1
|
Hirano T. Mitotic genome folding. J Cell Biol 2025; 224:e202504075. [PMID: 40492990 DOI: 10.1083/jcb.202504075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 05/30/2025] [Accepted: 06/02/2025] [Indexed: 06/12/2025] Open
Abstract
Mitotic genome folding, or mitotic chromosome assembly, is essential for the faithful segregation of genetic information into daughter cells. While this process was once thought to be highly complex, requiring a myriad of protein components, recent studies have begun to revise this conventional view. An emerging view is that the core reaction of mitotic genome folding is mediated by a dynamic interplay of a limited number of structural components, namely, condensins, topoisomerase II (topo II), and histones. Condensins and topo II are two distinct classes of ATPases that cooperate to actively form and manipulate DNA loops, both accumulating at the central axial regions of the resulting chromosomes. In contrast, nucleosomes and linker histones help to compact DNA loops by cooperating and competing with the action of these ATPases. In this review, I will focus on the recent advances in the field, with an emphasis on the mechanistic aspects of mitotic genome folding.
Collapse
|
2
|
Arimura Y, Konishi HA, Funabiki H. MagIC-Cryo-EM, structural determination on magnetic beads for scarce macromolecules in heterogeneous samples. eLife 2025; 13:RP103486. [PMID: 40390365 PMCID: PMC12092007 DOI: 10.7554/elife.103486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025] Open
Abstract
Cryo-EM single-particle analyses typically require target macromolecule concentration at 0.05~5.0 mg/ml, which is often difficult to achieve. Here, we devise Magnetic Isolation and Concentration (MagIC)-cryo-EM, a technique enabling direct structural analysis of targets captured on magnetic beads, thereby reducing the targets' concentration requirement to <0.0005 mg/mL. Adapting MagIC-cryo-EM to a Chromatin Immunoprecipitation protocol, we characterized structural variations of the linker histone H1.8-associated nucleosomes that were isolated from interphase and metaphase chromosomes in Xenopus egg extract. Combining Duplicated Selection To Exclude Rubbish particles (DuSTER), a particle curation method that excludes low signal-to-noise ratio particles, we also resolved the 3D cryo-EM structures of nucleoplasmin NPM2 co-isolated with the linker histone H1.8 and revealed distinct open and closed structural variants. Our study demonstrates the utility of MagIC-cryo-EM for structural analysis of scarce macromolecules in heterogeneous samples and provides structural insights into the cell cycle-regulation of H1.8 association to nucleosomes.
Collapse
Affiliation(s)
- Yasuhiro Arimura
- Laboratory of Chromosome and Cell Biology, The Rockefeller UniversityNew YorkUnited States
- Basic Sciences Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Hide A Konishi
- Laboratory of Chromosome and Cell Biology, The Rockefeller UniversityNew YorkUnited States
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
3
|
Miloshev G, Ivanov P, Vasileva B, Georgieva M. Linker Histones Maintain Genome Stability and Drive the Process of Cellular Ageing. FRONT BIOSCI-LANDMRK 2025; 30:26823. [PMID: 40302323 DOI: 10.31083/fbl26823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 05/02/2025]
Abstract
Ageing comprises a cascade of processes that are inherent in all living creatures. There are fourteen general hallmarks of cellular ageing, the majority of which occur at a molecular level. A significant disturbance in the regulation of genome activity is commonly observed during cellular ageing. Overall confusion and disruption in the proper functioning of the genome are also well-known prerogatives of cancerous cells, and it is believed that this genomic instability provides a direct link between aging and cancer. The spatial organization of nuclear DNA in chromatin is the foundation of the fine-tuning and refined regulation of gene activity, and it changes during ageing. Therefore, chromatin is the platform on which genes and the environment meet and interplay. Different protein factors, small molecules and metabolites affect this chromatin organization and, through it, drive cellular deterioration and, finally, ageing. Hence, studying chromatin structural organization and dynamics is crucial for understanding life, presumably the ageing process. The complex interplay among DNA and histone proteins folds, organizes, and adapts chromatin structure. Among histone proteins, the role of the family of linker histones comes to light. Recent data point out that linker histones play a unique role in higher-order chromatin organization, which, in turn, impacts ageing to a prominent degree. Here, we discuss emerging evidence that suggests linker histones have functions that extend beyond their traditional roles in chromatin architecture, highlighting their critical involvement in genome stability, cellular ageing, and cancer development, thereby establishing them as promising targets for therapeutic interventions.
Collapse
Affiliation(s)
- George Miloshev
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Penyo Ivanov
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Bela Vasileva
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Milena Georgieva
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
4
|
Arimura Y, Konishi HA, Funabiki H. MagIC-Cryo-EM: Structural determination on magnetic beads for scarce macromolecules in heterogeneous samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.01.21.576499. [PMID: 38328033 PMCID: PMC10849486 DOI: 10.1101/2024.01.21.576499] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Cryo-EM single-particle analyses typically require target macromolecule concentration at 0.05~5.0 mg/ml, which is often difficult to achieve. Here, we devise Magnetic Isolation and Concentration (MagIC)-cryo-EM, a technique enabling direct structural analysis of targets captured on magnetic beads, thereby reducing the targets' concentration requirement to < 0.0005 mg/ml. Adapting MagIC-cryo-EM to a Chromatin Immunoprecipitation protocol, we characterized structural variations of the linker histone H1.8-associated nucleosomes that were isolated from interphase and metaphase chromosomes in Xenopus egg extract. Combining Duplicated Selection To Exclude Rubbish particles (DuSTER), a particle curation method that excludes low signal-to-noise ratio particles, we also resolved the 3D cryo-EM structures of nucleoplasmin NPM2 co-isolated with the linker histone H1.8 and revealed distinct open and closed structural variants. Our study demonstrates the utility of MagIC-cryo-EM for structural analysis of scarce macromolecules in heterogeneous samples and provides structural insights into the cell cycle-regulation of H1.8 association to nucleosomes.
Collapse
Affiliation(s)
- Yasuhiro Arimura
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065
- Current address: Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA, 98109-1024
| | - Hide A. Konishi
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065
| |
Collapse
|
5
|
Dekker J, Mirny LA. The chromosome folding problem and how cells solve it. Cell 2024; 187:6424-6450. [PMID: 39547207 PMCID: PMC11569382 DOI: 10.1016/j.cell.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
Every cell must solve the problem of how to fold its genome. We describe how the folded state of chromosomes is the result of the combined activity of multiple conserved mechanisms. Homotypic affinity-driven interactions lead to spatial partitioning of active and inactive loci. Molecular motors fold chromosomes through loop extrusion. Topological features such as supercoiling and entanglements contribute to chromosome folding and its dynamics, and tethering loci to sub-nuclear structures adds additional constraints. Dramatically diverse chromosome conformations observed throughout the cell cycle and across the tree of life can be explained through differential regulation and implementation of these basic mechanisms. We propose that the first functions of chromosome folding are to mediate genome replication, compaction, and segregation and that mechanisms of folding have subsequently been co-opted for other roles, including long-range gene regulation, in different conditions, cell types, and species.
Collapse
Affiliation(s)
- Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Leonid A Mirny
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
6
|
Van Campen H, Bishop JV, Brink Z, Engle TE, Gonzalez-Berrios CL, Georges HM, Kincade JN, Murtazina DA, Hansen TR. Epigenetic Modifications of White Blood Cell DNA Caused by Transient Fetal Infection with Bovine Viral Diarrhea Virus. Viruses 2024; 16:721. [PMID: 38793603 PMCID: PMC11125956 DOI: 10.3390/v16050721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Bovine viral diarrhea virus (BVDV) infections cause USD 1.5-2 billion in losses annually. Maternal BVDV after 150 days of gestation causes transient fetal infection (TI) in which the fetal immune response clears the virus. The impact of fetal TI BVDV infections on postnatal growth and white blood cell (WBC) methylome as an index of epigenetic modifications was examined by inoculating pregnant heifers with noncytopathic type 2 BVDV or media (sham-inoculated controls) on Day 175 of gestation to generate TI (n = 11) and control heifer calves (n = 12). Fetal infection in TI calves was confirmed by virus-neutralizing antibody titers at birth and control calves were seronegative. Both control and TI calves were negative for BVDV RNA in WBCs by RT-PCR. The mean weight of the TI calves was less than that of the controls (p < 0.05). DNA methyl seq analysis of WBC DNA demonstrated 2349 differentially methylated cytosines (p ≤ 0.05) including 1277 hypomethylated cytosines, 1072 hypermethylated cytosines, 84 differentially methylated regions based on CpGs in promoters, and 89 DMRs in islands of TI WBC DNA compared to controls. Fetal BVDV infection during late gestation resulted in epigenomic modifications predicted to affect fetal development and immune pathways, suggesting potential consequences for postnatal growth and health of TI cattle.
Collapse
Affiliation(s)
- Hana Van Campen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (H.V.C.); (J.V.B.); (Z.B.); (C.L.G.-B.); (H.M.G.); (J.N.K.); (D.A.M.)
| | - Jeanette V. Bishop
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (H.V.C.); (J.V.B.); (Z.B.); (C.L.G.-B.); (H.M.G.); (J.N.K.); (D.A.M.)
| | - Zella Brink
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (H.V.C.); (J.V.B.); (Z.B.); (C.L.G.-B.); (H.M.G.); (J.N.K.); (D.A.M.)
| | - Terry E. Engle
- Department of Animal Science, Colorado State University, Fort Collins, CO 80523, USA;
| | - Carolina L. Gonzalez-Berrios
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (H.V.C.); (J.V.B.); (Z.B.); (C.L.G.-B.); (H.M.G.); (J.N.K.); (D.A.M.)
| | - Hanah M. Georges
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (H.V.C.); (J.V.B.); (Z.B.); (C.L.G.-B.); (H.M.G.); (J.N.K.); (D.A.M.)
- Currently at Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jessica N. Kincade
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (H.V.C.); (J.V.B.); (Z.B.); (C.L.G.-B.); (H.M.G.); (J.N.K.); (D.A.M.)
| | - Dilyara A. Murtazina
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (H.V.C.); (J.V.B.); (Z.B.); (C.L.G.-B.); (H.M.G.); (J.N.K.); (D.A.M.)
| | - Thomas R. Hansen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (H.V.C.); (J.V.B.); (Z.B.); (C.L.G.-B.); (H.M.G.); (J.N.K.); (D.A.M.)
| |
Collapse
|
7
|
Rogers AM, Neri NR, Chigweshe L, Holmes SG. Histone variant H2A.Z and linker histone H1 influence chromosome condensation in Saccharomyces cerevisiae. Genetics 2024; 226:iyae022. [PMID: 38366024 PMCID: PMC10990423 DOI: 10.1093/genetics/iyae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 10/15/2023] [Accepted: 01/17/2024] [Indexed: 02/18/2024] Open
Abstract
Chromosome condensation is essential for the fidelity of chromosome segregation during mitosis and meiosis. Condensation is associated both with local changes in nucleosome structure and larger-scale alterations in chromosome topology mediated by the condensin complex. We examined the influence of linker histone H1 and variant histone H2A.Z on chromosome condensation in budding yeast cells. Linker histone H1 has been implicated in local and global compaction of chromatin in multiple eukaryotes, but we observe normal condensation of the rDNA locus in yeast strains lacking H1. However, deletion of the yeast HTZ1 gene, coding for variant histone H2A.Z, causes a significant defect in rDNA condensation. Loss of H2A.Z does not change condensin association with the rDNA locus or significantly affect condensin mRNA levels. Prior studies reported that several phenotypes caused by loss of H2A.Z are suppressed by eliminating Swr1, a key component of the SWR complex that deposits H2A.Z in chromatin. We observe that an htz1Δ swr1Δ strain has near-normal rDNA condensation. Unexpectedly, we find that elimination of the linker histone H1 can also suppress the rDNA condensation defect of htz1Δ strains. Our experiments demonstrate that histone H2A.Z promotes chromosome condensation, in part by counteracting activities of histone H1 and the SWR complex.
Collapse
Affiliation(s)
- Anna M Rogers
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Nola R Neri
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Lorencia Chigweshe
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Scott G Holmes
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| |
Collapse
|
8
|
Portillo-Ledesma S, Chung S, Hoffman J, Schlick T. Regulation of chromatin architecture by transcription factor binding. eLife 2024; 12:RP91320. [PMID: 38241351 PMCID: PMC10945602 DOI: 10.7554/elife.91320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024] Open
Abstract
Transcription factors (TF) bind to chromatin and regulate the expression of genes. The pair Myc:Max binds to E-box regulatory DNA elements throughout the genome to control the transcription of a large group of specific genes. We introduce an implicit modeling protocol for Myc:Max binding to mesoscale chromatin fibers at nucleosome resolution to determine TF effect on chromatin architecture and shed light into its mechanism of gene regulation. We first bind Myc:Max to different chromatin locations and show how it can direct fiber folding and formation of microdomains, and how this depends on the linker DNA length. Second, by simulating increasing concentrations of Myc:Max binding to fibers that differ in the DNA linker length, linker histone density, and acetylation levels, we assess the interplay between Myc:Max and other chromatin internal parameters. Third, we study the mechanism of gene silencing by Myc:Max binding to the Eed gene loci. Overall, our results show how chromatin architecture can be regulated by TF binding. The position of TF binding dictates the formation of microdomains that appear visible only at the ensemble level. At the same time, the level of linker histone and tail acetylation, or different linker DNA lengths, regulates the concentration-dependent effect of TF binding. Furthermore, we show how TF binding can repress gene expression by increasing fiber folding motifs that help compact and occlude the promoter region. Importantly, this effect can be reversed by increasing linker histone density. Overall, these results shed light on the epigenetic control of the genome dictated by TF binding.
Collapse
Affiliation(s)
- Stephanie Portillo-Ledesma
- Department of Chemistry, 100 Washington Square East, Silver Building, New York UniversityNew YorkUnited States
- Simons Center for Computational Physical Chemistry, 24 Waverly Place, Silver Building, New York UniversityNew YorkUnited States
| | - Suckwoo Chung
- Department of Chemistry, 100 Washington Square East, Silver Building, New York UniversityNew YorkUnited States
| | - Jill Hoffman
- Department of Chemistry, 100 Washington Square East, Silver Building, New York UniversityNew YorkUnited States
| | - Tamar Schlick
- Department of Chemistry, 100 Washington Square East, Silver Building, New York UniversityNew YorkUnited States
- Simons Center for Computational Physical Chemistry, 24 Waverly Place, Silver Building, New York UniversityNew YorkUnited States
- Courant Institute of Mathematical Sciences, New York UniversityNew YorkUnited States
- New York University-East China Normal University Center for Computational Chemistry, New York University ShanghaiShanghaiChina
| |
Collapse
|
9
|
Portillo-Ledesma S, Chung S, Hoffman J, Schlick T. Regulation of Chromatin Architecture by Transcription Factor Binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559535. [PMID: 37808867 PMCID: PMC10557667 DOI: 10.1101/2023.09.26.559535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Transcription factors (TF) bind to chromatin and regulate the expression of genes. The pair Myc:Max binds to E-box regulatory DNA elements throughout the genome, controlling transcription of a large group of specific genes. We introduce an implicit modeling protocol for Myc:Max binding to mesoscale chromatin fibers to determine TF effect on chromatin architecture and shed light on its mechanism of gene regulation. We first bind Myc:Max to different chromatin locations and show how it can direct fiber folding and formation of microdomains, and how this depends on the linker DNA length. Second, by simulating increasing concentrations of Myc:Max binding to fibers that differ in the DNA linker length, linker histone density, and acetylation levels, we assess the interplay between Myc:Max and other chromatin internal parameters. Third, we study the mechanism of gene silencing by Myc:Max binding to the Eed gene loci. Overall, our results show how chromatin architecture can be regulated by TF binding. The position of TF binding dictates the formation of microdomains that appear visible only at the ensemble level. On the other hand, the presence of linker histone, acetylations, or different linker DNA lengths regulates the concentration-dependent effect of TF binding. Furthermore, we show how TF binding can repress gene expression by increasing fiber folding motifs that help compact and occlude the promoter region. Importantly, this effect can be reversed by increasing linker histone density. Overall, these results shed light on the epigenetic control of the genome dictated by TF binding.
Collapse
Affiliation(s)
- Stephanie Portillo-Ledesma
- Department of Chemistry, 100 Washington Square East, Silver Building, New York University, New York, NY 10003 U.S.A
- Simons Center for Computational Physical Chemistry, 24 Waverly Place, Silver Building, New York University, New York, NY 10003 U.S.A
| | - Suckwoo Chung
- Department of Chemistry, 100 Washington Square East, Silver Building, New York University, New York, NY 10003 U.S.A
| | - Jill Hoffman
- Department of Chemistry, 100 Washington Square East, Silver Building, New York University, New York, NY 10003 U.S.A
| | - Tamar Schlick
- Department of Chemistry, 100 Washington Square East, Silver Building, New York University, New York, NY 10003 U.S.A
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012 U.S.A
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200122 China
- Simons Center for Computational Physical Chemistry, 24 Waverly Place, Silver Building, New York University, New York, NY 10003 U.S.A
| |
Collapse
|
10
|
El Yakoubi W, Akera T. Condensin dysfunction is a reproductive isolating barrier in mice. Nature 2023; 623:347-355. [PMID: 37914934 PMCID: PMC11379054 DOI: 10.1038/s41586-023-06700-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 10/02/2023] [Indexed: 11/03/2023]
Abstract
Reproductive isolation occurs when the genomes of two populations accumulate genetic incompatibilities that prevent interbreeding1,2. Understanding of hybrid incompatibility at the cell biology level is limited, particularly in the case of hybrid female sterility3. Here we find that species divergence in condensin regulation and centromere organization between two mouse species, Mus musculus domesticus and Mus spretus, drives chromosome decondensation and mis-segregation in their F1 hybrid oocytes, reducing female fertility. The decondensation in hybrid oocytes was especially prominent at pericentromeric major satellites, which are highly abundant at M. m. domesticus centromeres4-6, leading to species-specific chromosome mis-segregation and egg aneuploidy. Consistent with the condensation defects, a chromosome structure protein complex, condensin II7,8, was reduced on hybrid oocyte chromosomes. We find that the condensin II subunit NCAPG2 was specifically reduced in the nucleus in prophase and that overexpressing NCAPG2 rescued both the decondensation and egg aneuploidy phenotypes. In addition to the overall reduction in condensin II on chromosomes, major satellites further reduced condensin II levels locally, explaining why this region is particularly prone to decondensation. Together, this study provides cell biological insights into hybrid incompatibility in female meiosis and demonstrates that condensin misregulation and pericentromeric satellite expansion can establish a reproductive isolating barrier in mammals.
Collapse
Affiliation(s)
- Warif El Yakoubi
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Yamamoto T, Kinoshita K, Hirano T. Elasticity control of entangled chromosomes: Crosstalk between condensin complexes and nucleosomes. Biophys J 2023; 122:3869-3881. [PMID: 37571823 PMCID: PMC10560673 DOI: 10.1016/j.bpj.2023.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/18/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023] Open
Abstract
Condensin-mediated loop extrusion is now considered as the main driving force of mitotic chromosome assembly. Recent experiments have shown, however, that a class of mutant condensin complexes deficient in loop extrusion can assemble chromosome-like structures in Xenopus egg extracts, although these structures are somewhat different from those assembled by wild-type condensin complexes. In the absence of topoisomerase II (topo II), the mutant condensin complexes produce an unusual round-shaped structure termed a bean, which consists of a DNA-dense central core surrounded by a DNA-sparse halo. The mutant condensin complexes accumulate in the core, whereas histones are more concentrated in the halo than in the core. We consider that this peculiar structure serves as a model system to study how DNA entanglements, nucleosomes, and condensin functionally crosstalk with each other. To gain insight into how the bean structure is formed, here we construct a theoretical model. Our theory predicts that the core is formed by attractive interactions between mutant condensin complexes, whereas the halo is stabilized by the energy reduction through the selective accumulation of nucleosomes. The formation of the halo increases the elastic free energy due to the DNA entanglement in the core, but the latter free energy is compensated by condensin complexes that suppress the assembly of nucleosomes.
Collapse
Affiliation(s)
- Tetsuya Yamamoto
- Institute for Chemical Reaction Design and Discovery (ICReDD), Hokkaido University, Sapporo, Hokkaido, Japan.
| | | | - Tatsuya Hirano
- Chromosome Dynamics Laboratory, RIKEN, Wako, Saitama, Japan
| |
Collapse
|
12
|
Sundararajan S, Park H, Kawano S, Johansson M, Lama B, Saito-Fujita T, Saitoh N, Arnaoutov A, Dasso M, Wang Z, Keifenheim D, Clarke DJ, Azuma Y. Methylated histones on mitotic chromosomes promote topoisomerase IIα function for high fidelity chromosome segregation. iScience 2023; 26:106743. [PMID: 37197327 PMCID: PMC10183659 DOI: 10.1016/j.isci.2023.106743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/31/2022] [Accepted: 04/21/2023] [Indexed: 05/19/2023] Open
Abstract
DNA Topoisomerase IIα (TopoIIα) decatenates sister chromatids, allowing their segregation in mitosis. Without the TopoIIα Strand Passage Reaction (SPR), chromosome bridges and ultra-fine DNA bridges (UFBs) arise in anaphase. The TopoIIα C-terminal domain is dispensable for the SPR in vitro but essential for mitotic functions in vivo. Here, we present evidence that the Chromatin Tether (ChT) within the CTD interacts with specific methylated nucleosomes and is crucial for high-fidelity chromosome segregation. Mutation of individual αChT residues disrupts αChT-nucleosome interaction, induces loss of segregation fidelity and reduces association of TopoIIα with chromosomes. Specific methyltransferase inhibitors reducing histone H3 or H4 methylation decreased TopoIIα at centromeres and increased segregation errors. Methyltransferase inhibition did not further increase aberrant anaphases in the ChT mutants, indicating a functional connection. The evidence reveals novel cellular regulation whereby TopoIIα specifically interacts with methylated nucleosomes via the αChT to ensure high-fidelity chromosome segregation.
Collapse
Affiliation(s)
- Sanjana Sundararajan
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Hyewon Park
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Shinji Kawano
- Department of Biochemistry, Faculty of Science, Okayama University of Science, Okayama 700-0081, Japan
| | - Marnie Johansson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bunu Lama
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Tomoko Saito-Fujita
- Division of Cancer Biology, The Cancer Institute of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Noriko Saitoh
- Division of Cancer Biology, The Cancer Institute of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Alexei Arnaoutov
- Division of Molecular and Cellular Biology, National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4480, USA
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4480, USA
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel Keifenheim
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Duncan J. Clarke
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yoshiaki Azuma
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
13
|
Zhou CY, Dekker B, Liu Z, Cabrera H, Ryan J, Dekker J, Heald R. Mitotic chromosomes scale to nuclear-cytoplasmic ratio and cell size in Xenopus. eLife 2023; 12:e84360. [PMID: 37096661 PMCID: PMC10260010 DOI: 10.7554/elife.84360] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 04/21/2023] [Indexed: 04/26/2023] Open
Abstract
During the rapid and reductive cleavage divisions of early embryogenesis, subcellular structures such as the nucleus and mitotic spindle scale to decreasing cell size. Mitotic chromosomes also decrease in size during development, presumably to scale coordinately with mitotic spindles, but the underlying mechanisms are unclear. Here we combine in vivo and in vitro approaches using eggs and embryos from the frog Xenopus laevis to show that mitotic chromosome scaling is mechanistically distinct from other forms of subcellular scaling. We found that mitotic chromosomes scale continuously with cell, spindle, and nuclear size in vivo. However, unlike for spindles and nuclei, mitotic chromosome size cannot be reset by cytoplasmic factors from earlier developmental stages. In vitro, increasing nuclear-cytoplasmic (N/C) ratio is sufficient to recapitulate mitotic chromosome scaling, but not nuclear or spindle scaling, through differential loading of maternal factors during interphase. An additional pathway involving importin α scales mitotic chromosomes to cell surface area/volume ratio (SA/V) during metaphase. Finally, single-chromosome immunofluorescence and Hi-C data suggest that mitotic chromosomes shrink during embryogenesis through decreased recruitment of condensin I, resulting in major rearrangements of DNA loop architecture to accommodate the same amount of DNA on a shorter chromosome axis. Together, our findings demonstrate how mitotic chromosome size is set by spatially and temporally distinct developmental cues in the early embryo.
Collapse
Affiliation(s)
- Coral Y Zhou
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Bastiaan Dekker
- Department of Systems Biology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Ziyuan Liu
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Hilda Cabrera
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Joel Ryan
- Advanced BioImaging Facility, McGill UniversityMontrealCanada
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Medical SchoolWorcesterUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
14
|
Chen P, Levy DL. Regulation of organelle size and organization during development. Semin Cell Dev Biol 2023; 133:53-64. [PMID: 35148938 PMCID: PMC9357868 DOI: 10.1016/j.semcdb.2022.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/20/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022]
Abstract
During early embryogenesis, as cells divide in the developing embryo, the size of intracellular organelles generally decreases to scale with the decrease in overall cell size. Organelle size scaling is thought to be important to establish and maintain proper cellular function, and defective scaling may lead to impaired development and disease. However, how the cell regulates organelle size and organization are largely unanswered questions. In this review, we summarize the process of size scaling at both the cell and organelle levels and discuss recently discovered mechanisms that regulate this process during early embryogenesis. In addition, we describe how some recently developed techniques and Xenopus as an animal model can be used to investigate the underlying mechanisms of size regulation and to uncover the significance of proper organelle size scaling and organization.
Collapse
Affiliation(s)
- Pan Chen
- Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
15
|
Kakui Y, Barrington C, Kusano Y, Thadani R, Fallesen T, Hirota T, Uhlmann F. Chromosome arm length, and a species-specific determinant, define chromosome arm width. Cell Rep 2022; 41:111753. [PMID: 36476849 DOI: 10.1016/j.celrep.2022.111753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/05/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Mitotic chromosomes in different organisms adopt various dimensions. What defines these dimensions is scarcely understood. Here, we compare mitotic chromosomes in budding and fission yeasts harboring similarly sized genomes distributed among 16 or 3 chromosomes, respectively. Hi-C analyses and superresolution microscopy reveal that budding yeast chromosomes are characterized by shorter-ranging mitotic chromatin contacts and are thinner compared with the thicker fission yeast chromosomes that contain longer-ranging mitotic contacts. These distinctions persist even after budding yeast chromosomes are fused to form three fission-yeast-length entities, revealing a species-specific organizing principle. Species-specific widths correlate with the known binding site intervals of the chromosomal condensin complex. Unexpectedly, within each species, we find that longer chromosome arms are always thicker and harbor longer-ranging contacts, a trend that we also observe with human chromosomes. Arm length as a chromosome width determinant informs mitotic chromosome formation models.
Collapse
Affiliation(s)
- Yasutaka Kakui
- Waseda Institute for Advanced Study, Waseda University, Tokyo 169-0051, Japan; Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences, Waseda University, Tokyo 162-8480, Japan; Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| | - Christopher Barrington
- Bioinformatics & Biostatistics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Yoshiharu Kusano
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Rahul Thadani
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Todd Fallesen
- Advanced Light Microscopy Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Toru Hirota
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
16
|
Mansisidor AR, Risca VI. Chromatin accessibility: methods, mechanisms, and biological insights. Nucleus 2022; 13:236-276. [PMID: 36404679 PMCID: PMC9683059 DOI: 10.1080/19491034.2022.2143106] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/23/2022] [Accepted: 10/30/2022] [Indexed: 11/22/2022] Open
Abstract
Access to DNA is a prerequisite to the execution of essential cellular processes that include transcription, replication, chromosomal segregation, and DNA repair. How the proteins that regulate these processes function in the context of chromatin and its dynamic architectures is an intensive field of study. Over the past decade, genome-wide assays and new imaging approaches have enabled a greater understanding of how access to the genome is regulated by nucleosomes and associated proteins. Additional mechanisms that may control DNA accessibility in vivo include chromatin compaction and phase separation - processes that are beginning to be understood. Here, we review the ongoing development of accessibility measurements, we summarize the different molecular and structural mechanisms that shape the accessibility landscape, and we detail the many important biological functions that are linked to chromatin accessibility.
Collapse
Affiliation(s)
- Andrés R. Mansisidor
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY
| | - Viviana I. Risca
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY
| |
Collapse
|
17
|
Regulation of the mitotic chromosome folding machines. Biochem J 2022; 479:2153-2173. [PMID: 36268993 DOI: 10.1042/bcj20210140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022]
Abstract
Over the last several years enormous progress has been made in identifying the molecular machines, including condensins and topoisomerases that fold mitotic chromosomes. The discovery that condensins generate chromatin loops through loop extrusion has revolutionized, and energized, the field of chromosome folding. To understand how these machines fold chromosomes with the appropriate dimensions, while disentangling sister chromatids, it needs to be determined how they are regulated and deployed. Here, we outline the current understanding of how these machines and factors are regulated through cell cycle dependent expression, chromatin localization, activation and inactivation through post-translational modifications, and through associations with each other, with other factors and with the chromatin template itself. There are still many open questions about how condensins and topoisomerases are regulated but given the pace of progress in the chromosome folding field, it seems likely that many of these will be answered in the years ahead.
Collapse
|
18
|
Yoshida MM, Kinoshita K, Aizawa Y, Tane S, Yamashita D, Shintomi K, Hirano T. Molecular dissection of condensin II-mediated chromosome assembly using in vitro assays. eLife 2022; 11:78984. [PMID: 35983835 PMCID: PMC9433093 DOI: 10.7554/elife.78984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
In vertebrates, condensin I and condensin II cooperate to assemble rod-shaped chromosomes during mitosis. Although the mechanism of action and regulation of condensin I have been studied extensively, our corresponding knowledge of condensin II remains very limited. By introducing recombinant condensin II complexes into Xenopus egg extracts, we dissect the roles of its individual subunits in chromosome assembly. We find that one of two HEAT subunits, CAP-D3, plays a crucial role in condensin II-mediated assembly of chromosome axes, whereas the other HEAT subunit, CAP-G2, has a very strong negative impact on this process. The structural maintenance of chromosomes ATPase and the basic amino acid clusters of the kleisin subunit CAP-H2 are essential for this process. Deletion of the C-terminal tail of CAP-D3 increases the ability of condensin II to assemble chromosomes and further exposes a hidden function of CAP-G2 in the lateral compaction of chromosomes. Taken together, our results uncover a multilayered regulatory mechanism unique to condensin II, and provide profound implications for the evolution of condensin II.
Collapse
Affiliation(s)
| | | | - Yuuki Aizawa
- Chromosome Dynamics Laboratory, RIKEN, Wako, Japan
| | - Shoji Tane
- Chromosome Dynamics Laboratory, RIKEN, Wako, Japan
| | | | | | | |
Collapse
|
19
|
Shintomi K. Making Mitotic Chromosomes in a Test Tube. EPIGENOMES 2022; 6:20. [PMID: 35893016 PMCID: PMC9326633 DOI: 10.3390/epigenomes6030020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
Mitotic chromosome assembly is an essential preparatory step for accurate transmission of the genome during cell division. During the past decades, biochemical approaches have uncovered the molecular basis of mitotic chromosomes. For example, by using cell-free assays of frog egg extracts, the condensin I complex central for the chromosome assembly process was first identified, and its functions have been intensively studied. A list of chromosome-associated proteins has been almost completed, and it is now possible to reconstitute structures resembling mitotic chromosomes with a limited number of purified factors. In this review, I introduce how far we have come in understanding the mechanism of chromosome assembly using cell-free assays and reconstitution assays, and I discuss their potential applications to solve open questions.
Collapse
Affiliation(s)
- Keishi Shintomi
- Chromosome Dynamics Laboratory, RIKEN, Wako 351-0198, Saitama, Japan
| |
Collapse
|
20
|
Yamamoto T, Schiessel H. Loop extrusion driven volume phase transition of entangled chromosomes. Biophys J 2022; 121:2742-2750. [PMID: 35706364 DOI: 10.1016/j.bpj.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/26/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Experiments on reconstituted chromosomes have revealed that mitotic chromosomes are assembled even without nucleosomes. When topoisomerase II (topo II) is depleted from such reconstituted chromosomes, these chromosomes are not disentangled and form "sparklers," where DNA and linker histone are condensed in the core and condensin is localized at the periphery. To understand the mechanism of the assembly of sparklers, we here take into account the loop extrusion by condensin in an extension of the theory of entangled polymer gels. The loop extrusion stiffens an entangled DNA network because DNA segments in the elastically effective chains are translocated to loops, which are elastically ineffective. Our theory predicts that the loop extrusion by condensin drives the volume phase transition that collapses a swollen entangled DNA gel because the stiffening of the network destabilizes the swollen phase. This may be an important piece to understand the mechanism of the assembly of mitotic chromosomes.
Collapse
Affiliation(s)
- Tetsuya Yamamoto
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo, Japan.
| | - Helmut Schiessel
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| |
Collapse
|
21
|
Haase J, Chen R, Parker WM, Bonner MK, Jenkins LM, Kelly AE. The TFIIH complex is required to establish and maintain mitotic chromosome structure. eLife 2022; 11:e75475. [PMID: 35293859 PMCID: PMC8956287 DOI: 10.7554/elife.75475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Condensins compact chromosomes to promote their equal segregation during mitosis, but the mechanism of condensin engagement with and action on chromatin is incompletely understood. Here, we show that the general transcription factor TFIIH complex is continuously required to establish and maintain a compacted chromosome structure in transcriptionally silent Xenopus egg extracts. Inhibiting the DNA-dependent ATPase activity of the TFIIH complex subunit XPB rapidly and reversibly induces a complete loss of chromosome structure and prevents the enrichment of condensins I and II, but not topoisomerase II, on chromatin. In addition, inhibiting TFIIH prevents condensation of both mouse and Xenopus nuclei in Xenopus egg extracts, which suggests an evolutionarily conserved mechanism of TFIIH action. Reducing nucleosome density through partial histone depletion restores chromosome structure and condensin enrichment in the absence of TFIIH activity. We propose that the TFIIH complex promotes mitotic chromosome condensation by dynamically altering the chromatin environment to facilitate condensin loading and condensin-dependent loop extrusion.
Collapse
Affiliation(s)
- Julian Haase
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIHBethesdaUnited States
| | - Richard Chen
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIHBethesdaUnited States
| | - Wesley M Parker
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIHBethesdaUnited States
| | - Mary Kate Bonner
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIHBethesdaUnited States
| | - Lisa M Jenkins
- Laboratory of Cell Biology, National Cancer Institute, NIHBethesdaUnited States
| | - Alexander E Kelly
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIHBethesdaUnited States
| |
Collapse
|
22
|
Breimann L, Morao AK, Kim J, Sebastian Jimenez D, Maryn N, Bikkasani K, Carrozza MJ, Albritton SE, Kramer M, Street LA, Cerimi K, Schumann VF, Bahry E, Preibisch S, Woehler A, Ercan S. The histone H4 lysine 20 demethylase DPY-21 regulates the dynamics of condensin DC binding. J Cell Sci 2022; 135:jcs258818. [PMID: 34918745 PMCID: PMC8917352 DOI: 10.1242/jcs.258818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 11/29/2021] [Indexed: 11/26/2022] Open
Abstract
Condensin is a multi-subunit structural maintenance of chromosomes (SMC) complex that binds to and compacts chromosomes. Here, we addressed the regulation of condensin binding dynamics using Caenorhabditis elegans condensin DC, which represses X chromosomes in hermaphrodites for dosage compensation. We established fluorescence recovery after photobleaching (FRAP) using the SMC4 homolog DPY-27 and showed that a well-characterized ATPase mutation abolishes DPY-27 binding to X chromosomes. Next, we performed FRAP in the background of several chromatin modifier mutants that cause varying degrees of X chromosome derepression. The greatest effect was in a null mutant of the H4K20me2 demethylase DPY-21, where the mobile fraction of condensin DC reduced from ∼30% to 10%. In contrast, a catalytic mutant of dpy-21 did not regulate condensin DC mobility. Hi-C sequencing data from the dpy-21 null mutant showed little change compared to wild-type data, uncoupling Hi-C-measured long-range DNA contacts from transcriptional repression of the X chromosomes. Taken together, our results indicate that DPY-21 has a non-catalytic role in regulating the dynamics of condensin DC binding, which is important for transcription repression.
Collapse
Affiliation(s)
- Laura Breimann
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
- Institute for Biology, Humboldt University of Berlin, 10099 Berlin, Germany
| | - Ana Karina Morao
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Jun Kim
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - David Sebastian Jimenez
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Nina Maryn
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Krishna Bikkasani
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Michael J. Carrozza
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Sarah E. Albritton
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Maxwell Kramer
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Lena Annika Street
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Kustrim Cerimi
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Vic-Fabienne Schumann
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Ella Bahry
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Stephan Preibisch
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Andrew Woehler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Sevinç Ercan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| |
Collapse
|
23
|
Arimura Y, Shih RM, Froom R, Funabiki H. Structural features of nucleosomes in interphase and metaphase chromosomes. Mol Cell 2021; 81:4377-4397.e12. [PMID: 34478647 PMCID: PMC8571072 DOI: 10.1016/j.molcel.2021.08.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/17/2022]
Abstract
Structural heterogeneity of nucleosomes in functional chromosomes is unknown. Here, we devise the template-, reference- and selection-free (TRSF) cryo-EM pipeline to simultaneously reconstruct cryo-EM structures of protein complexes from interphase or metaphase chromosomes. The reconstructed interphase and metaphase nucleosome structures are on average indistinguishable from canonical nucleosome structures, despite DNA sequence heterogeneity, cell-cycle-specific posttranslational modifications, and interacting proteins. Nucleosome structures determined by a decoy-classifying method and structure variability analyses reveal the nucleosome structural variations in linker DNA, histone tails, and nucleosome core particle configurations, suggesting that the opening of linker DNA, which is correlated with H2A C-terminal tail positioning, is suppressed in chromosomes. High-resolution (3.4-3.5 Å) nucleosome structures indicate DNA-sequence-independent stabilization of superhelical locations ±0-1 and ±3.5-4.5. The linker histone H1.8 preferentially binds to metaphase chromatin, from which chromatosome cryo-EM structures with H1.8 at the on-dyad position are reconstituted. This study presents the structural characteristics of nucleosomes in chromosomes.
Collapse
Affiliation(s)
- Yasuhiro Arimura
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA.
| | - Rochelle M Shih
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Ruby Froom
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
24
|
Choppakatla P, Dekker B, Cutts EE, Vannini A, Dekker J, Funabiki H. Linker histone H1.8 inhibits chromatin binding of condensins and DNA topoisomerase II to tune chromosome length and individualization. eLife 2021; 10:e68918. [PMID: 34406118 PMCID: PMC8416026 DOI: 10.7554/elife.68918] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022] Open
Abstract
DNA loop extrusion by condensins and decatenation by DNA topoisomerase II (topo II) are thought to drive mitotic chromosome compaction and individualization. Here, we reveal that the linker histone H1.8 antagonizes condensins and topo II to shape mitotic chromosome organization. In vitro chromatin reconstitution experiments demonstrate that H1.8 inhibits binding of condensins and topo II to nucleosome arrays. Accordingly, H1.8 depletion in Xenopus egg extracts increased condensins and topo II levels on mitotic chromatin. Chromosome morphology and Hi-C analyses suggest that H1.8 depletion makes chromosomes thinner and longer through shortening the average loop size and reducing the DNA amount in each layer of mitotic loops. Furthermore, excess loading of condensins and topo II to chromosomes by H1.8 depletion causes hyper-chromosome individualization and dispersion. We propose that condensins and topo II are essential for chromosome individualization, but their functions are tuned by the linker histone to keep chromosomes together until anaphase.
Collapse
Affiliation(s)
- Pavan Choppakatla
- Laboratory of Chromosome and Cell Biology, The Rockefeller UniversityNew YorkUnited States
| | - Bastiaan Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Erin E Cutts
- Division of Structural Biology, The Institute of Cancer ResearchLondonUnited Kingdom
| | - Alessandro Vannini
- Division of Structural Biology, The Institute of Cancer ResearchLondonUnited Kingdom
- Fondazione Human Technopole, Structural Biology Research Centre, 20157MilanItaly
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical SchoolWorcesterUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|