1
|
Ikebara JM, Jorge RS, Marinho LSR, Higa GSV, Adhikari A, Reis FMCV, Borges FS, Ulrich H, Takada SH, De Pasquale R, Kihara AH. Hippocampal Interneurons Shape Spatial Coding Alterations in Neurological Disorders. Mol Neurobiol 2025:10.1007/s12035-025-05020-2. [PMID: 40392508 DOI: 10.1007/s12035-025-05020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 04/29/2025] [Indexed: 05/22/2025]
Abstract
Hippocampal interneurons (INs) play a fundamental role in regulating neural oscillations, modulating excitatory circuits, and shaping spatial representation. While historically overshadowed by excitatory pyramidal cells in spatial coding research, recent advances have demonstrated that inhibitory INs not only coordinate network dynamics but also contribute directly to spatial information processing. This review aims to provide a novel integrative perspective on how distinct IN subtypes participate in spatial coding and how their dysfunction contributes to cognitive deficits in neurological disorders such as epilepsy, Alzheimer's disease (AD), traumatic brain injury (TBI), and cerebral hypoxia-ischemia. We synthesize recent findings demonstrating that different IN classes-including parvalbumin (PV)-, somatostatin (SST)-, cholecystokinin (CCK)-, and calretinin (CR)-expressing neurons-exhibit spatially selective activity, challenging traditional views of spatial representation, and influence memory consolidation through network-level interactions. By leveraging cutting-edge techniques such as in vivo calcium imaging and optogenetics, new evidence suggests that INs encode spatial information with a level of specificity previously attributed only to pyramidal cells. Furthermore, we investigate the impact of inhibitory circuit dysfunction in neurological disorders, examining how disruptions in interneuronal activity lead to impaired theta-gamma coupling, altered sharp wave ripples, and destabilized place cell representations, ultimately resulting in spatial memory deficits. This review advances the field by shifting the focus from pyramidal-centered models to a more nuanced understanding of the hippocampal network, emphasizing the active role of INs in spatial coding. By highlighting the translational potential of targeting inhibitory circuits for therapeutic interventions, we propose novel strategies for restoring hippocampal network function in neurological conditions. Readers will gain a comprehensive understanding of the emerging role of INs in spatial representation and the critical implications of their dysfunction, paving the way for future research on interneuron-targeted treatments for cognitive disorders.
Collapse
Affiliation(s)
- Juliane Midori Ikebara
- Neurogenetics Laboratory, Center of Mathematics, Computation and Cognition, Federal University of ABC (UFABC), Alameda da Universidade, S/N, São Bernardo Do Campo, SP, 09606-045, Brazil
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, 05508-000, Brazil
| | - Renata Silva Jorge
- Neurogenetics Laboratory, Center of Mathematics, Computation and Cognition, Federal University of ABC (UFABC), Alameda da Universidade, S/N, São Bernardo Do Campo, SP, 09606-045, Brazil
| | - Luciana Simões Rafagnin Marinho
- Neurogenetics Laboratory, Center of Mathematics, Computation and Cognition, Federal University of ABC (UFABC), Alameda da Universidade, S/N, São Bernardo Do Campo, SP, 09606-045, Brazil
| | - Guilherme Shigueto Vilar Higa
- Neurogenetics Laboratory, Center of Mathematics, Computation and Cognition, Federal University of ABC (UFABC), Alameda da Universidade, S/N, São Bernardo Do Campo, SP, 09606-045, Brazil
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), São Paulo, SP, 05508-000, Brazil
| | - Avishek Adhikari
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90024, USA
| | - Fernando M C V Reis
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Fernando S Borges
- Neurogenetics Laboratory, Center of Mathematics, Computation and Cognition, Federal University of ABC (UFABC), Alameda da Universidade, S/N, São Bernardo Do Campo, SP, 09606-045, Brazil
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, 11203, USA
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), São Paulo, SP, 05508-000, Brazil
| | - Silvia Honda Takada
- Neurogenetics Laboratory, Center of Mathematics, Computation and Cognition, Federal University of ABC (UFABC), Alameda da Universidade, S/N, São Bernardo Do Campo, SP, 09606-045, Brazil
| | - Roberto De Pasquale
- Neurophysiology Laboratory, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, 05508-000, Brazil
| | - Alexandre Hiroaki Kihara
- Neurogenetics Laboratory, Center of Mathematics, Computation and Cognition, Federal University of ABC (UFABC), Alameda da Universidade, S/N, São Bernardo Do Campo, SP, 09606-045, Brazil.
| |
Collapse
|
2
|
Ho 何鎮宇 ECY, Newton AJH, Urdapilleta E, Dura-Bernal S, Truccolo W. Downmodulation of Potassium Conductances Induces Epileptic Seizures in Cortical Network Models Via Multiple Synergistic Factors. J Neurosci 2025; 45:e1909232025. [PMID: 39880680 PMCID: PMC11949479 DOI: 10.1523/jneurosci.1909-23.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025] Open
Abstract
Voltage-gated potassium conductances g K play a critical role not only in normal neural function, but also in many neurological disorders and related therapeutic interventions. In particular, in an important animal model of epileptic seizures, 4-aminopyridine (4-AP) administration is thought to induce seizures by reducing g K in cortex and other brain areas. Interestingly, 4-AP has also been useful in the treatment of neurological disorders such as multiple sclerosis and spinal cord injury, where it is thought to improve action potential propagation in axonal fibers. Here, we examined g K downmodulation in biophysical models of cortical networks that included different neuron types organized in layers, potassium diffusion in interstitial and larger extracellular spaces, and glial buffering. Our findings are fourfold. First, g K downmodulation in pyramidal and fast-spiking inhibitory interneurons led to differential effects, making the latter much more likely to enter depolarization block. Second, both neuron types showed an increase in the duration and amplitude of action potentials, with more pronounced effects in pyramidal neurons. Third, a sufficiently strong g K reduction dramatically increased network synchrony, resulting in seizure-like dynamics. Fourth, we hypothesized that broader action potentials were likely to not only improve their propagation, as in 4-AP therapeutic uses, but also to increase synaptic coupling. Notably, graded-synapses incorporating this effect further amplified network synchronization and seizure-like dynamics. Overall, our findings elucidate different effects that g K downmodulation may have in cortical networks, explaining its potential role in both pathological neural dynamics and therapeutic applications.
Collapse
Affiliation(s)
- Ernest C Y Ho 何鎮宇
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - Adam J H Newton
- Department of Physiology and Pharmacology, State University of New York (SUNY), Downstate Health Sciences University, Brooklyn, New York 11203
| | - Eugenio Urdapilleta
- Centro Atómico Bariloche and Instituto Balseiro, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, R8402AGP Bariloche, Río Negro, Argentina
| | - Salvador Dura-Bernal
- Department of Physiology and Pharmacology, State University of New York (SUNY), Downstate Health Sciences University, Brooklyn, New York 11203
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| | - Wilson Truccolo
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
3
|
Lévesque M, Gnatkovsky V, Li FR, Scalmani P, Uva L, Avoli M, de Curtis M. Fast activity chirp patterns in focal seizures from patients and animal models. Epilepsia 2025; 66:621-631. [PMID: 39723840 PMCID: PMC11908669 DOI: 10.1111/epi.18245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Time-frequency analysis of focal seizure electroencephalographic signals performed with depth electrodes in human temporal lobe structures has revealed the occurrence at onset of oscillations at approximately 30-100 Hz that feature a monotonic rapid decay in frequency content. This seizure onset pattern, referred to as chirp, has been identified as a highly specific and sensitive marker of focal seizures that are characterized by low-voltage fast activity. We report that this chirp pattern is also observed in animal models of temporal lobe epilepsy in both in vivo and in vitro preparations. We propose here that chirps mirror the involvement of synchronous interneuron firing that is known to represent a specific cellular mechanism leading to the initiation of focal seizures, in particular those characterized by low-voltage fast activity.
Collapse
Affiliation(s)
- Maxime Lévesque
- Department of Neurology and NeurosurgeryMontreal Neurological Institute‐HospitalMontrealQuebecCanada
| | - Vadym Gnatkovsky
- Epilepsy UnitFondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo BestaMilanItaly
- Department of EpileptologyUniversitätsklinikum BonnBonnGermany
| | - Fei Ran Li
- Department of Neurology and NeurosurgeryMontreal Neurological Institute‐HospitalMontrealQuebecCanada
- Department of PhysiologyMcGill UniversityMontrealQuebecCanada
| | - Paolo Scalmani
- Epilepsy UnitFondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo BestaMilanItaly
| | - Laura Uva
- Epilepsy UnitFondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo BestaMilanItaly
| | - Massimo Avoli
- Department of Neurology and NeurosurgeryMontreal Neurological Institute‐HospitalMontrealQuebecCanada
- Department of PhysiologyMcGill UniversityMontrealQuebecCanada
| | - Marco de Curtis
- Epilepsy UnitFondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo BestaMilanItaly
| |
Collapse
|
4
|
Amakhin DV, Sinyak DS, Soboleva EB, Zaitsev AV. HCN channels promote Na/K-ATPase activity during slow afterhyperpolarization after seizure-like events in vitro. J Physiol 2025; 603:1197-1223. [PMID: 39918972 DOI: 10.1113/jp286965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/17/2025] [Indexed: 02/09/2025] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are strongly involved in the regulation of neuronal excitability, with their precise role being determined by their subcellular localization and interaction with other ion channels and transporters. Their role in causing epileptic seizures is not fully understood. Using whole-cell patch-clamp recordings of rat brain slices, we show that HCN channels constitute a substantial fraction of the membrane conductance of deep entorhinal principal neurons. Using the 4-aminopyridine model of epileptic seizures in vitro, we show that HCN channel blockade with ZD-7288 increases the frequency of seizure-like events (SLEs) and alters the time course of afterhyperpolarization after SLEs (post-SLE AHP), promoting its faster onset and making it more transient. Simultaneous whole-cell patch-clamp and K+ ion-selective electrode recordings revealed that the time course of changes in neuronal membrane potential and extracellular K+ concentration after SLEs in the presence of ZD-7288 differed from that in the control, which can be explained by altered Na/K-ATPase [sodium-potassium adenosine triphosphatase (sodium-potassium pump)] activity after SLEs. To confirm this hypothesis, we demonstrated the ouabain sensitivity of post-SLE AHP and showed that loading neurons with high intracellular Na+ concentration prevented the effect of HCN channel blockade on post-SLE AHP. Taken together, the results obtained suggest that during post-SLE AHP, the influx of Na+ through HCN channels helps to maintain Na/K-ATPase hyperactivity, resulting in the longer pauses between SLEs. Mathematical modelling confirmed the feasibility of the proposed mechanism. Such an interplay between Na/K-ATPase and HCN channels may be crucial for the regulation of seizure termination in epilepsy. KEY POINTS: HCN channels constitute a significant fraction of the resting membrane conductance of deep entorhinal principal neurons. HCN channels modulate the seizure-like events (SLEs) in the entorhinal cortex. The blockade of HCN channels increases the frequency of SLEs and reduces the duration of the afterhyperpolarization that follows them. The results suggest that HCN channels affect intracellular sodium ion concentration dynamics, prolonging the activity of the Na/K-ATPase [sodium-potassium adenosine triphosphatase (sodium-potassium) pump] after SLEs, which in turn results in longer pauses between them.
Collapse
Affiliation(s)
- Dmitry V Amakhin
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Denis S Sinyak
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Elena B Soboleva
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Aleksey V Zaitsev
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| |
Collapse
|
5
|
Liu Z, De Schutter E, Li Y. GABA-Induced Seizure-Like Events Caused by Multi-ionic Interactive Dynamics. eNeuro 2024; 11:ENEURO.0308-24.2024. [PMID: 39443111 PMCID: PMC11524612 DOI: 10.1523/eneuro.0308-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024] Open
Abstract
Experimental evidence showed that an increase in intracellular chloride concentration [Formula: see text] caused by gamma-aminobutyric acid (GABA) input can promote epileptic firing activity, but the actual mechanisms remain elusive. Here in this theoretical work, we show that influx of chloride and concomitant bicarbonate ion [Formula: see text] efflux upon GABA receptor activation can induce epileptic firing activity by transition of GABA from inhibition to excitation. We analyzed the intrinsic property of neuron firing states as a function of [Formula: see text] We found that as [Formula: see text] increases, the system exhibits a saddle-node bifurcation, above which the neuron exhibits a spectrum of intensive firing, periodic bursting interrupted by depolarization block (DB) state, and eventually a stable DB through a Hopf bifurcation. We demonstrate that only GABA stimuli together with [Formula: see text] efflux can switch GABA's effect to excitation which leads to a series of seizure-like events (SLEs). Exposure to a low [Formula: see text] can drive neurons with high concentrations of [Formula: see text] downward to lower levels of [Formula: see text], during which it could also trigger SLEs depending on the exchange rate with the bath. Our analysis and simulation results show how the competition between GABA stimuli-induced accumulation of [Formula: see text] and [Formula: see text] application-induced decrease of [Formula: see text] regulates the neuron firing activity, which helps to understand the fundamental ionic dynamics of SLE.
Collapse
Affiliation(s)
- Zichao Liu
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Erik De Schutter
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Yinyun Li
- School of Systems Science, Beijing Normal University, Beijing 100875, China
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| |
Collapse
|
6
|
Higashi R, Morita M, Kawaguchi SY. Cl --dependent amplification of excitatory synaptic potentials at distal dendrites revealed by voltage imaging. SCIENCE ADVANCES 2024; 10:eadj2547. [PMID: 39196927 PMCID: PMC11352850 DOI: 10.1126/sciadv.adj2547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/25/2024] [Indexed: 08/30/2024]
Abstract
The processing of synaptic signals in somatodendritic compartments determines neuronal computation. Although the amplification of excitatory signals by local voltage-dependent cation channels has been extensively studied, their spatiotemporal dynamics in elaborate dendritic branches remain obscure owing to technical limitations. Using fluorescent voltage imaging throughout dendritic arborizations in hippocampal pyramidal neurons, we demonstrate a unique chloride ion (Cl-)-dependent remote computation mechanism in the distal branches. Excitatory postsynaptic potentials triggered by local laser photolysis of caged glutamate spread along dendrites, with gradual amplification toward the distal end while attenuation toward the soma. Tour de force subcellular patch-clamp recordings from thin branches complemented by biophysical model simulations revealed that the asymmetric augmentation of excitation relies on tetrodotoxin-resistant sodium ion (Na+) channels and Cl- conductance accompanied by a more hyperpolarized dendritic resting potential. Together, this study reveals the cooperative voltage-dependent actions of cation and anion conductance for dendritic supralinear computation, which can locally decode the spatiotemporal context of synaptic inputs.
Collapse
|
7
|
Shaker H, Li J, Kobayashi M, Grinenko O, Bulacio J, Leahy RM, Chauvel P. Is High-Frequency Activity at Seizure Onset Inhibitory? A Stereoelectroencephalographic Study of Motor Cortex Seizures. Ann Neurol 2024; 95:1127-1137. [PMID: 38481022 DOI: 10.1002/ana.26883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 05/18/2024]
Abstract
OBJECTIVE In the era of stereoelectroencephalography (SEEG), many studies have been devoted to understanding the role of interictal high-frequency oscillations. High-frequency activity (HFA) at seizure onset has been identified as a marker of epileptogenic zone. We address the physiological significance of ictal HFAs and their relation to clinical semiology. METHODS We retrospectively identified patients with pure focal primary motor epilepsy. We selected only patients in whom SEEG electrodes were optimally placed in the motor cortex as confirmed by electrical stimulation. Based on these narrow inclusion criteria, we extensively studied 5 patients (3 males and 2 females, mean age = 22.4 years) using time-frequency analysis and time correlation with motor signs onset. RESULTS A total of 157 analyzable seizures were recorded in 5 subjects. The first 2 subjects had tonic or clonic semiology with rare secondary generalization. Subject 3 had atonic onset followed by clonic hand/arm flexion. Subject 4 had clusters of tonic and atonic facial movements. Subject 5 had upper extremity tonic movements. The median frequency of the fast activity extracted from the Epileptogenic Zone Fingerprint pipeline in the first 4 subjects was 76 Hz (interquartile range = 21.9Hz). Positive motor signs did not occur concomitantly with high gamma activity developing in the motor cortex. Motor signs began at the end of HFAs. INTERPRETATION This study supports the hypothesis of an inhibitory effect of ictal HFAs. The frequency range in the gamma band was associated with the direction of the clinical output effect. Changes from inhibitory to excitatory effect occurred when discharge frequency dropped to low gamma or beta. ANN NEUROL 2024;95:1127-1137.
Collapse
Affiliation(s)
- Hussam Shaker
- Epilepsy Center, Trinity Health Hauenstein Center, Grand Rapids, MI, USA
| | - Jian Li
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Masako Kobayashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Olesya Grinenko
- Epilepsy Center, Trinity Health Hauenstein Center, Grand Rapids, MI, USA
| | - Juan Bulacio
- Epilepsy Center, Cleveland Clinic Neurological Institute, Cleveland, OH, USA
| | - Richard M Leahy
- Signal and Image Processing Institute, University of Southern California, Los Angeles, CA, USA
| | - Patrick Chauvel
- Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
8
|
Wendling F, Koksal-Ersoz E, Al-Harrach M, Yochum M, Merlet I, Ruffini G, Bartolomei F, Benquet P. Multiscale neuro-inspired models for interpretation of EEG signals in patients with epilepsy. Clin Neurophysiol 2024; 161:198-210. [PMID: 38520800 DOI: 10.1016/j.clinph.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
OBJECTIVE The aim is to gain insight into the pathophysiological mechanisms underlying interictal epileptiform discharges observed in electroencephalographic (EEG) and stereo-EEG (SEEG, depth electrodes) recordings performed during pre-surgical evaluation of patients with drug-resistant epilepsy. METHODS We developed novel neuro-inspired computational models of the human cerebral cortex at three different levels of description: i) microscale (detailed neuron models), ii) mesoscale (neuronal mass models) and iii) macroscale (whole brain models). Although conceptually different, micro- and mesoscale models share some similar features, such as the typology of neurons (pyramidal cells and three types of interneurons), their spatial arrangement in cortical layers, and their synaptic connectivity (excitatory and inhibitory). The whole brain model consists of a large-scale network of interconnected neuronal masses, with connectivity based on the human connectome. RESULTS For these three levels of description, the fine-tuning of free parameters and the quantitative comparison with real data allowed us to reproduce interictal epileptiform discharges with a high degree of fidelity and to formulate hypotheses about the cell- and network-related mechanisms underlying the generation of fast ripples and SEEG-recorded epileptic spikes and spike-waves. CONCLUSIONS The proposed models provide valuable insights into the pathophysiological mechanisms underlying the generation of epileptic events. The knowledge gained from these models effectively complements the clinical analysis of SEEG data collected during the evaluation of patients with epilepsy. SIGNIFICANCE These models are likely to play a key role in the mechanistic interpretation of epileptiform activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fabrice Bartolomei
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology Department, Marseille, France; Univ Aix Marseille, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | | |
Collapse
|
9
|
Ma Z, Xu Y, Baier G, Liu Y, Li B, Zhang L. Dynamical modulation of hypersynchronous seizure onset with transcranial magneto-acoustic stimulation in a hippocampal computational model. CHAOS (WOODBURY, N.Y.) 2024; 34:043107. [PMID: 38558041 DOI: 10.1063/5.0181510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/09/2024] [Indexed: 04/04/2024]
Abstract
Hypersynchronous (HYP) seizure onset is one of the frequently observed seizure-onset patterns in temporal lobe epileptic animals and patients, often accompanied by hippocampal sclerosis. However, the exact mechanisms and ion dynamics of the transition to HYP seizures remain unclear. Transcranial magneto-acoustic stimulation (TMAS) has recently been proposed as a novel non-invasive brain therapy method to modulate neurological disorders. Therefore, we propose a biophysical computational hippocampal network model to explore the evolution of HYP seizure caused by changes in crucial physiological parameters and design an effective TMAS strategy to modulate HYP seizure onset. We find that the cooperative effects of abnormal glial uptake strength of potassium and excessive bath potassium concentration could produce multiple discharge patterns and result in transitions from the normal state to the HYP seizure state and ultimately to the depolarization block state. Moreover, we find that the pyramidal neuron and the PV+ interneuron in HYP seizure-onset state exhibit saddle-node-on-invariant-circle/saddle homoclinic (SH) and saddle-node/SH at onset/offset bifurcation pairs, respectively. Furthermore, the response of neuronal activities to TMAS of different ultrasonic waveforms revealed that lower sine wave stimulation can increase the latency of HYP seizures and even completely suppress seizures. More importantly, we propose an ultrasonic parameter area that not only effectively regulates epileptic rhythms but also is within the safety limits of ultrasound neuromodulation therapy. Our results may offer a more comprehensive understanding of the mechanisms of HYP seizure and provide a theoretical basis for the application of TMAS in treating specific types of seizures.
Collapse
Affiliation(s)
- Zhiyuan Ma
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Yuejuan Xu
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Gerold Baier
- Cell and Developmental Biology, Faculty of Life Sciences, University College London, London WC1E 6BT, United Kingdom
| | - Youjun Liu
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Bao Li
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Liyuan Zhang
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
10
|
Karimi-Rouzbahani H, McGonigal A. Generalisability of epileptiform patterns across time and patients. Sci Rep 2024; 14:6293. [PMID: 38491096 PMCID: PMC10942983 DOI: 10.1038/s41598-024-56990-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Abstract
The complexity of localising the epileptogenic zone (EZ) contributes to surgical resection failures in achieving seizure freedom. The distinct patterns of epileptiform activity during interictal and ictal phases, varying across patients, often lead to suboptimal localisation using electroencephalography (EEG) features. We posed two key questions: whether neural signals reflecting epileptogenicity generalise from interictal to ictal time windows within each patient, and whether epileptiform patterns generalise across patients. Utilising an intracranial EEG dataset from 55 patients, we extracted a large battery of simple to complex features from stereo-EEG (SEEG) and electrocorticographic (ECoG) neural signals during interictal and ictal windows. Our features (n = 34) quantified many aspects of the signals including statistical moments, complexities, frequency-domain and cross-channel network attributes. Decision tree classifiers were then trained and tested on distinct time windows and patients to evaluate the generalisability of epileptogenic patterns across time and patients, respectively. Evidence strongly supported generalisability from interictal to ictal time windows across patients, particularly in signal power and high-frequency network-based features. Consistent patterns of epileptogenicity were observed across time windows within most patients, and signal features of epileptogenic regions generalised across patients, with higher generalisability in the ictal window. Signal complexity features were particularly contributory in cross-patient generalisation across patients. These findings offer insights into generalisable features of epileptic neural activity across time and patients, with implications for future automated approaches to supplement other EZ localisation methods.
Collapse
Affiliation(s)
- Hamid Karimi-Rouzbahani
- Neurosciences Centre, Mater Hospital, South Brisbane, 4101, Australia.
- Mater Research Institute, University of Queensland, South Brisbane, 4101, Australia.
- Queensland Brain Institute, University of Queensland, St Lucia, 4072, Australia.
| | - Aileen McGonigal
- Neurosciences Centre, Mater Hospital, South Brisbane, 4101, Australia
- Mater Research Institute, University of Queensland, South Brisbane, 4101, Australia
- Queensland Brain Institute, University of Queensland, St Lucia, 4072, Australia
| |
Collapse
|
11
|
Courson J, Quoy M, Timofeeva Y, Manos T. An exploratory computational analysis in mice brain networks of widespread epileptic seizure onset locations along with potential strategies for effective intervention and propagation control. Front Comput Neurosci 2024; 18:1360009. [PMID: 38468870 PMCID: PMC10925689 DOI: 10.3389/fncom.2024.1360009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Mean-field models have been developed to replicate key features of epileptic seizure dynamics. However, the precise mechanisms and the role of the brain area responsible for seizure onset and propagation remain incompletely understood. In this study, we employ computational methods within The Virtual Brain framework and the Epileptor model to explore how the location and connectivity of an Epileptogenic Zone (EZ) in a mouse brain are related to focal seizures (seizures that start in one brain area and may or may not remain localized), with a specific focus on the hippocampal region known for its association with epileptic seizures. We then devise computational strategies to confine seizures (prevent widespread propagation), simulating medical-like treatments such as tissue resection and the application of an anti-seizure drugs or neurostimulation to suppress hyperexcitability. Through selectively removing (blocking) specific connections informed by the structural connectome and graph network measurements or by locally reducing outgoing connection weights of EZ areas, we demonstrate that seizures can be kept constrained around the EZ region. We successfully identified the minimal connections necessary to prevent widespread seizures, with a particular focus on minimizing surgical or medical intervention while simultaneously preserving the original structural connectivity and maximizing brain functionality.
Collapse
Affiliation(s)
- Juliette Courson
- ETIS Lab, ENSEA, CNRS, UMR8051, CY Cergy-Paris University, Cergy, France
- Laboratoire de Physique Théorique et Modélisation, UMR 8089, CY Cergy Paris Université, CNRS, Cergy-Pontoise, France
- Department of Computer Science, University of Warwick, Coventry, United Kingdom
| | - Mathias Quoy
- ETIS Lab, ENSEA, CNRS, UMR8051, CY Cergy-Paris University, Cergy, France
- IPAL CNRS Singapore, Singapore, Singapore
| | - Yulia Timofeeva
- Department of Computer Science, University of Warwick, Coventry, United Kingdom
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Thanos Manos
- ETIS Lab, ENSEA, CNRS, UMR8051, CY Cergy-Paris University, Cergy, France
| |
Collapse
|
12
|
Depannemaecker D, Ezzati A, Wang H, Jirsa V, Bernard C. From phenomenological to biophysical models of seizures. Neurobiol Dis 2023; 182:106131. [PMID: 37086755 DOI: 10.1016/j.nbd.2023.106131] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023] Open
Abstract
Epilepsy is a complex disease that requires various approaches for its study. In this short review, we discuss the contribution of theoretical and computational models. The review presents theoretical frameworks that underlie the understanding of certain seizure properties and their classification based on their dynamical properties at the onset and offset of seizures. Dynamical system tools are valuable resources in the study of seizures. By analyzing the complex, dynamic behavior of seizures, these tools can provide insights into seizure mechanisms and offer a framework for their classification. Additionally, computational models have high potential for clinical applications, as they can be used to develop more accurate diagnostic and personalized medicine tools. We discuss various modeling approaches that span different scales and levels, while also questioning the neurocentric view, and emphasize the importance of considering glial cells. Finally, we explore the epistemic value provided by this type of approach.
Collapse
Affiliation(s)
- Damien Depannemaecker
- Institut de Neurosciences des Syst' emes, Aix-Marseille University, INSERM, Marseille, France.
| | - Aitakin Ezzati
- Institut de Neurosciences des Syst' emes, Aix-Marseille University, INSERM, Marseille, France
| | - Huifang Wang
- Institut de Neurosciences des Syst' emes, Aix-Marseille University, INSERM, Marseille, France
| | - Viktor Jirsa
- Institut de Neurosciences des Syst' emes, Aix-Marseille University, INSERM, Marseille, France
| | - Christophe Bernard
- Institut de Neurosciences des Syst' emes, Aix-Marseille University, INSERM, Marseille, France.
| |
Collapse
|
13
|
Chloride ion dysregulation in epileptogenic neuronal networks. Neurobiol Dis 2023; 177:106000. [PMID: 36638891 DOI: 10.1016/j.nbd.2023.106000] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/25/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
GABA is the major inhibitory neurotransmitter in the mature CNS. When GABAA receptors are activated the membrane potential is driven towards hyperpolarization due to chloride entry into the neuron. However, chloride ion dysregulation that alters the ionic gradient can result in depolarizing GABAergic post-synaptic potentials instead. In this review, we highlight that GABAergic inhibition prevents and restrains focal seizures but then reexamine this notion in the context of evidence that a static and/or a dynamic chloride ion dysregulation, that increases intracellular chloride ion concentrations, promotes epileptiform activity and seizures. To reconcile these findings, we hypothesize that epileptogenic pathologically interconnected neuron (PIN) microcircuits, representing a small minority of neurons, exhibit static chloride dysregulation and should exhibit depolarizing inhibitory post-synaptic potentials (IPSPs). We speculate that chloride ion dysregulation and PIN cluster activation may generate fast ripples and epileptiform spikes as well as initiate the hypersynchronous seizure onset pattern and microseizures. Also, we discuss the genetic, molecular, and cellular players important in chloride dysregulation which regulate epileptogenesis and initiate the low-voltage fast seizure onset pattern. We conclude that chloride dysregulation in neuronal networks appears to be critical for epileptogenesis and seizure genesis, but feed-back and feed-forward inhibitory GABAergic neurotransmission plays an important role in preventing and restraining seizures as well.
Collapse
|
14
|
Proskurina EY, Chizhov AV, Zaitsev AV. Optogenetic Low-Frequency Stimulation of Principal Neurons, but Not Parvalbumin-Positive Interneurons, Prevents Generation of Ictal Discharges in Rodent Entorhinal Cortex in an In Vitro 4-Aminopyridine Model. Int J Mol Sci 2022; 24:ijms24010195. [PMID: 36613660 PMCID: PMC9820186 DOI: 10.3390/ijms24010195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Low-frequency electrical stimulation is used to treat some drug-resistant forms of epilepsy. Despite the effectiveness of the method in suppressing seizures, there is a considerable risk of side effects. An optogenetic approach allows the targeting of specific populations of neurons, which can increase the effectiveness and safety of low-frequency stimulation. In our study, we tested the efficacy of the suppression of ictal activity in entorhinal cortex slices in a 4-aminopyridine model with three variants of low-frequency light stimulation (LFLS): (1) activation of excitatory and inhibitory neurons (on Thy1-ChR2-YFP mice), (2) activation of inhibitory interneurons only (on PV-Cre mice after virus injection with channelrhodopsin2 gene), and (3) hyperpolarization of excitatory neurons (on Wistar rats after virus injection with archaerhodopsin gene). Only in the first variant did simultaneous LFLS of excitatory and inhibitory neurons replace ictal activity with interictal activity. We suggest that LFLS caused changes in the concentration gradients of K+ and Na+ cations across the neuron membrane, which activated Na-K pumping. According to the mathematical modeling, the increase in Na-K pump activity in neurons induced by LFLS led to an antiepileptic effect. Thus, a less specific and generalized optogenetic effect on entorhinal cortex neurons was more effective in suppressing ictal activity in the 4-aminopyridine model.
Collapse
Affiliation(s)
- Elena Y. Proskurina
- Almazov National Medical Research Centre, 2 Akkuratova Street, 197341 St. Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 44 Toreza Prospekt, 194223 St. Petersburg, Russia
| | - Anton V. Chizhov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 44 Toreza Prospekt, 194223 St. Petersburg, Russia
- Computational Physics Laboratory, Ioffe Institute, 26 Polytekhnicheskaya Street, 194021 St. Petersburg, Russia
- MathNeuro Team, Inria Centre at Universite Cote d’Azur, 06902 Sophia Antipolis, France
| | - Aleksey V. Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 44 Toreza Prospekt, 194223 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|