1
|
Fang Q, Zhao Y, An D, Lindau M. SNARE complex assembly and disassembly dynamics in response to Ca 2+ current activation in live cells. Biophys J 2025:S0006-3495(25)00217-6. [PMID: 40205739 DOI: 10.1016/j.bpj.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/16/2024] [Accepted: 04/07/2025] [Indexed: 04/11/2025] Open
Abstract
A SNAP25-based FRET construct named SCORE (SNARE complex reporter) has revealed a transient FRET increase that specifically occurred at fusion sites preceding fusion events by tens of milliseconds and presumably reflects vesicle priming. The FRET increase lasts for a few seconds until it is reversed. In those experiments, the FRET increase was found to be localized to areas <0.5 μm2 at sites of transmitter release as detected amperometrically using electrochemical detector arrays. Due to the localization to such small areas, it was unknown if the reversal of the FRET increase is due to local dispersion of high-FRET SCORE copies leaving the site after fusion and exchange with surrounding low-FRET copies, or if it reflects disassembly of the high-FRET complexes. To resolve this question, we performed whole-cell patch-clamp pulse stimulation experiments, imaging the entire footprint of the cells in total internal reflection fluorescence (TIRF) excitation mode such that diffusional exchange between high-FRET and low-FRET copies does not produce a net FRET change. We show here that pulse stimulation of calcium currents results in FRET ratio transients with a time course very similar to those related to fusion events. By comparing the kinetics of the FRET ratio decay with analytical and numerical diffusion simulation results, we show that the experimentally observed kinetics cannot be explained by diffusional exchange and conclude that the SCORE FRET ratio transients reflect incorporation of SCORE in SNARE complexes followed by SNARE complex disassembly. Experiments using Synaptobrevin 2/Cellubrevin double knockout mouse embryonal chromaffin cells showed no pulse-induced FRET change, indicating that the vSNARE is required for the incorporation of SCORE (or SNAP25 in wild-type cells) in the SNARE complex during priming.
Collapse
Affiliation(s)
- Qinghua Fang
- Laboratory for Nanoscale Cell Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ying Zhao
- Laboratory for Nanoscale Cell Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dong An
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, Florida
| | - Manfred Lindau
- Laboratory for Nanoscale Cell Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, Florida.
| |
Collapse
|
2
|
Kraichely KN, Sandall CR, Liang B, Kiessling V, Tamm LK. Functionally distinct SNARE motifs of SNAP25 cooperate in SNARE assembly and membrane fusion. Biophys J 2025; 124:637-650. [PMID: 39982442 PMCID: PMC11900178 DOI: 10.1016/j.bpj.2024.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 02/22/2025] Open
Abstract
Intracellular membrane traffic involves controlled membrane fission and fusion and is essential for eukaryotic cell homeostasis. Most intracellular fusion is facilitated by Soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) proteins, which catalyze membrane merging by assembly of a coiled helical bundle of four 60- to 70-residue "SNARE motifs." Perhaps no intracellular fusion reaction is as tightly regulated as that at the neuronal synapse, mediated by the synaptic vesicle SNARE Synaptobrevin-2 and the presynaptic plasma membrane SNAREs Syntaxin-1a and SNAP25. SNAP25 is different from its partner SNAREs: it contributes not one but two SNARE motifs to the final complex and instead of transmembrane domains is anchored in the membrane by post-translational palmitoylation of a long flexible linker between the SNARE motifs. Despite reports of structural and functional differences between the two SNARE motifs, many models of SNARE assembly and fusion consider SNAP25 to be a single functional unit and do not address how linking two distinct motifs in a single polypeptide contributes to synaptic SNARE assembly and fusion. To investigate whether SNAP25's two SNARE motifs regulate each other's folding and ability to assemble with other SNAREs, we determined their secondary structures in isolation and in the context of the whole protein by NMR spectroscopy and correlated the ability of the individual membrane-anchored SNARE motifs to interact with Syntaxin-1a and catalyze fusion in FRET-based binding and single-particle fusion assays, respectively. Our results demonstrate that the isolated N-terminal SNARE motif of SNAP25 promotes stronger Syntaxin-1a binding on membranes and more efficient fusion than wild-type SNAP25, while the C-terminal SNARE motif binds only transiently and facilitates kinetically delayed fusion. By comparing the functional properties of the single motifs to those of the full-length protein, we propose a new model of SNAP25 self-regulation in SNARE assembly and membrane fusion.
Collapse
Affiliation(s)
- Katelyn N Kraichely
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Connor R Sandall
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Binyong Liang
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Volker Kiessling
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Lukas K Tamm
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
3
|
Schwab K, Robinson L, Annschuetz A, Dreesen E, Magbagbeolu M, Melis V, Theuring F, Harrington CR, Wischik CM, Riedel G. Rivastigmine interferes with the pharmacological activity of hydromethylthionine on presynaptic proteins in the line 66 model of frontotemporal dementia. Brain Res Bull 2025; 220:111172. [PMID: 39694148 DOI: 10.1016/j.brainresbull.2024.111172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/29/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
The negative interference of treatments between the acetylcholinesterase inhibitor rivastigmine and the tau aggregation inhibitor hydromethylthionine mesylate (HMTM) has been reported in Line 1 tau-transgenic mice, which overexpress a truncated species of tau protein that is found in the core of paired helical filaments in Alzheimer´s disease (AD). However, little is known about whether such interactions could affect synapses in mice overexpressing tau carrying pathogenic mutations. Here, we have used Line 66 (L66) mice which overexpress full-length human tau carrying the P301S mutation as a model in which tau accumulates in synapses. We measured the abundance of tau and synaptic proteins (VAMP-2, SNAP-25, SNTX-1, SYNPY-1, SYN-1, A-SYN) immunohistochemically to reveal structural synaptic alterations in these mice. Tau and synaptic markers were also examined in L66 mice treated with hydromethylthionine mesylate (HMTM) (15 mg/kg) and rivastigmine (0.5 mg/kg) administered singly and in combination. Tau protein accumulated in L66 mouse brains, and the levels of synaptic proteins were also altered, most notably with decreased levels of SNAP-25 and SYN-1. A decrease in tau accumulation in L66 brains caused by HMTM was partially compromised by rivastigmine pretreatment. Differences in synaptic proteins induced by HMTM alone were not identical with those induced by HMTM pretreated with rivastigmine. The most prominent differences appeared in proteins of the SNARE complex (SNAP-25, VAMP-2, SNTX-1), but rivastigmine also interfered with the HMTM-dependent reduction in tau accumulation. These data extend our previous findings with L1 mice and provide evidence for a synaptic mechanism of interference between symptomatic and disease-modifying dementia therapies and an explanation for similar drug interactions observed in clinical trials.
Collapse
Affiliation(s)
- Karima Schwab
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Lianne Robinson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Anne Annschuetz
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Eline Dreesen
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Mandy Magbagbeolu
- Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Hessische Str. 3-4, Berlin 10115, Germany
| | - Valeria Melis
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Franz Theuring
- Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Hessische Str. 3-4, Berlin 10115, Germany
| | - Charles R Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; TauRx Therapeutics Ltd., 395 King Street, Aberdeen AB24 5RP, UK
| | - Claude M Wischik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; TauRx Therapeutics Ltd., 395 King Street, Aberdeen AB24 5RP, UK
| | - Gernot Riedel
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
4
|
Huang G, Yang X, Yu Q, Luo Q, Ju C, Zhang B, Chen Y, Liang Z, Xia S, Wang X, Xiang D, Zhong N, Tang XX. Overexpression of STX11 alleviates pulmonary fibrosis by inhibiting fibroblast activation via the PI3K/AKT/mTOR pathway. Signal Transduct Target Ther 2024; 9:306. [PMID: 39523374 PMCID: PMC11551190 DOI: 10.1038/s41392-024-02011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 09/15/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024] Open
Abstract
Fibroblast activation plays an important role in the occurrence and development of idiopathic pulmonary fibrosis (IPF), which is a progressive, incurable, and fibrotic lung disease. However, the underlying mechanism of fibroblast activation in IPF remains elusive. Here, we showed that the expression levels of STX11 and SNAP25 were downregulated in the lung tissues from patients with IPF and mice with bleomycin (BLM)-induced lung fibrosis as well as in the activated fibroblasts. Upregulation of STX11 or SNAP25 suppressed TGF-β1-induced activation of human lung fibroblasts (HLFs) via promoting autophagy. However, they failed to suppress fibroblast actviation when autophagy was blocked with the use of chloroquine (CQ). In addition, STX11 or SNAP25 could inhibit TGF-β1-induced fibroblast proliferation and migration. In vivo, overexpression of STX11 exerted its protective role in the mice with BLM-induced lung fibrosis. STX11 and SNAP25 mutually promoted expression of each other. Co-IP assay indicated that STX11 has an interaction with SNAP25. Mechanistically, STX11-SNAP25 interaction activated fibroblast autophagy and further inhibited fibroblast activation via blocking the PI3K/AKT/mTOR pathway. Overall, the results suggested that STX11-SNAP25 interaction significantly inhibited lung fibrosis by promoting fibroblast autophagy and suppressing fibroblast activation via blocking the PI3K/ATK/mTOR signaling pathway. Therefore, STX11 serves as a promising therapeutic target in IPF.
Collapse
Affiliation(s)
- Guichuan Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiangsheng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingyang Yu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qun Luo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chunrong Ju
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bangyan Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yijing Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zihan Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shu Xia
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaohua Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dong Xiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou Laboratory, Bio-island, Guangzhou, China.
| | - Xiao Xiao Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou Laboratory, Bio-island, Guangzhou, China.
| |
Collapse
|
5
|
Cheng S, Zhang J, Zhang Y, Wang H, Wang H. In Situ Synthesis and Visualization of Membrane SNAP25 Nano-Organization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20977-20985. [PMID: 39330215 DOI: 10.1021/acs.langmuir.4c02231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Cryo-electron tomography (cryo-ET) can provide insights into the structure and states of natural membrane environments to explore the role of SNARE proteins at membrane fusion and understand the relationship between their subcellular localization/formation and action mechanism. Nevertheless, the identification of individual molecules in crowded and low signal-to-noise ratio membrane environments remains a significant challenge. In this study, cryo-ET is employed to image near-physiological state 293T cell membranes, specifically utilizing in situ synthesized gold nanoparticles (AuNPs) bound with cysteine-rich protein tags to single-molecularly labeled synaptosomal-associated protein 25 (SNAP25) on the membrane surface. The high-resolution images reveal that SNAP25 is predominantly located in regions of high molecular density within the cell membrane and aggregates into smaller clusters, which may increase the fusion efficiency. Remarkably, a zigzag arrangement of SNAP25 is observed on the cell membrane. These findings provide valuable insights into the functional mechanisms of SNARE proteins.
Collapse
Affiliation(s)
- Sihang Cheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Jinrui Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Yaxuan Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Huili Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong, P. R. China
| |
Collapse
|
6
|
Schwab K, Lauer D, Magbagbeolu M, Theuring F, Gasiorowska A, Zadrozny M, Harrington CR, Wischik CM, Niewiadomska G, Riedel G. Hydromethylthionine rescues synaptic SNARE proteins in a mouse model of tauopathies: Interference by cholinesterase inhibitors. Brain Res Bull 2024; 212:110955. [PMID: 38677558 DOI: 10.1016/j.brainresbull.2024.110955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
In clinical trials for Alzheimer's disease (AD), hydromethylthionine mesylate (HMTM) showed reduced efficacy when administered as an add-on to symptomatic treatments, while it produced a significant improvement of cognitive function when taken as monotherapy. Interference of cholinesterase inhibition with HMTM was observed also in a tau transgenic mouse model, where rivastigmine reduced the pharmacological activity of HMTM at multiple brain levels including hippocampal acetylcholine release, synaptosomal glutamate release and mitochondrial activity. Here, we examined the effect of HMTM, given alone or in combination with the acetylcholinesterase inhibitor, rivastigmine, at the level of expression of selected pre-synaptic proteins (syntaxin-1; SNAP-25, VAMP-2, synaptophysin-1, synapsin-1, α-synuclein) in brain tissue harvested from tau-transgenic Line 1 (L1) and wild-type mice using immunohistochemistry. L1 mice overexpress the tau-core unit that induces tau aggregation and results in an AD-like phenotype. Synaptic proteins were lower in hippocampus and cortex but greater in basal forebrain regions in L1 compared to wild-type mice. HMTM partially normalised the expression pattern of several of these proteins in basal forebrain. This effect was diminished when HMTM was administered in combination with rivastigmine, where mean protein expression seemed supressed. This was further confirmed by group-based correlation network analyses where important levels of co-expression correlations in basal forebrain regions were lost in L1 mice and partially re-established when HMTM was given alone but not in combination with rivastigmine. These data indicate a reduction in pharmacological activity of HMTM when given as an add-on therapy, a result that is consistent with the responses observed in the clinic. Attenuation of the therapeutic effects of HMTM by cholinergic treatments may have important implications for other potential AD therapies.
Collapse
Affiliation(s)
- Karima Schwab
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Hessische Str. 3-4, Berlin 10115, Germany
| | - Dilyara Lauer
- Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Hessische Str. 3-4, Berlin 10115, Germany
| | - Mandy Magbagbeolu
- Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Hessische Str. 3-4, Berlin 10115, Germany
| | - Franz Theuring
- Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Hessische Str. 3-4, Berlin 10115, Germany
| | - Anna Gasiorowska
- Clinical and Research Department of Applied Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Maciej Zadrozny
- Clinical and Research Department of Applied Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Charles R Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; TauRx Therapeutics Ltd., 395 King Street, Aberdeen AB24 5RP, UK
| | - Claude M Wischik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; TauRx Therapeutics Ltd., 395 King Street, Aberdeen AB24 5RP, UK
| | - Grażyna Niewiadomska
- Clinical and Research Department of Applied Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Gernot Riedel
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
7
|
Leitz J, Wang C, Esquivies L, Pfuetzner RA, Peters JJ, Couoh-Cardel S, Wang AL, Brunger AT. Beyond the MUN domain, Munc13 controls priming and depriming of synaptic vesicles. Cell Rep 2024; 43:114026. [PMID: 38809756 PMCID: PMC11286359 DOI: 10.1016/j.celrep.2024.114026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/20/2024] [Accepted: 03/15/2024] [Indexed: 05/31/2024] Open
Abstract
Synaptic vesicle docking and priming are dynamic processes. At the molecular level, SNAREs (soluble NSF attachment protein receptors), synaptotagmins, and other factors are critical for Ca2+-triggered vesicle exocytosis, while disassembly factors, including NSF (N-ethylmaleimide-sensitive factor) and α-SNAP (soluble NSF attachment protein), disassemble and recycle SNAREs and antagonize fusion under some conditions. Here, we introduce a hybrid fusion assay that uses synaptic vesicles isolated from mouse brains and synthetic plasma membrane mimics. We included Munc18, Munc13, complexin, NSF, α-SNAP, and an ATP-regeneration system and maintained them continuously-as in the neuron-to investigate how these opposing processes yield fusogenic synaptic vesicles. In this setting, synaptic vesicle association is reversible, and the ATP-regeneration system produces the most synchronous Ca2+-triggered fusion, suggesting that disassembly factors perform quality control at the early stages of synaptic vesicle association to establish a highly fusogenic state. We uncovered a functional role for Munc13 ancillary to the MUN domain that alleviates an α-SNAP-dependent inhibition of Ca2+-triggered fusion.
Collapse
Affiliation(s)
- Jeremy Leitz
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Chuchu Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Luis Esquivies
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Richard A Pfuetzner
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - John Jacob Peters
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Sergio Couoh-Cardel
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Austin L Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
Schmidt SC, Massenberg A, Homsi Y, Sons D, Lang T. Microscopic clusters feature the composition of biochemical tetraspanin-assemblies and constitute building-blocks of tetraspanin enriched domains. Sci Rep 2024; 14:2093. [PMID: 38267610 PMCID: PMC10808221 DOI: 10.1038/s41598-024-52615-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/21/2024] [Indexed: 01/26/2024] Open
Abstract
Biochemical approaches revealed that tetraspanins are multi-regulatory proteins forming a web, where they act in tetraspanin-enriched-microdomains (TEMs). A microscopic criterion differentiating between web and TEMs is lacking. Using super-resolution microcopy, we identify co-assemblies between the tetraspanins CD9 and CD81 and CD151 and CD81. CD9 assemblies contain as well the CD9/CD81-interaction partner EWI-2. Moreover, CD9 clusters are proximal to clusters of the CD81-interaction partner CD44 and CD81-/EWI-2-interacting ezrin-radixin-moesin proteins. Assemblies scatter unorganized across the cell membrane; yet, upon EWI-2 elevation, they agglomerate into densely packed arranged-crowds in a process independent from actin dynamics. In conclusion, microscopic clusters are equivalent to biochemical tetraspanin-assemblies, defining in their entirety the tetraspanin web. Cluster-agglomeration enriches tetraspanins, which makes agglomerations to a microscopic complement of TEMs. The microscopic classification of tetraspanin assemblies advances our understanding of this enigmatic protein family, whose members play roles in a plethora of cellular functions, diseases, and pathogen infections.
Collapse
Affiliation(s)
- Sara C Schmidt
- Faculty of Mathematics and Natural Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany
| | - Annika Massenberg
- Faculty of Mathematics and Natural Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany
| | - Yahya Homsi
- Faculty of Mathematics and Natural Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany
| | - Dominik Sons
- Faculty of Mathematics and Natural Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany
| | - Thorsten Lang
- Faculty of Mathematics and Natural Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany.
| |
Collapse
|
9
|
Abstract
Membrane fusion and budding mediate fundamental processes like intracellular trafficking, exocytosis, and endocytosis. Fusion is thought to open a nanometer-range pore that may subsequently close or dilate irreversibly, whereas budding transforms flat membranes into vesicles. Reviewing recent breakthroughs in real-time visualization of membrane transformations well exceeding this classical view, we synthesize a new model and describe its underlying mechanistic principles and functions. Fusion involves hemi-to-full fusion, pore expansion, constriction and/or closure while fusing vesicles may shrink, enlarge, or receive another vesicle fusion; endocytosis follows exocytosis primarily by closing Ω-shaped profiles pre-formed through the flat-to-Λ-to-Ω-shape transition or formed via fusion. Calcium/SNARE-dependent fusion machinery, cytoskeleton-dependent membrane tension, osmotic pressure, calcium/dynamin-dependent fission machinery, and actin/dynamin-dependent force machinery work together to generate fusion and budding modes differing in pore status, vesicle size, speed and quantity, controls release probability, synchronization and content release rates/amounts, and underlies exo-endocytosis coupling to maintain membrane homeostasis. These transformations, underlying mechanisms, and functions may be conserved for fusion and budding in general.
Collapse
Affiliation(s)
- Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| | - Chung Yu Chan
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| |
Collapse
|
10
|
Yang AJT, Mohammad A, Finch MS, Tsiani E, Spencer G, Necakov A, MacPherson REK. Influence of metabolic stress and metformin on synaptic protein profile in SH-SY5Y-derived neurons. Physiol Rep 2023; 11:10.14814/phy2.15852. [PMID: 38010200 PMCID: PMC10680579 DOI: 10.14814/phy2.15852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 11/29/2023] Open
Abstract
Insulin resistance (IR) is associated with reductions in neuronal proteins often observed with Alzheimer's disease (AD), however, the mechanisms through which IR promotes neurodegeneration/AD pathogenesis are poorly understood. Metformin (MET), a potent activator of the metabolic regulator AMPK is used to treat IR but its effectiveness for AD is unclear. We have previously shown that chronic AMPK activation impairs neurite growth and protein synthesis in SH-SY5Y neurons, however, AMPK activation in IR was not explored. Therefore, we examined the effects of MET-driven AMPK activation with and without IR. Retinoic acid-differentiated SH-SY5Y neurons were treated with: (1) Ctl: 24 h vehicle followed by 24 h Vehicle; (2) HI: 100 nM insulin (24 h HI followed by 24 h HI); or (3) MET: 24 h vehicle followed by 24 h 2 mM metformin; (4) HI/MET: 24 h 100 nM insulin followed by 24 h 100 nM INS+2 mM MET. INS and INS/MET groups saw impairments in markers of insulin signaling (Akt S473, mTOR S2448, p70s6k T389, and IRS-1S636) demonstrating IR was not recovered with MET treatment. All treatment groups showed reductions in neuronal markers (post-synaptic marker HOMER1 mRNA content and synapse marker synaptophysin protein content). INS and MET treatments showed a reduction in the content of the mature neuronal marker NeuN that was prevented by INS/MET. Similarly, increases in cell size/area, neurite length/area observed with INS and MET, were prevented with INS/MET. These findings indicate that IR and MET impair neuronal markers through distinct pathways and suggest that MET is ineffective in treating IR-driven impairments in neurons.
Collapse
Affiliation(s)
- Alex J. T. Yang
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt CatharinesOntarioCanada
| | - Ahmad Mohammad
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt CatharinesOntarioCanada
| | - Michael S. Finch
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt CatharinesOntarioCanada
| | - Evangelia Tsiani
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt CatharinesOntarioCanada
| | - Gaynor Spencer
- Department of Biological SciencesBrock UniversitySt CatharinesOntarioCanada
- Centre for NeuroscienceBrock UniversitySt. CatharinesOntarioCanada
| | - Aleksandar Necakov
- Department of Biological SciencesBrock UniversitySt CatharinesOntarioCanada
- Centre for NeuroscienceBrock UniversitySt. CatharinesOntarioCanada
| | - Rebecca E. K. MacPherson
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt CatharinesOntarioCanada
- Centre for NeuroscienceBrock UniversitySt. CatharinesOntarioCanada
| |
Collapse
|
11
|
Hesselbarth J, Schmidt C. Mass spectrometry uncovers intermediates and off-pathway complexes for SNARE complex assembly. Commun Biol 2023; 6:198. [PMID: 36806321 PMCID: PMC9941103 DOI: 10.1038/s42003-023-04548-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
The SNARE complex assembles from vesicular Synaptobrevin-2 as well as Syntaxin-1 and SNAP25 both anchored to the presynaptic membrane. It mediates fusion of synaptic vesicles with the presynaptic plasma membrane resulting in exocytosis of neurotransmitters. While the general sequence of SNARE complex formation is well-established, our knowledge on possible intermediates and stable off-pathway complexes is incomplete. We, therefore, follow the stepwise assembly of the SNARE complex and target individual SNAREs, binary sub-complexes, the ternary SNARE complex as well as interactions with Complexin-1. Using native mass spectrometry, we identify the stoichiometry of sub-complexes and monitor oligomerisation of various assemblies. Importantly, we find that interactions with Complexin-1 reduce multimerisation of the ternary SNARE complex. Chemical cross-linking provides detailed insights into these interactions suggesting a role for membrane fusion. In summary, we unravel the stoichiometry of intermediates and off-pathway complexes and compile a road map of SNARE complex assembly including regulation by Complexin-1.
Collapse
Affiliation(s)
- Julia Hesselbarth
- Interdisciplinary Research Centre HALOmem, Charles Tanford Protein Centre, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany
- Department of Chemistry - Biochemistry, Biocenter II, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Carla Schmidt
- Interdisciplinary Research Centre HALOmem, Charles Tanford Protein Centre, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany.
- Department of Chemistry - Biochemistry, Biocenter II, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
12
|
Wu X, Qiu H, Zhang M. Interactions between Membraneless Condensates and Membranous Organelles at the Presynapse: A Phase Separation View of Synaptic Vesicle Cycle. J Mol Biol 2023; 435:167629. [PMID: 35595170 DOI: 10.1016/j.jmb.2022.167629] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023]
Abstract
Action potential-induced neurotransmitter release in presynaptic boutons involves coordinated actions of a large list of proteins that are associated directly or indirectly with membrane structures including synaptic vesicles and plasma membranes. These proteins are often highly abundant in different synaptic bouton sub-compartments, and they rarely act alone. Instead, these proteins interact with each other forming intricate and distinct molecular complexes. Many of these complexes form condensed clusters on membrane surfaces. This review summarizes findings in recent years showing that many of presynaptic protein complex assemblies are formed via phase separation. These protein condensates extensively interact with lipid membranes via distinct modes, forming various mesoscale structures by different mode of organizations between membraneless condensates and membranous organelles. We discuss that such mesoscale interactions could have deep implications on mobilization, exocytosis, and retrieval of synaptic vesicles.
Collapse
Affiliation(s)
- Xiandeng Wu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hua Qiu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mingjie Zhang
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518036, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|