1
|
Batra S, Allwein B, Kumar C, Devbhandari S, Brüning JG, Bahng S, Lee CM, Marians KJ, Hite RK, Remus D. G-quadruplex-stalled eukaryotic replisome structure reveals helical inchworm DNA translocation. Science 2025; 387:eadt1978. [PMID: 40048517 DOI: 10.1126/science.adt1978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/15/2024] [Indexed: 03/15/2025]
Abstract
DNA G-quadruplexes (G4s) are non-B-form DNA secondary structures that threaten genome stability by impeding DNA replication. To elucidate how G4s induce replication fork arrest, we characterized fork collisions with preformed G4s in the parental DNA using reconstituted yeast and human replisomes. We demonstrate that a single G4 in the leading strand template is sufficient to stall replisomes by arresting the CMG helicase. Cryo-electron microscopy structures of stalled yeast and human CMG complexes reveal that the folded G4 is lodged inside the central CMG channel, arresting translocation. The G4 stabilizes the CMG at distinct translocation intermediates, suggesting an unprecedented helical inchworm mechanism for DNA translocation. These findings illuminate the eukaryotic replication fork mechanism under normal and perturbed conditions.
Collapse
Affiliation(s)
- Sahil Batra
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin Allwein
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- BCMB Allied PhD Program, Weill Cornell Medical Graduate School, Weill Cornell Medicine, New York, NY, USA
| | - Charanya Kumar
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sujan Devbhandari
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jan-Gert Brüning
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Soon Bahng
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chong M Lee
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kenneth J Marians
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard K Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dirk Remus
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
2
|
Li Z, Zhang Z. A tale of two strands: Decoding chromatin replication through strand-specific sequencing. Mol Cell 2025; 85:238-261. [PMID: 39824166 PMCID: PMC11750172 DOI: 10.1016/j.molcel.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/03/2024] [Accepted: 10/25/2024] [Indexed: 01/20/2025]
Abstract
DNA replication, a fundamental process in all living organisms, proceeds with continuous synthesis of the leading strand by DNA polymerase ε (Pol ε) and discontinuous synthesis of the lagging strand by polymerase δ (Pol δ). This inherent asymmetry at each replication fork necessitates the development of methods to distinguish between these two nascent strands in vivo. Over the past decade, strand-specific sequencing strategies, such as enrichment and sequencing of protein-associated nascent DNA (eSPAN) and Okazaki fragment sequencing (OK-seq), have become essential tools for studying chromatin replication in eukaryotic cells. In this review, we outline the foundational principles underlying these methodologies and summarize key mechanistic insights into DNA replication, parental histone transfer, epigenetic inheritance, and beyond, gained through their applications. Finally, we discuss the limitations and challenges of current techniques, highlighting the need for further technological innovations to better understand the dynamics and regulation of chromatin replication in eukaryotic cells.
Collapse
Affiliation(s)
- Zhiming Li
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; West China School of Public Health and West China Fourth Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Zhiguo Zhang
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pediatrics and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
3
|
Masnovo C, Paleiov Z, Dovrat D, Baxter LK, Movafaghi S, Aharoni A, Mirkin SM. Stabilization of expandable DNA repeats by the replication factor Mcm10 promotes cell viability. Nat Commun 2024; 15:10532. [PMID: 39627228 PMCID: PMC11615337 DOI: 10.1038/s41467-024-54977-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
Trinucleotide repeats, including Friedreich's ataxia (GAA)n repeats, become pathogenic upon expansions during DNA replication and repair. Here, we show that deficiency of the essential replisome component Mcm10 dramatically elevates (GAA)n repeat instability in a budding yeast model by loss of proper CMG helicase interaction. Supporting this conclusion, live-cell microscopy experiments reveal increased replication fork stalling at the repeat in mcm10-1 cells. Unexpectedly, the viability of strains containing a single (GAA)100 repeat at an essential chromosomal location strongly depends on Mcm10 function and cellular RPA levels. This coincides with Rad9 checkpoint activation, which promotes cell viability, but initiates repeat expansions via DNA synthesis by polymerase δ. When repair is inefficient, such as in the case of RPA depletion, breakage of under-replicated repetitive DNA can occur during G2/M, leading to loss of essential genes and cell death. We hypothesize that the CMG-Mcm10 interaction promotes replication through hard-to-replicate regions, assuring genome stability and cell survival.
Collapse
Affiliation(s)
- Chiara Masnovo
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| | - Zohar Paleiov
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel
| | - Daniel Dovrat
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel
| | - Laurel K Baxter
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| | - Sofia Movafaghi
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| | - Amir Aharoni
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
4
|
Keszthelyi A, Mansoubi S, Whale A, Houseley J, Baxter J. The fork protection complex generates DNA topological stress-induced DNA damage while ensuring full and faithful genome duplication. Proc Natl Acad Sci U S A 2024; 121:e2413631121. [PMID: 39589889 PMCID: PMC11626154 DOI: 10.1073/pnas.2413631121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/14/2024] [Indexed: 11/28/2024] Open
Abstract
The fork protection complex (FPC), composed of Mrc1, Tof1, and Csm3, supports rapid and stable DNA replication. Here, we show that FPC activity also introduces DNA damage by increasing DNA topological stress during replication. Mrc1 action increases DNA topological stress during plasmid replication, while Mrc1 or Tof1 activity causes replication stress and DNA damage within topologically constrained regions. We show that the recruitment of Top1 to the fork by Tof1 suppresses the DNA damage generated in these loci. While FPC activity introduces some DNA damage due to increased topological stress, the FPC is also necessary to prevent DNA damage in long replicons across the genome, indicating that the FPC is required for complete and faithful genome duplication. We conclude that FPC regulation must balance ensuring full genome duplication through rapid replication with minimizing the consequential DNA topological stress-induced DNA damage caused by rapid replication through constrained regions.
Collapse
Affiliation(s)
- Andrea Keszthelyi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, East SussexBN1 9RQ, United Kingdom
| | - Sahar Mansoubi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, East SussexBN1 9RQ, United Kingdom
- Biology Department, North Tehran Branch, Islamic Azad University, Tehran1477893855, Iran
| | - Alex Whale
- Epigenetics Programme The Babraham Institute, Babraham Research Campus, CambridgeCB22 3AT, United Kingdom
| | - Jonathan Houseley
- Epigenetics Programme The Babraham Institute, Babraham Research Campus, CambridgeCB22 3AT, United Kingdom
| | - Jonathan Baxter
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, East SussexBN1 9RQ, United Kingdom
| |
Collapse
|
5
|
Ahmed SMQ, Sasikumar J, Laha S, Das SP. Multifaceted role of the DNA replication protein MCM10 in maintaining genome stability and its implication in human diseases. Cancer Metastasis Rev 2024; 43:1353-1371. [PMID: 39240414 DOI: 10.1007/s10555-024-10209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
MCM10 plays a vital role in genome duplication and is crucial for DNA replication initiation, elongation, and termination. It coordinates several proteins to assemble at the fork, form a functional replisome, trigger origin unwinding, and stabilize the replication bubble. MCM10 overexpression is associated with increased aggressiveness in breast, cervical, and several other cancers. Disruption of MCM10 leads to altered replication timing associated with initiation site gains and losses accompanied by genome instability. Knockdown of MCM10 affects the proliferation and migration of cancer cells, manifested by DNA damage and replication fork arrest, and has recently been shown to be associated with clinical conditions like CNKD and RCM. Loss of MCM10 function is associated with impaired telomerase activity, leading to the accumulation of abnormal replication forks and compromised telomere length. MCM10 interacts with histones, aids in nucleosome assembly, binds BRCA2 to maintain genome integrity during DNA damage, prevents lesion skipping, and inhibits PRIMPOL-mediated repriming. It also interacts with the fork reversal enzyme SMARCAL1 and inhibits fork regression. Additionally, MCM10 undergoes several post-translational modifications and contributes to transcriptional silencing by interacting with the SIR proteins. This review explores the mechanism associated with MCM10's multifaceted role in DNA replication initiation, chromatin organization, transcriptional silencing, replication stress, fork stability, telomere length maintenance, and DNA damage response. Finally, we discuss the role of MCM10 in the early detection of cancer, its prognostic significance, and its potential use in therapeutics for cancer treatment.
Collapse
Affiliation(s)
- Sumayyah M Q Ahmed
- Cell Biology and Molecular Genetics (CBMG), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Jayaprakash Sasikumar
- Cell Biology and Molecular Genetics (CBMG), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Suparna Laha
- Cell Biology and Molecular Genetics (CBMG), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Shankar Prasad Das
- Cell Biology and Molecular Genetics (CBMG), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
6
|
Shaw AE, Mihelich MN, Whitted JE, Reitman HJ, Timmerman AJ, Tehseen M, Hamdan SM, Schauer GD. Revised mechanism of hydroxyurea-induced cell cycle arrest and an improved alternative. Proc Natl Acad Sci U S A 2024; 121:e2404470121. [PMID: 39374399 PMCID: PMC11494364 DOI: 10.1073/pnas.2404470121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 09/04/2024] [Indexed: 10/09/2024] Open
Abstract
Replication stress describes endogenous and exogenous challenges to DNA replication in the S-phase. Stress during this critical process causes helicase-polymerase decoupling at replication forks, triggering the S-phase checkpoint, which orchestrates global replication fork stalling and delayed entry into G2. The replication stressor most often used to induce the checkpoint response in yeast is hydroxyurea (HU), a clinically used chemotherapeutic. The primary mechanism of S-phase checkpoint activation by HU has thus far been considered to be a reduction of deoxynucleotide triphosphate synthesis by inhibition of ribonucleotide reductase (RNR), leading to helicase-polymerase decoupling and subsequent activation of the checkpoint, facilitated by the replisome-associated mediator Mrc1. In contrast, we observe that HU causes cell cycle arrest in budding yeast independent of both the Mrc1-mediated replication checkpoint response and the Psk1-Mrc1 oxidative signaling pathway. We demonstrate a direct relationship between HU incubation and reactive oxygen species (ROS) production in yeast and human cells and show that antioxidants restore growth of yeast in HU. We further observe that ROS strongly inhibits the in vitro polymerase activity of replicative polymerases (Pols), Pol α, Pol δ, and Pol ε, causing polymerase complex dissociation and subsequent loss of DNA substrate binding, likely through oxidation of their integral iron-sulfur (Fe-S) clusters. Finally, we present "RNR-deg," a genetically engineered alternative to HU in yeast with greatly increased specificity of RNR inhibition, allowing researchers to achieve fast, nontoxic, and more readily reversible checkpoint activation compared to HU, avoiding harmful ROS generation and associated downstream cellular effects that may confound interpretation of results.
Collapse
Affiliation(s)
- Alisa E. Shaw
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80525
| | - Mattias N. Mihelich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80525
| | - Jackson E. Whitted
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80525
| | - Hannah J. Reitman
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80525
| | - Adam J. Timmerman
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80525
| | - Muhammad Tehseen
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal23955, Saudi Arabia
| | - Samir M. Hamdan
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal23955, Saudi Arabia
| | - Grant D. Schauer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80525
| |
Collapse
|
7
|
Homiski C, Dey-Rao R, Shen S, Qu J, Melendy T. DNA damage-induced phosphorylation of a replicative DNA helicase results in inhibition of DNA replication through attenuation of helicase function. Nucleic Acids Res 2024; 52:10311-10328. [PMID: 39126317 PMCID: PMC11417368 DOI: 10.1093/nar/gkae663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/14/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
A major function of the DNA damage responses (DDRs) that act during the replicative phase of the cell cycle is to inhibit initiation and elongation of DNA replication. It has been shown that DNA replication of the polyomavirus, SV40, is inhibited and its replication fork is slowed by cellular DDR responses. The inhibition of SV40 DNA replication is associated with enhanced DDR kinase phosphorylation of SV40 Large T-antigen (LT), the viral DNA helicase. Mass spectroscopy was used to identify a novel highly conserved DDR kinase site, T518, on LT. In cell-based assays expression of a phosphomimetic form of LT at T518 (T518D) resulted in dramatically decreased levels of SV40 DNA replication, but LT-dependent transcriptional activation was unaffected. Purified WT and LT T518D were analyzed in vitro. In concordance with the cell-based data, reactions using SV40 LT-T518D, but not T518A, showed dramatic inhibition of SV40 DNA replication. A myriad of LT protein-protein interactions and LT's biochemical functions were unaffected by the LT T518D mutation; however, LT's DNA helicase activity was dramatically decreased on long, but not very short, DNA templates. These results suggest that DDR phosphorylation at T518 inhibits SV40 DNA replication by suppressing LT helicase activity.
Collapse
Affiliation(s)
- Caleb Homiski
- Departments of Microbiology & Immunology and Biochemistry, and the Witebsky Center for Microbial Pathogenesis & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Rama Dey-Rao
- Departments of Microbiology & Immunology and Biochemistry, and the Witebsky Center for Microbial Pathogenesis & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA; NYS Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA; NYS Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Thomas Melendy
- Departments of Microbiology & Immunology and Biochemistry, and the Witebsky Center for Microbial Pathogenesis & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
8
|
Henrikus SS, Gross MH, Willhoft O, Pühringer T, Lewis JS, McClure AW, Greiwe JF, Palm G, Nans A, Diffley JFX, Costa A. Unwinding of a eukaryotic origin of replication visualized by cryo-EM. Nat Struct Mol Biol 2024; 31:1265-1276. [PMID: 38760633 PMCID: PMC11327109 DOI: 10.1038/s41594-024-01280-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/19/2024] [Indexed: 05/19/2024]
Abstract
To prevent detrimental chromosome re-replication, DNA loading of a double hexamer of the minichromosome maintenance (MCM) replicative helicase is temporally separated from DNA unwinding. Upon S-phase transition in yeast, DNA unwinding is achieved in two steps: limited opening of the double helix and topological separation of the two DNA strands. First, Cdc45, GINS and Polε engage MCM to assemble a double CMGE with two partially separated hexamers that nucleate DNA melting. In the second step, triggered by Mcm10, two CMGEs separate completely, eject the lagging-strand template and cross paths. To understand Mcm10 during helicase activation, we used biochemical reconstitution with cryogenic electron microscopy. We found that Mcm10 splits the double CMGE by engaging the N-terminal homo-dimerization face of MCM. To eject the lagging strand, DNA unwinding is started from the N-terminal side of MCM while the hexamer channel becomes too narrow to harbor duplex DNA.
Collapse
Affiliation(s)
- Sarah S Henrikus
- Macromolecular Machines Laboratory, Francis Crick Institute, London, UK
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Marta H Gross
- Chromosome Replication Laboratory, Francis Crick Institute, London, UK
| | - Oliver Willhoft
- Macromolecular Machines Laboratory, Francis Crick Institute, London, UK
| | - Thomas Pühringer
- Macromolecular Machines Laboratory, Francis Crick Institute, London, UK
| | - Jacob S Lewis
- Macromolecular Machines Laboratory, Francis Crick Institute, London, UK
| | - Allison W McClure
- Chromosome Replication Laboratory, Francis Crick Institute, London, UK
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Julia F Greiwe
- Macromolecular Machines Laboratory, Francis Crick Institute, London, UK
| | - Giacomo Palm
- Macromolecular Machines Laboratory, Francis Crick Institute, London, UK
| | - Andrea Nans
- Structural Biology Science Technology Platform, Francis Crick Institute, London, UK
| | - John F X Diffley
- Chromosome Replication Laboratory, Francis Crick Institute, London, UK
| | - Alessandro Costa
- Macromolecular Machines Laboratory, Francis Crick Institute, London, UK.
| |
Collapse
|
9
|
Maclay T, Whalen J, Johnson M, Freudenreich CH. The DNA Replication Checkpoint Targets the Kinetochore for Relocation of Collapsed Forks to the Nuclear Periphery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599319. [PMID: 38948692 PMCID: PMC11212917 DOI: 10.1101/2024.06.17.599319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Hairpin forming expanded CAG/CTG repeats pose significant challenges to DNA replication which can lead to replication fork collapse. Long CAG/CTG repeat tracts relocate to the nuclear pore complex to maintain their integrity. Forks impeded by DNA structures are known to activate the DNA damage checkpoint, thus we asked whether checkpoint proteins play a role in relocation of collapsed forks to the nuclear periphery in S. cerevisiae . We show that relocation of a (CAG/CTG) 130 tract is dependent on activation of the Mrc1/Rad53 replication checkpoint. Further, checkpoint-mediated phosphorylation of the kinetochore protein Cep3 is required for relocation, implicating detachment of the centromere from the spindle pole body. Activation of this pathway leads to DNA damage-induced microtubule recruitment to the repeat. These data suggest a role for the DNA replication checkpoint in facilitating movement of collapsed replication forks to the nuclear periphery by centromere release and microtubule-directed motion. Highlights The DNA replication checkpoint initiates relocation of a structure-forming CAG repeat tract to the nuclear pore complex (NPC)The importance of Mrc1 (hClaspin) implicates fork uncoupling as the initial checkpoint signalPhosphorylation of the Cep3 kinetochore protein by Dun1 kinase allows for centromere release, which is critical for collapsed fork repositioningDamage-inducible nuclear microtubules (DIMs) colocalize with the repeat locus and are required for relocation to the NPCEstablishes a new role for the DNA replication and DNA damage checkpoint response to trigger repositioning of collapsed forks within the nucleus.
Collapse
|
10
|
Egger T, Morano L, Blanchard MP, Basbous J, Constantinou A. Spatial organization and functions of Chk1 activation by TopBP1 biomolecular condensates. Cell Rep 2024; 43:114064. [PMID: 38578830 DOI: 10.1016/j.celrep.2024.114064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/14/2024] [Accepted: 03/21/2024] [Indexed: 04/07/2024] Open
Abstract
Assembly of TopBP1 biomolecular condensates triggers activation of the ataxia telangiectasia-mutated and Rad3-related (ATR)/Chk1 signaling pathway, which coordinates cell responses to impaired DNA replication. Here, we used optogenetics and reverse genetics to investigate the role of sequence-specific motifs in the formation and functions of TopBP1 condensates. We propose that BACH1/FANCJ is involved in the partitioning of BRCA1 within TopBP1 compartments. We show that Chk1 is activated at the interface of TopBP1 condensates and provide evidence that these structures arise at sites of DNA damage and in primary human fibroblasts. Chk1 phosphorylation depends on the integrity of a conserved arginine motif within TopBP1's ATR activation domain (AAD). Its mutation uncouples Chk1 activation from TopBP1 condensation, revealing that optogenetically induced Chk1 phosphorylation triggers cell cycle checkpoints and slows down replication forks in the absence of DNA damage. Together with previous work, these data suggest that the intrinsically disordered AAD encodes distinct molecular steps in the ATR/Chk1 pathway.
Collapse
Affiliation(s)
- Tom Egger
- Institut de Génétique Humaine, Université de Montpellier, CNRS, Montpellier, France
| | - Laura Morano
- Institut de Génétique Humaine, Université de Montpellier, CNRS, Montpellier, France
| | - Marie-Pierre Blanchard
- Montpellier Ressources Imageries, BioCampus, Université de Montpellier, CNRS, Montpellier, France
| | - Jihane Basbous
- Institut de Génétique Humaine, Université de Montpellier, CNRS, Montpellier, France.
| | - Angelos Constantinou
- Institut de Génétique Humaine, Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
11
|
Rageul J, Lo N, Phi AL, Patel JA, Park JJ, Kim H. Poly(ADP-ribosyl)ation of TIMELESS limits DNA replication stress and promotes stalled fork protection. Cell Rep 2024; 43:113845. [PMID: 38393943 PMCID: PMC11029348 DOI: 10.1016/j.celrep.2024.113845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/16/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Poly(ADP-ribosyl)ation (PARylation), catalyzed mainly by poly(ADP-ribose) polymerase (PARP)1, is a key posttranslational modification involved in DNA replication and repair. Here, we report that TIMELESS (TIM), an essential scaffold of the replisome, is PARylated, which is linked to its proteolysis. TIM PARylation requires recognition of auto-modified PARP1 via two poly(ADP-ribose)-binding motifs, which primes TIM for proteasome-dependent degradation. Cells expressing the PARylation-refractory TIM mutant or under PARP inhibition accumulate TIM at DNA replication forks, causing replication stress and hyper-resection of stalled forks. Mechanistically, aberrant engagement of TIM with the replicative helicase impedes RAD51 loading and protection of reversed forks. Accordingly, defective TIM degradation hypersensitizes BRCA2-deficient cells to replication damage. Our study defines TIM as a substrate of PARP1 and elucidates how the control of replisome remodeling by PARylation is linked to stalled fork protection. Therefore, we propose a mechanism of PARP inhibition that impinges on the DNA replication fork instability caused by defective TIM turnover.
Collapse
Affiliation(s)
- Julie Rageul
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA.
| | - Natalie Lo
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Amy L Phi
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Jinal A Patel
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Jennifer J Park
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Hyungjin Kim
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
12
|
Breuer J, Ferreira DEA, Kramer M, Bollermann J, Nowrousian M. Functional analysis of chromatin-associated proteins in Sordaria macrospora reveals similar roles for RTT109 and ASF1 in development and DNA damage response. G3 (BETHESDA, MD.) 2024; 14:jkae019. [PMID: 38261383 PMCID: PMC10917505 DOI: 10.1093/g3journal/jkae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
We performed a functional analysis of two potential partners of ASF1, a highly conserved histone chaperone that plays a crucial role in the sexual development and DNA damage resistance in the ascomycete Sordaria macrospora. ASF1 is known to be involved in nucleosome assembly and disassembly, binding histones H3 and H4 during transcription, replication and DNA repair and has direct and indirect roles in histone recycling and modification as well as DNA methylation, acting as a chromatin modifier hub for a large network of chromatin-associated proteins. Here, we functionally characterized two of these proteins, RTT109 and CHK2. RTT109 is a fungal-specific histone acetyltransferase, while CHK2 is an ortholog to PRD-4, a checkpoint kinase of Neurospora crassa that performs similar cell cycle checkpoint functions as yeast RAD53. Through the generation and characterization of deletion mutants, we discovered striking similarities between RTT109 and ASF1 in terms of their contributions to sexual development, histone acetylation, and protection against DNA damage. Phenotypic observations revealed a developmental arrest at the same stage in Δrtt109 and Δasf1 strains, accompanied by a loss of H3K56 acetylation, as detected by western blot analysis. Deletion mutants of rtt109 and asf1 are sensitive to the DNA damaging agent methyl methanesulfonate, but not hydroxyurea. In contrast, chk2 mutants are fertile and resistant to methyl methanesulfonate, but not hydroxyurea. Our findings suggest a close functional association between ASF1 and RTT109 in the context of development, histone modification, and DNA damage response, while indicating a role for CHK2 in separate pathways of the DNA damage response.
Collapse
Affiliation(s)
- Jan Breuer
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | | | - Mike Kramer
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Jonas Bollermann
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
13
|
Shaw AE, Whitted JE, Mihelich MN, Reitman HJ, Timmerman AJ, Schauer GD. Revised Mechanism of Hydroxyurea Induced Cell Cycle Arrest and an Improved Alternative. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.02.583010. [PMID: 38496404 PMCID: PMC10942336 DOI: 10.1101/2024.03.02.583010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Replication stress describes various types of endogenous and exogenous challenges to DNA replication in S-phase. Stress during this critical process results in helicase-polymerase decoupling at replication forks, triggering the S-phase checkpoint, which orchestrates global replication fork stalling and delayed entry into G2. The replication stressor most often used to induce the checkpoint response is hydroxyurea (HU), a chemotherapeutic agent. The primary mechanism of S-phase checkpoint activation by HU has thus far been considered to be a reduction of dNTP synthesis by inhibition of ribonucleotide reductase (RNR), leading to helicase-polymerase decoupling and subsequent activation of the checkpoint, mediated by the replisome associated effector kinase Mrc1. In contrast, we observe that HU causes cell cycle arrest in budding yeast independent of both the Mrc1-mediated replication checkpoint response and the Psk1-Mrc1 oxidative signaling pathway. We demonstrate a direct relationship between HU incubation and reactive oxygen species (ROS) production in yeast nuclei. We further observe that ROS strongly inhibits the in vitro polymerase activity of replicative polymerases (Pols), Pol α, Pol δ, and Pol ε, causing polymerase complex dissociation and subsequent loss of DNA substrate binding, likely through oxidation of their integral iron sulfur Fe-S clusters. Finally, we present "RNR-deg," a genetically engineered alternative to HU in yeast with greatly increased specificity of RNR inhibition, allowing researchers to achieve fast, nontoxic, and more readily reversible checkpoint activation compared to HU, avoiding harmful ROS generation and associated downstream cellular effects that may confound interpretation of results.
Collapse
Affiliation(s)
- Alisa E. Shaw
- Department of Biochemistry and Molecular Biology, Colorado State University, CO, USA
| | - Jackson E. Whitted
- Department of Biochemistry and Molecular Biology, Colorado State University, CO, USA
| | - Mattias N. Mihelich
- Department of Biochemistry and Molecular Biology, Colorado State University, CO, USA
| | - Hannah J. Reitman
- Department of Biochemistry and Molecular Biology, Colorado State University, CO, USA
| | - Adam J. Timmerman
- Department of Biochemistry and Molecular Biology, Colorado State University, CO, USA
| | - Grant D. Schauer
- Department of Biochemistry and Molecular Biology, Colorado State University, CO, USA
| |
Collapse
|
14
|
Kumar C, Remus D. Looping out of control: R-loops in transcription-replication conflict. Chromosoma 2024; 133:37-56. [PMID: 37419963 PMCID: PMC10771546 DOI: 10.1007/s00412-023-00804-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
Transcription-replication conflict is a major cause of replication stress that arises when replication forks collide with the transcription machinery. Replication fork stalling at sites of transcription compromises chromosome replication fidelity and can induce DNA damage with potentially deleterious consequences for genome stability and organismal health. The block to DNA replication by the transcription machinery is complex and can involve stalled or elongating RNA polymerases, promoter-bound transcription factor complexes, or DNA topology constraints. In addition, studies over the past two decades have identified co-transcriptional R-loops as a major source for impairment of DNA replication forks at active genes. However, how R-loops impede DNA replication at the molecular level is incompletely understood. Current evidence suggests that RNA:DNA hybrids, DNA secondary structures, stalled RNA polymerases, and condensed chromatin states associated with R-loops contribute to the of fork progression. Moreover, since both R-loops and replication forks are intrinsically asymmetric structures, the outcome of R-loop-replisome collisions is influenced by collision orientation. Collectively, the data suggest that the impact of R-loops on DNA replication is highly dependent on their specific structural composition. Here, we will summarize our current understanding of the molecular basis for R-loop-induced replication fork progression defects.
Collapse
Affiliation(s)
- Charanya Kumar
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Dirk Remus
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA.
| |
Collapse
|
15
|
Lewis JS, van Oijen AM, Spenkelink LM. Embracing Heterogeneity: Challenging the Paradigm of Replisomes as Deterministic Machines. Chem Rev 2023; 123:13419-13440. [PMID: 37971892 PMCID: PMC10790245 DOI: 10.1021/acs.chemrev.3c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
The paradigm of cellular systems as deterministic machines has long guided our understanding of biology. Advancements in technology and methodology, however, have revealed a world of stochasticity, challenging the notion of determinism. Here, we explore the stochastic behavior of multi-protein complexes, using the DNA replication system (replisome) as a prime example. The faithful and timely copying of DNA depends on the simultaneous action of a large set of enzymes and scaffolding factors. This fundamental cellular process is underpinned by dynamic protein-nucleic acid assemblies that must transition between distinct conformations and compositional states. Traditionally viewed as a well-orchestrated molecular machine, recent experimental evidence has unveiled significant variability and heterogeneity in the replication process. In this review, we discuss recent advances in single-molecule approaches and single-particle cryo-EM, which have provided insights into the dynamic processes of DNA replication. We comment on the new challenges faced by structural biologists and biophysicists as they attempt to describe the dynamic cascade of events leading to replisome assembly, activation, and progression. The fundamental principles uncovered and yet to be discovered through the study of DNA replication will inform on similar operating principles for other multi-protein complexes.
Collapse
Affiliation(s)
- Jacob S. Lewis
- Macromolecular
Machines Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Antoine M. van Oijen
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Lisanne M. Spenkelink
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
16
|
Hu J, Ferlez B, Dau J, Crickard JB. Rad53 regulates the lifetime of Rdh54 at homologous recombination intermediates. Nucleic Acids Res 2023; 51:11688-11705. [PMID: 37850655 PMCID: PMC10681728 DOI: 10.1093/nar/gkad848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 10/19/2023] Open
Abstract
Rdh54 is a conserved DNA translocase that participates in homologous recombination (HR), DNA checkpoint adaptation, and chromosome segregation. Saccharomyces cerevisiae Rdh54 is a known target of the Mec1/Rad53 signaling axis, which globally protects genome integrity during DNA metabolism. While phosphorylation of DNA repair proteins by Mec1/Rad53 is critical for HR progression little is known about how specific post translational modifications alter HR reactions. Phosphorylation of Rdh54 is linked to protection of genomic integrity but the consequences of modification remain poorly understood. Here, we demonstrate that phosphorylation of the Rdh54 C-terminus by the effector kinase Rad53 regulates Rdh54 clustering activity as revealed by single molecule imaging. This stems from phosphorylation dependent and independent interactions between Rdh54 and Rad53. Genetic assays reveal that loss of phosphorylation leads to phenotypic changes resulting in loss-of-heterozygosity (LOH) outcomes. Our data highlight Rad53 as a key regulator of HR intermediates through activation and attenuation of Rdh54 motor function.
Collapse
Affiliation(s)
- Jingyi Hu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Bryan Ferlez
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jennifer Dau
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - J Brooks Crickard
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
17
|
Yates LA, Zhang X. Phosphoregulation of the checkpoint kinase Mec1 ATR. DNA Repair (Amst) 2023; 129:103543. [PMID: 37480741 DOI: 10.1016/j.dnarep.2023.103543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/24/2023]
Abstract
Yeast Mec1, and its mammalian ortholog, Ataxia-Telangiectasia and Rad3-related, are giant protein kinases central to replication stress and double strand DNA break repair. Mec1ATR, in complex with Ddc2ATRIP, is a 'sensor' of single stranded DNA, and phosphorylates numerous cell cycle and DNA repair factors to enforce cell cycle arrest and facilitate repair. Over the last several years, new techniques - particularly in structural biology - have provided molecular mechanisms for Mec1ATR function. It is becoming increasingly clear how post-translational modification of Mec1ATR and its interaction partners modulates the DNA damage checkpoint. In this review, we summarise the most recent work unravelling Mec1ATR function in the DNA damage checkpoint and provide a molecular context for its regulation by phosphorylation.
Collapse
Affiliation(s)
- Luke A Yates
- Section of Structural, Department of Infectious Disease, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ, UK; DNA processing machines laboratory, Francis Crick Institute, London NW1 1AT, UK.
| | - Xiaodong Zhang
- Section of Structural, Department of Infectious Disease, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ, UK; DNA processing machines laboratory, Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
18
|
Hadjicharalambous A, Whale AJ, Can G, Skehel JM, Houseley JM, Zegerman P. Checkpoint kinase interaction with DNA polymerase alpha regulates replication progression during stress. Wellcome Open Res 2023; 8:327. [PMID: 37766847 PMCID: PMC10521137 DOI: 10.12688/wellcomeopenres.19617.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 09/29/2023] Open
Abstract
Background: In eukaryotes, replication stress activates a checkpoint response, which facilitates genome duplication by stabilising the replisome. How the checkpoint kinases regulate the replisome remains poorly understood. The aim of this study is to identify new targets of checkpoint kinases within the replisome during replication stress. Methods: Here we use an unbiased biotin proximity-ligation approach in Saccharomyces cerevisiae to identify new interactors and substrates of the checkpoint kinase Rad53 in vivo. Results: From this screen, we identified the replication initiation factor Sld7 as a Rad53 substrate, and Pol1, the catalytic subunit of polymerase a, as a Rad53-interactor. We showed that CDK phosphorylation of Pol1 mediates its interaction with Rad53. Combined with other interactions between Rad53 and the replisome, this Rad53-Pol1 interaction is important for viability and replisome progression during replication stress. Conclusions: Together, we explain how the interactions of Rad53 with the replisome are controlled by both replication stress and the cell cycle, and why these interactions might be important for coordinating the stabilisation of both the leading and lagging strand machineries.
Collapse
Affiliation(s)
| | - Alex J. Whale
- Epigenetics Programme, Babraham Institute, University of Cambridge, Cambridge, England, CB22 3AT, UK
| | - Geylani Can
- Department of Biochemistry, University of Cambridge, Cambridge, England, CB2 1GA, UK
| | - J. Mark Skehel
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, London, England, CB2 0QH, UK
| | - Jonathan M. Houseley
- Epigenetics Programme, Babraham Institute, University of Cambridge, Cambridge, England, CB22 3AT, UK
| | - Philip Zegerman
- Department of Biochemistry, University of Cambridge, Cambridge, England, CB2 1GA, UK
| |
Collapse
|
19
|
Patel JA, Zezelic C, Rageul J, Saldanha J, Khan A, Kim H. Replisome dysfunction upon inducible TIMELESS degradation synergizes with ATR inhibition to trigger replication catastrophe. Nucleic Acids Res 2023; 51:6246-6263. [PMID: 37144518 PMCID: PMC10325925 DOI: 10.1093/nar/gkad363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/29/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023] Open
Abstract
The structure of DNA replication forks is preserved by TIMELESS (TIM) in the fork protection complex (FPC) to support seamless fork progression. While the scaffolding role of the FPC to couple the replisome activity is much appreciated, the detailed mechanism whereby inherent replication fork damage is sensed and counteracted during DNA replication remains largely elusive. Here, we implemented an auxin-based degron system that rapidly triggers inducible proteolysis of TIM as a source of endogenous DNA replication stress and replisome dysfunction to dissect the signaling events that unfold at stalled forks. We demonstrate that acute TIM degradation activates the ATR-CHK1 checkpoint, whose inhibition culminates in replication catastrophe by single-stranded DNA accumulation and RPA exhaustion. Mechanistically, unrestrained replisome uncoupling, excessive origin firing, and aberrant reversed fork processing account for the synergistic fork instability. Simultaneous TIM loss and ATR inactivation triggers DNA-PK-dependent CHK1 activation, which is unexpectedly necessary for promoting fork breakage by MRE11 and catastrophic cell death. We propose that acute replisome dysfunction results in a hyper-dependency on ATR to activate local and global fork stabilization mechanisms to counteract irreversible fork collapse. Our study identifies TIM as a point of replication vulnerability in cancer that can be exploited with ATR inhibitors.
Collapse
Affiliation(s)
- Jinal A Patel
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Camryn Zezelic
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Julie Rageul
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Joanne Saldanha
- The Graduate program in Genetics, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Arafat Khan
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Hyungjin Kim
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
- Stony Brook Cancer Center, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
20
|
Saldanha J, Rageul J, Patel JA, Kim H. The Adaptive Mechanisms and Checkpoint Responses to a Stressed DNA Replication Fork. Int J Mol Sci 2023; 24:10488. [PMID: 37445667 PMCID: PMC10341514 DOI: 10.3390/ijms241310488] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
DNA replication is a tightly controlled process that ensures the faithful duplication of the genome. However, DNA damage arising from both endogenous and exogenous assaults gives rise to DNA replication stress associated with replication fork slowing or stalling. Therefore, protecting the stressed fork while prompting its recovery to complete DNA replication is critical for safeguarding genomic integrity and cell survival. Specifically, the plasticity of the replication fork in engaging distinct DNA damage tolerance mechanisms, including fork reversal, repriming, and translesion DNA synthesis, enables cells to overcome a variety of replication obstacles. Furthermore, stretches of single-stranded DNA generated upon fork stalling trigger the activation of the ATR kinase, which coordinates the cellular responses to replication stress by stabilizing the replication fork, promoting DNA repair, and controlling cell cycle and replication origin firing. Deregulation of the ATR checkpoint and aberrant levels of chronic replication stress is a common characteristic of cancer and a point of vulnerability being exploited in cancer therapy. Here, we discuss the various adaptive responses of a replication fork to replication stress and the roles of ATR signaling that bring fork stabilization mechanisms together. We also review how this knowledge is being harnessed for the development of checkpoint inhibitors to trigger the replication catastrophe of cancer cells.
Collapse
Affiliation(s)
- Joanne Saldanha
- The Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Julie Rageul
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jinal A. Patel
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Hyungjin Kim
- The Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
21
|
Shrestha S, Minamino M, Chen ZA, Bouchoux C, Rappsilber J, Uhlmann F. Replisome-cohesin interactions provided by the Tof1-Csm3 and Mrc1 cohesion establishment factors. Chromosoma 2023; 132:117-135. [PMID: 37166686 PMCID: PMC10247859 DOI: 10.1007/s00412-023-00797-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
The chromosomal cohesin complex establishes sister chromatid cohesion during S phase, which forms the basis for faithful segregation of DNA replication products during cell divisions. Cohesion establishment is defective in the absence of either of three non-essential Saccharomyces cerevisiae replication fork components Tof1-Csm3 and Mrc1. Here, we investigate how these conserved factors contribute to cohesion establishment. Tof1-Csm3 and Mrc1 serve known roles during DNA replication, including replication checkpoint signaling, securing replication fork speed, as well as recruiting topoisomerase I and the histone chaperone FACT. By modulating each of these functions independently, we rule out that one of these known replication roles explains the contribution of Tof1-Csm3 and Mrc1 to cohesion establishment. Instead, using purified components, we reveal direct and multipronged protein interactions of Tof1-Csm3 and Mrc1 with the cohesin complex. Our findings open the possibility that a series of physical interactions between replication fork components and cohesin facilitate successful establishment of sister chromatid cohesion during DNA replication.
Collapse
Affiliation(s)
- Sudikchya Shrestha
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Masashi Minamino
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Zhuo A Chen
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, 13355, Berlin, Germany
| | - Céline Bouchoux
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Juri Rappsilber
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, 13355, Berlin, Germany
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
22
|
Ramírez Montero D, Sánchez H, van Veen E, van Laar T, Solano B, Diffley JFX, Dekker NH. Nucleotide binding halts diffusion of the eukaryotic replicative helicase during activation. Nat Commun 2023; 14:2082. [PMID: 37059705 PMCID: PMC10104875 DOI: 10.1038/s41467-023-37093-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/02/2023] [Indexed: 04/16/2023] Open
Abstract
The eukaryotic replicative helicase CMG centrally orchestrates the replisome and leads the way at the front of replication forks. Understanding the motion of CMG on the DNA is therefore key to our understanding of DNA replication. In vivo, CMG is assembled and activated through a cell-cycle-regulated mechanism involving 36 polypeptides that has been reconstituted from purified proteins in ensemble biochemical studies. Conversely, single-molecule studies of CMG motion have thus far relied on pre-formed CMG assembled through an unknown mechanism upon overexpression of individual constituents. Here, we report the activation of CMG fully reconstituted from purified yeast proteins and the quantification of its motion at the single-molecule level. We observe that CMG can move on DNA in two ways: by unidirectional translocation and by diffusion. We demonstrate that CMG preferentially exhibits unidirectional translocation in the presence of ATP, whereas it preferentially exhibits diffusive motion in the absence of ATP. We also demonstrate that nucleotide binding halts diffusive CMG independently of DNA melting. Taken together, our findings support a mechanism by which nucleotide binding allows newly assembled CMG to engage with the DNA within its central channel, halting its diffusion and facilitating the initial DNA melting required to initiate DNA replication.
Collapse
Affiliation(s)
- Daniel Ramírez Montero
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Humberto Sánchez
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Edo van Veen
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Theo van Laar
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Belén Solano
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - John F X Diffley
- Chromosome Replication Laboratory, Francis Crick Institute, London, UK.
| | - Nynke H Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
23
|
Patel JA, Kim H. The TIMELESS effort for timely DNA replication and protection. Cell Mol Life Sci 2023; 80:84. [PMID: 36892674 PMCID: PMC9998586 DOI: 10.1007/s00018-023-04738-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/10/2023]
Abstract
Accurate replication of the genome is fundamental to cellular survival and tumor prevention. The DNA replication fork is vulnerable to DNA lesions and damages that impair replisome progression, and improper control over DNA replication stress inevitably causes fork stalling and collapse, a major source of genome instability that fuels tumorigenesis. The integrity of the DNA replication fork is maintained by the fork protection complex (FPC), in which TIMELESS (TIM) constitutes a key scaffold that couples the CMG helicase and replicative polymerase activities, in conjunction with its interaction with other proteins associated with the replication machinery. Loss of TIM or the FPC in general results in impaired fork progression, elevated fork stalling and breakage, and a defect in replication checkpoint activation, thus underscoring its pivotal role in protecting the integrity of both active and stalled replication forks. TIM is upregulated in multiple cancers, which may represent a replication vulnerability of cancer cells that could be exploited for new therapies. Here, we discuss recent advances on our understanding of the multifaceted roles of TIM in DNA replication and stalled fork protection, and how its complex functions are engaged in collaboration with other genome surveillance and maintenance factors.
Collapse
Affiliation(s)
- Jinal A Patel
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Basic Sciences Tower 8-125, 101 Nicolls Rd, Stony Brook, NY, 11794, USA
| | - Hyungjin Kim
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Basic Sciences Tower 8-125, 101 Nicolls Rd, Stony Brook, NY, 11794, USA.
- Stony Brook Cancer Center and Renaissance School of Medicine, Stony Brook University, Basic Sciences Tower 8-125, 101 Nicolls Rd, Stony Brook, NY, 11794, USA.
| |
Collapse
|
24
|
Claspin-Dependent and -Independent Chk1 Activation by a Panel of Biological Stresses. Biomolecules 2023; 13:biom13010125. [PMID: 36671510 PMCID: PMC9855620 DOI: 10.3390/biom13010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Replication stress has been suggested to be an ultimate trigger of carcinogenesis. Oncogenic signal, such as overexpression of CyclinE, has been shown to induce replication stress. Here, we show that various biological stresses, including heat, oxidative stress, osmotic stress, LPS, hypoxia, and arsenate induce activation of Chk1, a key effector kinase for replication checkpoint. Some of these stresses indeed reduce the fork rate, inhibiting DNA replication. Analyses of Chk1 activation in the cell population with Western analyses showed that Chk1 activation by these stresses is largely dependent on Claspin. On the other hand, single cell analyses with Fucci cells indicated that while Chk1 activation during S phase is dependent on Claspin, that in G1 is mostly independent of Claspin. We propose that various biological stresses activate Chk1 either directly by stalling DNA replication fork or by some other mechanism that does not involve replication inhibition. The former pathway predominantly occurs in S phase and depends on Claspin, while the latter pathway, which may occur throughout the cell cycle, is largely independent of Claspin. Our findings provide evidence for novel links between replication stress checkpoint and other biological stresses and point to the presence of replication-independent mechanisms of Chk1 activation in mammalian cells.
Collapse
|
25
|
Reusswig KU, Bittmann J, Peritore M, Courtes M, Pardo B, Wierer M, Mann M, Pfander B. Unscheduled DNA replication in G1 causes genome instability and damage signatures indicative of replication collisions. Nat Commun 2022; 13:7014. [PMID: 36400763 PMCID: PMC9674678 DOI: 10.1038/s41467-022-34379-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/24/2022] [Indexed: 11/19/2022] Open
Abstract
DNA replicates once per cell cycle. Interfering with the regulation of DNA replication initiation generates genome instability through over-replication and has been linked to early stages of cancer development. Here, we engineer genetic systems in budding yeast to induce unscheduled replication in a G1-like cell cycle state. Unscheduled G1 replication initiates at canonical S-phase origins. We quantifiy the composition of replisomes in G1- and S-phase and identified firing factors, polymerase α, and histone supply as factors that limit replication outside S-phase. G1 replication per se does not trigger cellular checkpoints. Subsequent replication during S-phase, however, results in over-replication and leads to chromosome breaks and chromosome-wide, strand-biased occurrence of RPA-bound single-stranded DNA, indicating head-to-tail replication collisions as a key mechanism generating genome instability upon G1 replication. Low-level, sporadic induction of G1 replication induces an identical response, indicating findings from synthetic systems are applicable to naturally occurring scenarios of unscheduled replication initiation.
Collapse
Affiliation(s)
- Karl-Uwe Reusswig
- grid.418615.f0000 0004 0491 845XDNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany ,grid.38142.3c000000041936754XPresent Address: Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA ,grid.65499.370000 0001 2106 9910Present Address: Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215 USA
| | - Julia Bittmann
- grid.418615.f0000 0004 0491 845XDNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Martina Peritore
- grid.418615.f0000 0004 0491 845XDNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany ,grid.7551.60000 0000 8983 7915Present Address: Genome Maintenance Mechanisms in Health and Disease, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Mathilde Courtes
- grid.433120.7Institut de Génétique Humaine (IGH), Université de Montpellier – Centre National de la Recherche Scientifique, 34396 Montpellier, France
| | - Benjamin Pardo
- grid.433120.7Institut de Génétique Humaine (IGH), Université de Montpellier – Centre National de la Recherche Scientifique, 34396 Montpellier, France
| | - Michael Wierer
- grid.418615.f0000 0004 0491 845XProteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany ,grid.5254.60000 0001 0674 042XPresent Address: Proteomics Research Infrastructure, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Matthias Mann
- grid.418615.f0000 0004 0491 845XProteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Boris Pfander
- grid.418615.f0000 0004 0491 845XDNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany ,grid.7551.60000 0000 8983 7915Present Address: Genome Maintenance Mechanisms in Health and Disease, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany ,grid.6190.e0000 0000 8580 3777Present Address: Genome Maintenance Mechanisms in Health and Disease, Institute of Genome Stability in Ageing and Disease, CECAD Research Center, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
26
|
A DNA Replication Fork-centric View of the Budding Yeast DNA Damage Response. DNA Repair (Amst) 2022; 119:103393. [DOI: 10.1016/j.dnarep.2022.103393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022]
|
27
|
He R, Zhang Z. Rad53 arrests leading and lagging strand DNA synthesis via distinct mechanisms in response to DNA replication stress. Bioessays 2022; 44:e2200061. [PMID: 35778827 DOI: 10.1002/bies.202200061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 12/18/2022]
Abstract
DNA replication stress threatens ordinary DNA synthesis. The evolutionarily conserved DNA replication stress response pathway involves sensor kinase Mec1/ATR, adaptor protein Mrc1/Claspin, and effector kinase Rad53/Chk1, which spurs a host of changes to stabilize replication forks and maintain genome integrity. DNA replication forks consist of largely distinct sets of proteins at leading and lagging strands that function autonomously in DNA synthesis in vitro. In this article, we discuss eSPAN and BrdU-IP-ssSeq, strand-specific sequencing technologies that permit analysis of protein localization and DNA synthesis at individual strands in budding yeast. Using these approaches, we show that under replication stress Rad53 stalls DNA synthesis on both leading and lagging strands. On lagging strands, it stimulates PCNA unloading, and on leading strands, it attenuates the replication function of Mrc1-Tof1. We propose that in doing so, Rad53 couples leading and lagging strand DNA synthesis during replication stress, thereby preventing the emergence of harmful ssDNA.
Collapse
Affiliation(s)
- Richard He
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York, USA.,Department of Pediatrics, Columbia University Medical Center, New York, New York, USA.,Department of Genetics and Development, Columbia University Medical Center, New York, New York, USA
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York, USA.,Department of Pediatrics, Columbia University Medical Center, New York, New York, USA.,Department of Genetics and Development, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
28
|
Gillespie PJ, Blow JJ. DDK: The Outsourced Kinase of Chromosome Maintenance. BIOLOGY 2022; 11:biology11060877. [PMID: 35741398 PMCID: PMC9220011 DOI: 10.3390/biology11060877] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022]
Abstract
The maintenance of genomic stability during the mitotic cell-cycle not only demands that the DNA is duplicated and repaired with high fidelity, but that following DNA replication the chromatin composition is perpetuated and that the duplicated chromatids remain tethered until their anaphase segregation. The coordination of these processes during S phase is achieved by both cyclin-dependent kinase, CDK, and Dbf4-dependent kinase, DDK. CDK orchestrates the activation of DDK at the G1-to-S transition, acting as the ‘global’ regulator of S phase and cell-cycle progression, whilst ‘local’ control of the initiation of DNA replication and repair and their coordination with the re-formation of local chromatin environments and the establishment of chromatid cohesion are delegated to DDK. Here, we discuss the regulation and the multiple roles of DDK in ensuring chromosome maintenance. Regulation of replication initiation by DDK has long been known to involve phosphorylation of MCM2-7 subunits, but more recent results have indicated that Treslin:MTBP might also be important substrates. Molecular mechanisms by which DDK regulates replisome stability and replicated chromatid cohesion are less well understood, though important new insights have been reported recently. We discuss how the ‘outsourcing’ of activities required for chromosome maintenance to DDK allows CDK to maintain outright control of S phase progression and the cell-cycle phase transitions whilst permitting ongoing chromatin replication and cohesion establishment to be completed and achieved faithfully.
Collapse
|
29
|
Greiwe JF, Miller TCR, Locke J, Martino F, Howell S, Schreiber A, Nans A, Diffley JFX, Costa A. Structural mechanism for the selective phosphorylation of DNA-loaded MCM double hexamers by the Dbf4-dependent kinase. Nat Struct Mol Biol 2022; 29:10-20. [PMID: 34963704 PMCID: PMC8770131 DOI: 10.1038/s41594-021-00698-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/05/2021] [Indexed: 12/04/2022]
Abstract
Loading of the eukaryotic replicative helicase onto replication origins involves two MCM hexamers forming a double hexamer (DH) around duplex DNA. During S phase, helicase activation requires MCM phosphorylation by Dbf4-dependent kinase (DDK), comprising Cdc7 and Dbf4. DDK selectively phosphorylates loaded DHs, but how such fidelity is achieved is unknown. Here, we determine the cryogenic electron microscopy structure of Saccharomyces cerevisiae DDK in the act of phosphorylating a DH. DDK docks onto one MCM ring and phosphorylates the opposed ring. Truncation of the Dbf4 docking domain abrogates DH phosphorylation, yet Cdc7 kinase activity is unaffected. Late origin firing is blocked in response to DNA damage via Dbf4 phosphorylation by the Rad53 checkpoint kinase. DDK phosphorylation by Rad53 impairs DH phosphorylation by blockage of DDK binding to DHs, and also interferes with the Cdc7 active site. Our results explain the structural basis and regulation of the selective phosphorylation of DNA-loaded MCM DHs, which supports bidirectional replication.
Collapse
Affiliation(s)
- Julia F Greiwe
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, UK
| | - Thomas C R Miller
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, UK
- Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark
| | - Julia Locke
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, UK
| | - Fabrizio Martino
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, UK
- Human Technopole, Milan, Italy
| | - Steven Howell
- Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Anne Schreiber
- Cellular Degradation Systems Laboratory, The Francis Crick Institute, London, UK
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - John F X Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, London, UK
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
30
|
A mechanism for Rad53 to couple leading- and lagging-strand DNA synthesis under replication stress in budding yeast. Proc Natl Acad Sci U S A 2021; 118:2109334118. [PMID: 34531325 DOI: 10.1073/pnas.2109334118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
In response to DNA replication stress, DNA replication checkpoint kinase Mec1 phosphorylates Mrc1, which in turn activates Rad53 to prevent the generation of deleterious single-stranded DNA, a process that remains poorly understood. We previously reported that lagging-strand DNA synthesis proceeds farther than leading strand in rad53-1 mutant cells defective in replication checkpoint under replication stress, resulting in the exposure of long stretches of the leading-strand templates. Here, we show that asymmetric DNA synthesis is also observed in mec1-100 and mrc1-AQ cells defective in replication checkpoint but, surprisingly, not in mrc1∆ cells in which both DNA replication and checkpoint functions of Mrc1 are missing. Furthermore, depletion of either Mrc1 or its partner, Tof1, suppresses the asymmetric DNA synthesis in rad53-1 mutant cells. Thus, the DNA replication checkpoint pathway couples leading- and lagging-strand DNA synthesis by attenuating the replication function of Mrc1-Tof1 under replication stress.
Collapse
|