distinct features in humans and non-human primates, it is unclear whether these regions serve different functions in rodents. Accurate mapping of the cingulate cortex in rodents is important to allow comparisons between species. A proposed change in the nomenclature of the rodent cingulate cortex to anterior cingulate cortex (aCg) and mid-cingulate cortex (mCg) is presented based on our data. We show evidence for distinct cortico-cortical projections from the aCg and mCg to the PrL. The aCg→PrL neurons were abundant in layer VI, while the mCg→PrL neurons were mainly distributed in layer V. In addition, a sex difference was detected in the aCg, with males having a higher proportion of layer V neurons projecting to the PrL than females. Based on this laminar distribution and considering that layer V and VI send efferent projections to different brain areas such as the brain stem, amygdala, and thalamus, we propose that aCg and mCg need to be considered separate entities for future rodent studies. This new definition will put into perspective the role of rodent cingulate cortex in diverse aspects of cognition and facilitate interspecies comparisons in cingulate cortex research.
Collapse
Affiliation(s)
- Jose Francis-Oliveira
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Owen Leitzel
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Minae Niwa
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Neurobiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Biomedical Engineering, School of Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Minae Niwa,
| |
Collapse
|
36
|
Cai Y, Zhang X, Jiang T, Zhong H, Han X, Ma R, Wu R. 8-OH-DPAT enhances dopamine D2-induced maternal disruption in rats. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:467-477. [DOI: 10.1007/s00359-022-01551-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022]
|
37
|
Chun EK, Donovan M, Liu Y, Wang Z. Behavioral, neurochemical, and neuroimmune changes associated with social buffering and stress contagion. Neurobiol Stress 2022; 16:100427. [PMID: 35036478 PMCID: PMC8749234 DOI: 10.1016/j.ynstr.2022.100427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/21/2021] [Accepted: 01/02/2022] [Indexed: 02/02/2023] Open
Abstract
Social buffering can provide protective effects on stress responses and their subsequent negative health outcomes. Although social buffering is beneficial for the recipient, it can also have anxiogenic effects on the provider of the social buffering - a phenomena referred to as stress contagion. Social buffering and stress contagion usually occur together, but they have traditionally been studied independently, thus limiting our understanding of this dyadic social interaction. In the present study, we examined the effects of preventative social buffering and stress contagion in socially monogamous prairie voles (Microtus ochrogaster). We tested the hypothesis that this dynamic social interaction is associated with coordinated alterations in behaviors, neurochemical activation, and neuroimmune responses. To do so, adult male prairie voles were stressed via an acute immobilization restraint tube (IMO) either alone (Alone) or with their previously pair-bonded female partner (Partner) in the cage for 1 h. In contrast, females were placed in a cage containing either an empty IMO tube (Empty) or one that contained their pair-bonded male (Partner). Anxiety-like behavior was tested on the elevated plus maze (EPM) following the 60-mins test and brain sections were processed for neurochemical/neuroimmune marker labeling for all subjects. Our data indicate that females in the Partner group were in contact with and sniffed the IMO tube more, showed fewer anxiety-like behaviors, and had a higher level of oxytocin expression in the paraventricular nucleus of the hypothalamus (PVN) compared to the Empty group females. Males in the Partner group had lower levels of anxiety-like behavior during the EPM test, greater activation of corticotropin-releasing hormone expressing neurons in the PVN, lower activation of serotonin neurons in the dorsal raphe, and lower levels of microgliosis in the nucleus accumbens. Taken together, these data suggest brain region- and neurochemical-specific alterations as well as neuroinflammatory changes that may be involved in the regulation of social buffering and stress contagion behaviors.
Collapse
Affiliation(s)
- Eileen K. Chun
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| | - Meghan Donovan
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
- Rocky Mountain Mental Illness Research Education and Clinical Center, Rocky Mountain Regional VA Medical Center, 1700 N Wheeling St, Aurora, CO, 80045, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Yan Liu
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| |
Collapse
|
38
|
mGlu2/3 receptors within the ventral part of the lateral septal nuclei modulate stress resilience and vulnerability in mice. Brain Res 2022; 1779:147783. [DOI: 10.1016/j.brainres.2022.147783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 11/17/2022]
|
39
|
Barettino C, Ballesteros-Gonzalez Á, Aylón A, Soler-Sanchis X, Ortí L, Díaz S, Reillo I, García-García F, Iborra FJ, Lai C, Dehorter N, Leinekugel X, Flames N, Del Pino I. Developmental Disruption of Erbb4 in Pet1+ Neurons Impairs Serotonergic Sub-System Connectivity and Memory Formation. Front Cell Dev Biol 2021; 9:770458. [PMID: 34957103 PMCID: PMC8703035 DOI: 10.3389/fcell.2021.770458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/19/2021] [Indexed: 11/30/2022] Open
Abstract
The serotonergic system of mammals innervates virtually all the central nervous system and regulates a broad spectrum of behavioral and physiological functions. In mammals, serotonergic neurons located in the rostral raphe nuclei encompass diverse sub-systems characterized by specific circuitry and functional features. Substantial evidence suggest that functional diversity of serotonergic circuits has a molecular and connectivity basis. However, the landscape of intrinsic developmental mechanisms guiding the formation of serotonergic sub-systems is unclear. Here, we employed developmental disruption of gene expression specific to serotonergic subsets to probe the contribution of the tyrosine kinase receptor ErbB4 to serotonergic circuit formation and function. Through an in vivo loss-of-function approach, we found that ErbB4 expression occurring in a subset of serotonergic neurons, is necessary for axonal arborization of defined long-range projections to the forebrain but is dispensable for the innervation of other targets of the serotonergic system. We also found that Erbb4-deletion does not change the global excitability or the number of neurons with serotonin content in the dorsal raphe nuclei. In addition, ErbB4-deficiency in serotonergic neurons leads to specific behavioral deficits in memory processing that involve aversive or social components. Altogether, our work unveils a developmental mechanism intrinsically acting through ErbB4 in subsets of serotonergic neurons to orchestrate a precise long-range circuit and ultimately involved in the formation of emotional and social memories.
Collapse
Affiliation(s)
- Candela Barettino
- Neural Plasticity Laboratory, Príncipe Felipe Research Center, Valencia, Spain
| | | | - Andrés Aylón
- Neural Plasticity Laboratory, Príncipe Felipe Research Center, Valencia, Spain
| | | | - Leticia Ortí
- Neural Plasticity Laboratory, Príncipe Felipe Research Center, Valencia, Spain
| | - Selene Díaz
- Neural Plasticity Laboratory, Príncipe Felipe Research Center, Valencia, Spain
| | - Isabel Reillo
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia, Spain
| | - Francisco García-García
- Bioinformatics and Biostatistics Unit, Príncipe Felipe Research Center (CIPF), Valencia, Spain
| | | | - Cary Lai
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | | | - Xavier Leinekugel
- Institut de Neurobiology de la Méditerranée (INMED, UMR1249), INSERM, Marseille, France
| | - Nuria Flames
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia, Spain
| | - Isabel Del Pino
- Neural Plasticity Laboratory, Príncipe Felipe Research Center, Valencia, Spain
| |
Collapse
|
40
|
Pomrenze MB, Walker LC, Giardino WJ. Gray areas: Neuropeptide circuits linking the Edinger-Westphal and Dorsal Raphe nuclei in addiction. Neuropharmacology 2021; 198:108769. [PMID: 34481834 PMCID: PMC8484048 DOI: 10.1016/j.neuropharm.2021.108769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 01/16/2023]
Abstract
The circuitry of addiction comprises several neural networks including the midbrain - an expansive region critically involved in the control of motivated behaviors. Midbrain nuclei like the Edinger-Westphal (EW) and dorsal raphe (DR) contain unique populations of neurons that synthesize many understudied neuroactive molecules and are encircled by the periaqueductal gray (PAG). Despite the proximity of these special neuron classes to the ventral midbrain complex and surrounding PAG, functions of the EW and DR remain substantially underinvestigated by comparison. Spanning approximately -3.0 to -5.2 mm posterior from bregma in the mouse, these various cell groups form a continuum of neurons that we refer to collectively as the subaqueductal paramedian zone. Defining how these pathways modulate affective behavioral states presents a difficult, yet conquerable challenge for today's technological advances in neuroscience. In this review, we cover the known contributions of different neuronal subtypes of the subaqueductal paramedian zone. We catalogue these cell types based on their spatial, molecular, connectivity, and functional properties and integrate this information with the existing data on the EW and DR in addiction. We next discuss evidence that links the EW and DR anatomically and functionally, highlighting the potential contributions of an EW-DR circuit to addiction-related behaviors. Overall, we aim to derive an integrated framework that emphasizes the contributions of EW and DR nuclei to addictive states and describes how these cell groups function in individuals suffering from substance use disorders. This article is part of the special Issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.
Collapse
Affiliation(s)
- Matthew B Pomrenze
- Dept. of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5453, USA
| | - Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - William J Giardino
- Dept. of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5453, USA; Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, 94305-5453, USA.
| |
Collapse
|
41
|
Li L, Zhang LZ, He ZX, Ma H, Zhang YT, Xun YF, Yuan W, Hou WJ, Li YT, Lv ZJ, Jia R, Tai FD. Dorsal raphe nucleus to anterior cingulate cortex 5-HTergic neural circuit modulates consolation and sociability. eLife 2021; 10:67638. [PMID: 34080539 PMCID: PMC8213405 DOI: 10.7554/elife.67638] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Consolation is a common response to the distress of others in humans and some social animals, but the neural mechanisms underlying this behavior are not well characterized. By using socially monogamous mandarin voles, we found that optogenetic or chemogenetic inhibition of 5-HTergic neurons in the dorsal raphe nucleus (DR) or optogenetic inhibition of serotonin (5-HT) terminals in the anterior cingulate cortex (ACC) significantly decreased allogrooming time in the consolation test and reduced sociability in the three-chamber test. The release of 5-HT within the ACC and the activity of DR neurons were significantly increased during allogrooming, sniffing, and social approaching. Finally, we found that the activation of 5-HT1A receptors in the ACC was sufficient to reverse consolation and sociability deficits induced by the chemogenetic inhibition of 5-HTergic neurons in the DR. Our study provided the first direct evidence that DR-ACC 5-HTergic neural circuit is implicated in consolation-like behaviors and sociability.
Collapse
Affiliation(s)
- Laifu Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China.,College of Life Sciences, Nanyang Normal University, Nanyang, China
| | - Li-Zi Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhi-Xiong He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Huan Ma
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yu-Ting Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yu-Feng Xun
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wei Yuan
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Provincial Key Laboratory of Acupuncture and Medications, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Wen-Juan Hou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yi-Tong Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zi-Jian Lv
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Rui Jia
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Fa-Dao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|