1
|
Parvaneh S, Miklós V, Páhi ZG, Szűcs D, Monostori T, Póliska S, Venglovecz V, Pankotai T, Kemény L, Veréb Z. Chemoresistance in Pancreatic Cancer: The Role of Adipose-Derived Mesenchymal Stem Cells and Key Resistance Genes. Int J Mol Sci 2025; 26:390. [PMID: 39796244 PMCID: PMC11720846 DOI: 10.3390/ijms26010390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Drug resistance is a significant challenge in pancreatic ductal adenocarcinoma (PDAC), where stromal elements such as adipose-derived mesenchymal stem cells (ASCs) contribute to a chemoresistant tumor microenvironment (TME). This study explored the effects of oxaliplatin (OXP) and 5-fluorouracil (5-FU) on PDAC cells (Capan-1) and ASCs to investigate the mechanisms of chemoresistance. While OXP and 5-FU reduced Capan-1 viability in a dose- and time-dependent manner, ASCs demonstrated high resistance, maintaining > 90% viability even at cytotoxic doses. Transcriptomic analyses revealed OXP-induced transcriptional reprogramming in ASCs, with over 7000 differentially expressed genes, highlighting the pathways related to DNA damage response, cell cycle regulation, and stress-related signaling. In contrast, 5-FU elicited limited transcriptional changes, affecting only 192 genes. Cytokine proteome profiling revealed that OXP-treated ASCs significantly influenced the tumor microenvironment by promoting immune evasion (via IL-4, GM-CSF, IP-10, and GROα) and driving extracellular matrix remodeling (through EMMPRIN and DPPIV). In contrast, 5-FU induced comparatively weaker effects, primarily limited to hypoxia-related pathways. Although OXP reduced angiogenic factors, it paradoxically activated pro-survival pathways, thereby enhancing ASC-mediated tumor support. These findings underscore ASCs as modulators of chemoresistance via secretome alterations and stress adaptation. Therefore, future strategies should prioritize the precise targeting of tumor cells while also focusing on the development of personalized treatments to achieve durable therapeutic responses in PDAC.
Collapse
Affiliation(s)
- Shahram Parvaneh
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (S.P.); (D.S.); (T.M.); (L.K.)
- Doctoral School of Clinical Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Vanda Miklós
- Biobank, University of Szeged, H-6725 Szeged, Hungary;
| | - Zoltán Gábor Páhi
- Genome Integrity and DNA Repair Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), H-6728 Szeged, Hungary; (Z.G.P.); (T.P.)
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary
| | - Diána Szűcs
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (S.P.); (D.S.); (T.M.); (L.K.)
- Interdisciplinary Research Development and Innovation, Center of Excellence, University of Szeged, H-6720 Szeged, Hungary
| | - Tamás Monostori
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (S.P.); (D.S.); (T.M.); (L.K.)
- Interdisciplinary Research Development and Innovation, Center of Excellence, University of Szeged, H-6720 Szeged, Hungary
| | - Szilárd Póliska
- Genomic Medicine and Bioinformatics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, H-6720 Szeged, Hungary;
| | - Tibor Pankotai
- Genome Integrity and DNA Repair Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), H-6728 Szeged, Hungary; (Z.G.P.); (T.P.)
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary
- Interdisciplinary Research Development and Innovation, Center of Excellence, University of Szeged, H-6720 Szeged, Hungary
| | - Lajos Kemény
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (S.P.); (D.S.); (T.M.); (L.K.)
- Interdisciplinary Research Development and Innovation, Center of Excellence, University of Szeged, H-6720 Szeged, Hungary
- HCEMM-SZTE Skin Research Group, University of Szeged, H-6720 Szeged, Hungary
| | - Zoltán Veréb
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (S.P.); (D.S.); (T.M.); (L.K.)
- Biobank, University of Szeged, H-6725 Szeged, Hungary;
- Interdisciplinary Research Development and Innovation, Center of Excellence, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
2
|
Saber S, Abdelhady R, Elhemely MA, Elmorsy EA, Hamad RS, Abdel-Reheim MA, El-Kott AF, AlShehri MA, Morsy K, AlSheri AS, Youssef ME. PU-H71 (NSC 750424): a molecular masterpiece that targets HSP90 in cancer and beyond. Front Pharmacol 2024; 15:1475998. [PMID: 39564119 PMCID: PMC11573589 DOI: 10.3389/fphar.2024.1475998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Heat shock protein 90 (HSP90) is a pivotal molecular chaperone with multifaceted roles in cellular health and disease. Herein, we explore how HSP90 orchestrates cellular stress responses, particularly through its partnership with heat shock factor 1 (HSF-1). PU-H71, a selective inhibitor of HSP90, demonstrates significant potential in cancer therapy by targeting a wide array of oncogenic pathways. By inducing the degradation of multiple client proteins, PU-H71 disrupts critical signaling pathways such as MAPK, PI3K/Akt, JAK/STAT, EGFR, and mTOR, which are essential for cancer cell survival, proliferation, and metastasis. We examined its impact on combating triple-negative breast cancer and enhancing the effectiveness of carbon-ion beam therapy, offering new avenues for cancer treatment. Furthermore, the dual inhibition of HSP90A and HSP90B1 by PU-H71 proves highly effective in the context of myeloma, providing fresh hope for patients with this challenging malignancy. We delve into its potential to induce apoptosis in B-cell lymphomas that rely on Bcl6 for survival, highlighting its relevance in the realm of hematologic cancers. Shifting our focus to hepatocellular carcinoma, we explore innovative approaches to chemotherapy. Moreover, the current review elucidates the potential capacity of PU-H71 to suppress glial cell activation paving the way for developing novel therapeutic strategies for neuroinflammatory disorders. Additionally, the present report also suggests the promising role of PU-H71 in JAK2-dependent myeloproliferative neoplasms. Eventually, our report sheds more light on the multiple functions of HSP90 protein as well as the potential therapeutic benefit of its selective inhibitor PU-H71 in the context of an array of diseases, laying the foundations for the development of novel therapeutic approaches that could achieve better treatment outcomes.
Collapse
Affiliation(s)
- Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Rasha Abdelhady
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Chinese University, Cairo, Egypt
| | - Mai A Elhemely
- School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Mohammed A AlShehri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Kareem Morsy
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ali S AlSheri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
3
|
Liu M, Xing Y, Tan J, Chen X, Xue Y, Qu L, Ma J, Jin X. Comprehensive summary: the role of PBX1 in development and cancers. Front Cell Dev Biol 2024; 12:1442052. [PMID: 39129784 PMCID: PMC11310070 DOI: 10.3389/fcell.2024.1442052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024] Open
Abstract
PBX1 is a transcription factor that can promote the occurrence of various tumors and play a reg-ulatory role in tumor growth, metastasis, invasion, and drug resistance. Furthermore, a variant generated by fusion of E2A and PBX1, E2A-PBX1, has been found in 25% of patients with childhood acute lymphoblastic leukemia. Thus, PBX1 is a potential therapeutic target for many cancers. Here, we describe the structure of PBX1 and E2A-PBX1 as well as the molecular mecha-nisms whereby these proteins promote tumorigenesis to provide future research directions for developing new treatments. We show that PBX1 and E2A-PBX1 induce the development of highly malignant and difficult-to-treat solid and blood tumors. The development of specific drugs against their targets may be a good therapeutic strategy for PBX1-related cancers. Furthermore, we strongly recommend E2A-PBX1 as one of the genes for prenatal screening to reduce the incidence of childhood hematological malignancies.
Collapse
Affiliation(s)
- Mingsheng Liu
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Yan Xing
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Jiufeng Tan
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Xiaoliang Chen
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Yaming Xue
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Licheng Qu
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Jianchao Ma
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Xuefei Jin
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| |
Collapse
|
4
|
Li J, Feng J, Li Z, Ni Y, Liu L, Lei X, Chai Z, Zhuang N, Xu J, He Y, Shan J, Qian C. B cell lymphoma 6 promotes hepatocellular carcinoma progression by inhibiting tumor infiltrating CD4 +T cell cytotoxicity through ESM1. NPJ Precis Oncol 2024; 8:139. [PMID: 38956432 PMCID: PMC11220024 DOI: 10.1038/s41698-024-00625-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/02/2024] [Indexed: 07/04/2024] Open
Abstract
Immunotherapy exhibited potential effects for advanced hepatocellular carcinoma, unfortunately, the clinical benefits are often countered by cancer adaptive immune suppressive response. Uncovering the mechanism how cancer cells evade immune surveillance would help to develop new immunotherapy approaches and combination therapy. In this article, by analyzing the transcriptional factors which modulate the differentially expressed genes between T cell infiltration high group and low group, we identified oncoprotein B cell lymphoma 6 (BCL6) suppresses the infiltration and activation of tumor infiltrating T lymphocytes, thus correlated with poorer clinical outcome. By using antibody deletion experiment, we further demonstrated that CD4+T cells but not CD8+T cells are the main lymphocyte population suppressed by Bcl6 to promote HCC development. Mechanistically, BCL6 decreases cancer cell expression of pro-inflammatory cytokines and T lymphocyte chemokines such as IL6, IL1F6, and CCL5. Moreover, BCL6 upregulates Endothelial cell-specific molecule 1 (ESM1) to inhibit T lymphocyte recruitment and activation possibly through ICAM-1/LFA-1 signaling pathway. Our findings uncovered an unappreciated paracrine mechanism how cancer cell-derived BCL6 assists cancer cell immune evasion, and highlighted the role of CD4+T cells in HCC immune surveillance.
Collapse
Affiliation(s)
- Jiatao Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Juan Feng
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ziyong Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
- School of Medicine Chongqing University, Chongqing, 400030, China
| | - Yuanli Ni
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Limei Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xia Lei
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
- School of Medicine Chongqing University, Chongqing, 400030, China
| | - Zixuan Chai
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Na Zhuang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Jiake Xu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yongpeng He
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Juanjuan Shan
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China.
- School of Medicine Chongqing University, Chongqing, 400030, China.
| | - Cheng Qian
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China.
- School of Medicine Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
5
|
Liu Y, Hu L, Wu Z, Yuan K, Hong G, Lian Z, Feng J, Li N, Li D, Wong J, Chen J, Liu M, He J, Pang X. Loss of PHF8 induces a viral mimicry response by activating endogenous retrotransposons. Nat Commun 2023; 14:4225. [PMID: 37454216 PMCID: PMC10349869 DOI: 10.1038/s41467-023-39943-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
Immunotherapy has become established as major treatment modality for multiple types of solid tumors, including colorectal cancer. Identifying novel immunotherapeutic targets to enhance anti-tumor immunity and sensitize current immune checkpoint blockade (ICB) in colorectal cancer is needed. Here we report the histone demethylase PHD finger protein 8 (PHF8, KDM7B), a Jumonji C domain-containing protein that erases repressive histone methyl marks, as an essential mediator of immune escape. Ablation the function of PHF8 abrogates tumor growth, activates anti-tumor immune memory, and augments sensitivity to ICB therapy in mouse models of colorectal cancer. Strikingly, tumor PHF8 deletion stimulates a viral mimicry response in colorectal cancer cells, where the depletion of key components of endogenous nucleic acid sensing diminishes PHF8 loss-meditated antiviral immune responses and anti-tumor effects in vivo. Mechanistically, PHF8 inhibition elicits H3K9me3-dependent retrotransposon activation by promoting proteasomal degradation of the H3K9 methyltransferase SETDB1 in a demethylase-independent manner. Moreover, PHF8 expression is anti-correlated with canonical immune signatures and antiviral immune responses in human colorectal adenocarcinoma. Overall, our study establishes PHF8 as an epigenetic checkpoint, and targeting PHF8 is a promising viral mimicry-inducing approach to enhance intrinsic anti-tumor immunity or to conquer immune resistance.
Collapse
Affiliation(s)
- Yanan Liu
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
| | - Longmiao Hu
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhengzhen Wu
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
| | - Kun Yuan
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
| | | | - Zhengke Lian
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
| | - Juanjuan Feng
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
| | - Na Li
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiekai Chen
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
| | | | - Xiufeng Pang
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
6
|
Koo SY, Park EJ, Noh HJ, Jo SM, Ko BK, Shin HJ, Lee CW. Ubiquitination Links DNA Damage and Repair Signaling to Cancer Metabolism. Int J Mol Sci 2023; 24:ijms24098441. [PMID: 37176148 PMCID: PMC10179089 DOI: 10.3390/ijms24098441] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Changes in the DNA damage response (DDR) and cellular metabolism are two important factors that allow cancer cells to proliferate. DDR is a set of events in which DNA damage is recognized, DNA repair factors are recruited to the site of damage, the lesion is repaired, and cellular responses associated with the damage are processed. In cancer, DDR is commonly dysregulated, and the enzymes associated with DDR are prone to changes in ubiquitination. Additionally, cellular metabolism, especially glycolysis, is upregulated in cancer cells, and enzymes in this metabolic pathway are modulated by ubiquitination. The ubiquitin-proteasome system (UPS), particularly E3 ligases, act as a bridge between cellular metabolism and DDR since they regulate the enzymes associated with the two processes. Hence, the E3 ligases with high substrate specificity are considered potential therapeutic targets for treating cancer. A number of small molecule inhibitors designed to target different components of the UPS have been developed, and several have been tested in clinical trials for human use. In this review, we discuss the role of ubiquitination on overall cellular metabolism and DDR and confirm the link between them through the E3 ligases NEDD4, APC/CCDH1, FBXW7, and Pellino1. In addition, we present an overview of the clinically important small molecule inhibitors and implications for their practical use.
Collapse
Affiliation(s)
- Seo-Young Koo
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Eun-Ji Park
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Hyun-Ji Noh
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Su-Mi Jo
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Bo-Kyoung Ko
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Hyun-Jin Shin
- Team of Radiation Convergence Research, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
- SKKU Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
7
|
Hernandez S, Das P, Holliday EB, Shen L, Lu W, Johnson B, Messick CA, Taniguchi CM, Skibber J, Ludmir EB, You YN, Smith GL, Bednarski B, Kostousov L, Koay EJ, Minsky BD, Tillman M, Portier S, Eng C, Koong AC, Chang GJ, Foo WC, Wang J, Soto LS, Morris VK. Differential Spatial Gene and Protein Expression Associated with Recurrence Following Chemoradiation for Localized Anal Squamous Cell Cancer. Cancers (Basel) 2023; 15:1701. [PMID: 36980587 PMCID: PMC10046657 DOI: 10.3390/cancers15061701] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023] Open
Abstract
The identification of transcriptomic and protein biomarkers prognosticating recurrence risk after chemoradiation of localized squamous cell carcinoma of the anus (SCCA) has been limited by a lack of available fresh tissue at initial presentation. We analyzed archival FFPE SCCA specimens from pretreatment biopsies prior to chemoradiation for protein and RNA biomarkers from patients with localized SCCA who recurred (N = 23) and who did not recur (N = 25). Tumor cells and the tumor microenvironment (TME) were analyzed separately to identify biomarkers with significantly different expression between the recurrent and non-recurrent groups. Recurrent patients had higher mean protein expression of FoxP3, MAPK-activation markers (BRAF, p38-MAPK) and PI3K/Akt activation (phospho-Akt) within the tumor regions. The TME was characterized by the higher protein expression of immune checkpoint biomarkers such as PD-1, OX40L and LAG3. For patients with recurrent SCCA, the higher mean protein expression of fibronectin was observed in the tumor and TME compartments. No significant differences in RNA expression were observed. The higher baseline expression of immune checkpoint biomarkers, together with markers of MAPK and PI3K/Akt signaling, are associated with recurrence following chemoradiation for patients with localized SCCA. These data provide a rationale towards the application of immune-based therapeutic strategies to improve curative-intent outcomes beyond conventional therapies for patients with SCCA.
Collapse
Affiliation(s)
- Sharia Hernandez
- Translational Molecular Pathology, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA; (S.H.)
| | - Prajnan Das
- Gastrointestinal Radiation Oncology, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Emma B. Holliday
- Gastrointestinal Radiation Oncology, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Li Shen
- Bioinformatics, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei Lu
- Translational Molecular Pathology, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA; (S.H.)
| | - Benny Johnson
- Gastrointestinal Medical Oncology, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Craig A. Messick
- Colon and Rectal Surgery, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cullen M. Taniguchi
- Gastrointestinal Radiation Oncology, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John Skibber
- Colon and Rectal Surgery, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ethan B. Ludmir
- Gastrointestinal Radiation Oncology, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Y. Nancy You
- Colon and Rectal Surgery, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Grace Li Smith
- Gastrointestinal Radiation Oncology, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Brian Bednarski
- Colon and Rectal Surgery, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Larisa Kostousov
- Translational Molecular Pathology, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA; (S.H.)
| | - Eugene J. Koay
- Gastrointestinal Radiation Oncology, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bruce D. Minsky
- Gastrointestinal Radiation Oncology, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matthew Tillman
- Colon and Rectal Surgery, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shaelynn Portier
- Gastrointestinal Medical Oncology, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cathy Eng
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA
| | - Albert C. Koong
- Gastrointestinal Radiation Oncology, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George J. Chang
- Colon and Rectal Surgery, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wai Chin Foo
- Pathology, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Wang
- Bioinformatics, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Luisa Solis Soto
- Translational Molecular Pathology, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA; (S.H.)
| | - Van K. Morris
- Gastrointestinal Medical Oncology, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
8
|
Li K, Liu Y, Ding Y, Zhang Z, Feng J, Hu J, Chen J, Lian Z, Chen Y, Hu K, Chen Z, Cai Z, Liu M, Pang X. BCL6 is regulated by the MAPK/ELK1 axis and promotes KRAS-driven lung cancer. J Clin Invest 2022; 132:161308. [PMID: 36377663 PMCID: PMC9663163 DOI: 10.1172/jci161308] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Mutational activation of KRAS is a common oncogenic event in lung cancer, yet effective therapies are still lacking. Here, we identify B cell lymphoma 6 (BCL6) as a lynchpin in KRAS-driven lung cancer. BCL6 expression was increased upon KRAS activation in lung tumor tissue in mice and was positively correlated with the expression of KRAS-GTP, the active form of KRAS, in various human cancer cell lines. Moreover, BCL6 was highly expressed in human KRAS-mutant lung adenocarcinomas and was associated with poor patient survival. Mechanistically, the MAPK/ERK/ELK1 signaling axis downstream of mutant KRAS directly regulated BCL6 expression. BCL6 maintained the global expression of prereplication complex components; therefore, BCL6 inhibition induced stalling of the replication fork, leading to DNA damage and growth arrest in KRAS-mutant lung cancer cells. Importantly, BCL6-specific knockout in lungs significantly reduced the tumor burden and mortality in the LSL-KrasG12D/+ lung cancer mouse model. Likewise, pharmacological inhibition of BCL6 significantly impeded the growth of KRAS-mutant lung cancer cells both in vitro and in vivo. In summary, our findings reveal a crucial role of BCL6 in promoting KRAS-addicted lung cancer and suggest BCL6 as a therapeutic target for the treatment of this intractable disease.
Collapse
Affiliation(s)
- Kun Li
- Changning Maternity and Infant Health Hospital and Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences and
- Joint Translational Science and Technology Research Institute, East China Normal University, Shanghai, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanan Liu
- Changning Maternity and Infant Health Hospital and Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences and
| | - Yi Ding
- Changning Maternity and Infant Health Hospital and Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences and
| | - Zhengwei Zhang
- Changning Maternity and Infant Health Hospital and Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences and
| | - Juanjuan Feng
- Changning Maternity and Infant Health Hospital and Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences and
| | - Jiaxin Hu
- Changning Maternity and Infant Health Hospital and Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences and
| | - Jiwei Chen
- Changning Maternity and Infant Health Hospital and Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences and
| | - Zhengke Lian
- Changning Maternity and Infant Health Hospital and Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences and
| | - Yiliang Chen
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Kewen Hu
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhi Chen
- Medical Research Institute, Wuhan University, Wuhan, China
| | - Zhenyu Cai
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Mingyao Liu
- Changning Maternity and Infant Health Hospital and Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences and
| | - Xiufeng Pang
- Changning Maternity and Infant Health Hospital and Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences and
| |
Collapse
|