1
|
Solak K, Yildiz Arslan S, Acar M, Turhan F, Unver Y, Mavi A. Combination of magnetic hyperthermia and gene therapy for breast cancer. Apoptosis 2025; 30:99-116. [PMID: 39427089 DOI: 10.1007/s10495-024-02026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 10/21/2024]
Abstract
This study presented a novel breast cancer therapy model that uses magnetic field-controlled heating to trigger gene expression in cancer cells. We created silica- and amine-modified superparamagnetic nanoparticles (MSNP-NH2) to carry genes and release heat under an alternating current (AC) magnetic field. The heat-inducible expression plasmid (pHSP-Azu) was designed to encode anti-cancer azurin and was delivered by magnetofection. MCF-7 cells demonstrated over 93% cell viability and 12% transfection efficiency when exposed to 75 µg/ml of MSNP-NH2, 3 µg of DNA, and PEI at a 0.75 PEI/DNA ratio (w: w), unlike non-tumorigenic cells (MCF-10 A). Magnetic hyperthermia (MHT) increased azurin expression by heat induction, leading to cell death in dual ways. The combination of MHT and heat-regulated azurin expression induced cell death, specifically in cancer cells, while having negligible effects on MCF-10 A cells. The proposed strategy clearly shows that simultaneous use of MHT and MHT-induced azurin gene expression may selectively target and kill cancer cells, offering a promising direction for cancer therapy.
Collapse
Affiliation(s)
- Kubra Solak
- Department of Nanoscience and Nanoengineering, Institute of Science and Technology, Atatürk University, Erzurum, Türkiye
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Türkiye
| | - Seyda Yildiz Arslan
- Department of Molecular Biology and Genetics, Institute of Science and Technology, Atatürk University, Erzurum, Türkiye
| | - Melek Acar
- Department of Molecular Biology and Genetics, Institute of Science and Technology, Atatürk University, Erzurum, Türkiye
| | - Fatma Turhan
- Department of Molecular Biology and Genetics, Institute of Science and Technology, Atatürk University, Erzurum, Türkiye
| | - Yagmur Unver
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Türkiye.
| | - Ahmet Mavi
- Department of Nanoscience and Nanoengineering, Institute of Science and Technology, Atatürk University, Erzurum, Türkiye.
- Department of Mathematics and Science Education, Education Faculty of Kazim Karabekir, Atatürk University, Erzurum, Türkiye.
| |
Collapse
|
2
|
Janus P, Kuś P, Jaksik R, Vydra N, Toma-Jonik A, Gramatyka M, Kurpas M, Kimmel M, Widłak W. Transcriptional responses to direct and indirect TGFB1 stimulation in cancerous and noncancerous mammary epithelial cells. Cell Commun Signal 2024; 22:522. [PMID: 39468555 PMCID: PMC11514872 DOI: 10.1186/s12964-024-01821-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/07/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Transforming growth factor beta (TGFβ) is important for the morphogenesis and secretory function of the mammary gland. It is one of the main activators of the epithelial-mesenchymal transition (EMT), a process important for tissue remodeling and regeneration. It also provides cells with the plasticity to form metastases during tumor progression. Noncancerous and cancer cells respond differently to TGFβ. However, knowledge of the cellular signaling cascades triggered by TGFβ in various cell types is still limited. METHODS MCF10A (noncancerous, originating from fibrotic breast tissue) and MCF7 (cancer, estrogen receptor-positive) breast epithelial cells were treated with TGFB1 directly or through conditioned media from stimulated cells. Transcriptional changes (via RNA-seq) were assessed in untreated cells and after 1-6 days of treatment. Differentially expressed genes were detected with DESeq2 and the hallmark collection was selected for gene set enrichment analysis. RESULTS TGFB1 induces EMT in both the MCF10A and MCF7 cell lines but via slightly different mechanisms (signaling through SMAD3 is more active in MCF7 cells). Many EMT-related genes are expressed in MCF10A cells at baseline. Both cell lines respond to TGFB1 by decreasing the expression of genes involved in cell proliferation: through the repression of MYC (and the protein targets) in MCF10A cells and the activation of p63-dependent signaling in MCF7 cells (CDKN1A and CDKN2B, which are responsible for the inhibition of cyclin-dependent kinases, are upregulated). In addition, estrogen receptor signaling is inhibited and caspase-dependent cell death is induced only in MCF7 cells. Direct incubation with TGFB1 and treatment of cells with conditioned media similarly affected transcriptional profiles. However, TGFB1-induced protein secretion is more pronounced in MCF10A cells; therefore, the signaling is propagated through conditioned media (bystander effect) more effectively in MCF10A cells than in MCF7 cells. CONCLUSIONS Estrogen receptor-positive breast cancer patients may benefit from high levels of TGFB1 expression due to the repression of estrogen receptor signaling, inhibition of proliferation, and induction of apoptosis in cancer cells. However, some TGFB1-stimulated cells may undergo EMT, which increases the risk of metastasis.
Collapse
Affiliation(s)
- Patryk Janus
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, Gliwice, 44-102, Poland
| | - Paweł Kuś
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, Gliwice, 44-100, Poland
| | - Roman Jaksik
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, Gliwice, 44-100, Poland
| | - Natalia Vydra
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, Gliwice, 44-102, Poland
| | - Agnieszka Toma-Jonik
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, Gliwice, 44-102, Poland
| | - Michalina Gramatyka
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, Gliwice, 44-102, Poland
| | - Monika Kurpas
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, Gliwice, 44-100, Poland
| | - Marek Kimmel
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, Gliwice, 44-100, Poland.
- Departments of Statistics and Bioengineering, Rice University, Houston, TX, USA.
| | - Wiesława Widłak
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, Gliwice, 44-102, Poland.
| |
Collapse
|
3
|
Zhang X, Fan Y, Tan K. A bird's eye view of mitochondrial unfolded protein response in cancer: mechanisms, progression and further applications. Cell Death Dis 2024; 15:667. [PMID: 39261452 PMCID: PMC11390889 DOI: 10.1038/s41419-024-07049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Mitochondria are essential organelles that play critical roles in energy metabolism, apoptosis and various cellular processes. Accumulating evidence suggests that mitochondria are also involved in cancer development and progression. The mitochondrial unfolded protein response (UPRmt) is a complex cellular process that is activated when the protein-folding capacity of the mitochondria is overwhelmed. The core machinery of UPRmt includes upstream regulatory factors, mitochondrial chaperones and proteases. These components work together to eliminate misfolded proteins, increase protein-folding capacity, and restore mitochondrial function. Recent studies have shown that UPRmt is dysregulated in various cancers and contributes to tumor initiation, growth, metastasis, and therapeutic resistance. Considering the pivotal role of the UPRmt in oncogenesis, numerous compounds and synthetic drugs targeting UPRmt-related components induce cancer cell death and suppress tumor growth. In this review, we comprehensively summarize recent studies on the molecular mechanisms of UPRmt activation in C. elegans and mammals and elucidate the conceptual framework, functional aspects, and implications of the UPRmt for cancer therapy. In summary, we paint a developmental landscape of the UPRmt in different types of cancer and offer valuable insights for the development of novel cancer treatment strategies by targeting the UPRmt.
Collapse
Affiliation(s)
- Xinyu Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Yumei Fan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Ke Tan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China.
| |
Collapse
|
4
|
Somu P, Mohanty S, Basavegowda N, Yadav AK, Paul S, Baek KH. The Interplay between Heat Shock Proteins and Cancer Pathogenesis: A Novel Strategy for Cancer Therapeutics. Cancers (Basel) 2024; 16:638. [PMID: 38339390 PMCID: PMC10854888 DOI: 10.3390/cancers16030638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Heat shock proteins (HSPs) are developmentally conserved families of protein found in both prokaryotic and eukaryotic organisms. HSPs are engaged in a diverse range of physiological processes, including molecular chaperone activity to assist the initial protein folding or promote the unfolding and refolding of misfolded intermediates to acquire the normal or native conformation and its translocation and prevent protein aggregation as well as in immunity, apoptosis, and autophagy. These molecular chaperonins are classified into various families according to their molecular size or weight, encompassing small HSPs (e.g., HSP10 and HSP27), HSP40, HSP60, HSP70, HSP90, and the category of large HSPs that include HSP100 and ClpB proteins. The overexpression of HSPs is induced to counteract cell stress at elevated levels in a variety of solid tumors, including anticancer chemotherapy, and is closely related to a worse prognosis and therapeutic resistance to cancer cells. HSPs are also involved in anti-apoptotic properties and are associated with processes of cancer progression and development, such as metastasis, invasion, and cell proliferation. This review outlines the previously mentioned HSPs and their significant involvement in diverse mechanisms of tumor advancement and metastasis, as well as their contribution to identifying potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Prathap Somu
- Department of Biotechnology and Chemical Engineering, School of Civil & Chemical Engineering, Manipal University Jaipur, Dehmi Kalan, Jaipur 303007, India;
| | - Sonali Mohanty
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, India;
| | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan 38451, Republic of Korea;
| | - Akhilesh Kumar Yadav
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung 413310, Taiwan;
- Department of Bioengineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India
| | - Subhankar Paul
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, India;
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38451, Republic of Korea;
| |
Collapse
|
5
|
Solano LE, D’Sa NM, Nikolaidis N. PRRGO: A Tool for Visualizing and Mapping Globally Expressed Genes in Public Gene Expression Omnibus RNA-Sequencing Studies to PageRank-scored Gene Ontology Terms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.21.576540. [PMID: 38328158 PMCID: PMC10849496 DOI: 10.1101/2024.01.21.576540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
We herein report PageRankeR Gene Ontology (PRRGO), a downloadable web application that can integrate differentially expressed gene (DEG) data from the gene expression omnibus (GEO) GEO2R web tool with the gene ontology (GO) database [1]. Unlike existing tools, PRRGO computes the PageRank for the entire GO network and can generate both interactive GO networks on the web interface and comma-separated values (CSV) files containing the DEG statistics categorized by GO term. These hierarchical and tabular GO-DEG data are especially conducive to hypothesis generation and overlap studies with the use of PageRank data, which can provide a metric of GO term centrality. We verified the tool for accuracy and reliability across nine independent heat shock (HS) studies for which the RNA-seq data was publicly available on GEO and found that the tool produced increasing concordance between study DEGs, GO terms, and select HS-specific GO terms.
Collapse
Affiliation(s)
- Luis E. Solano
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834-6850
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA
| | - Nicholas M. D’Sa
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834-6850
- University of California, Irvine, Irvine, CA
| | - Nikolas Nikolaidis
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834-6850
| |
Collapse
|
6
|
Jacobs C, Shah S, Lu WC, Ray H, Wang J, Hockaden N, Sandusky G, Nephew KP, Lu X, Cao S, Carpenter RL. HSF1 Inhibits Antitumor Immune Activity in Breast Cancer by Suppressing CCL5 to Block CD8+ T-cell Recruitment. Cancer Res 2024; 84:276-290. [PMID: 37890164 PMCID: PMC10790131 DOI: 10.1158/0008-5472.can-23-0902] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/23/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Heat shock factor 1 (HSF1) is a stress-responsive transcription factor that promotes cancer cell malignancy. To provide a better understanding of the biological processes regulated by HSF1, here we developed an HSF1 activity signature (HAS) and found that it was negatively associated with antitumor immune cells in breast tumors. Knockdown of HSF1 decreased breast tumor size and caused an influx of several antitumor immune cells, most notably CD8+ T cells. Depletion of CD8+ T cells rescued the reduction in growth of HSF1-deficient tumors, suggesting HSF1 prevents CD8+ T-cell influx to avoid immune-mediated tumor killing. HSF1 suppressed expression of CCL5, a chemokine for CD8+ T cells, and upregulation of CCL5 upon HSF1 loss significantly contributed to the recruitment of CD8+ T cells. These findings indicate that HSF1 suppresses antitumor immune activity by reducing CCL5 to limit CD8+ T-cell homing to breast tumors and prevent immune-mediated destruction, which has implications for the lack of success of immune modulatory therapies in breast cancer. SIGNIFICANCE The stress-responsive transcription factor HSF1 reduces CD8+ T-cell infiltration in breast tumors to prevent immune-mediated killing, indicating that cellular stress responses affect tumor-immune interactions and that targeting HSF1 could improve immunotherapies.
Collapse
Affiliation(s)
- Curteisha Jacobs
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - Sakhi Shah
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - Wen-Cheng Lu
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - Haimanti Ray
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - John Wang
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - Natasha Hockaden
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - George Sandusky
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kenneth P. Nephew
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana
- Department of Anatomy, Cell Biology & Physiology, Indiana University, Indianapolis, Indiana
| | - Xin Lu
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | - Sha Cao
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana
| | - Richard L. Carpenter
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Medical Sciences, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
7
|
Liu D, Guo Y, Du Q, Zhu Y, Guo Y. RING induces cell cycle arrest and apoptosis in human breast cancer cells by regulating the HSF1/MT2A axis. Exp Cell Res 2023; 433:113795. [PMID: 37797799 DOI: 10.1016/j.yexcr.2023.113795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
It was reported that lowly expressed RING1 indicates poor prognosis in breast cancer (BC) patients, while the mechanism by which RING1 is involved in BC progression is not fully understood. Here, we found that RING1 was lowly expressed in BC tissues and cells than in normal mammary tissues and epithelial cells. Overexpression of RING1 suppressed the cell proliferative and colony formation abilities, and facilitated cell cycle arrest and cell apoptosis in BC cells (T47D and MCF-7 cells). Mechanistically, as an ubiquitin ligase, RING1 bound to HSF1 and induced its proteasome-dependent degradation. HSF1 could bind to the promoter region of MT2A to promote the transcriptional level of MT2A. While RING1 overexpression hindered the transcriptional activation of MT2A induced by HSF1. Moreover, ectopic expression of MT2A reversed the inhibitory effect of RING1 on cell proliferation and clonogenesis, and antagonized the promotion effect of RING1 on cell cycle arrest and apoptosis in BC cells. Additionally, T47D cells infected with or without lentivirus-mediated RING1 overexpression vector (LV-RING1) were injected subcutaneously into the right back of nude mice to evaluate tumorigenicity. And overexpression of RING1 impeded the growth of BC xenografts in mice. In conclusion, RING1 suppressed the transcriptional activation of MT2A induced by HSF1 by facilitating the ubiquitination degradation of HSF1, resulting in cell cycle arrest and apoptosis in BC cells.
Collapse
Affiliation(s)
- Di Liu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Yize Guo
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Qin Du
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Yuxuan Zhu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Ya Guo
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
8
|
Dastidar SG, De Kumar B, Lauckner B, Parrello D, Perley D, Vlasenok M, Tyagi A, Koney NKK, Abbas A, Nechaev S. Transcriptional responses of cancer cells to heat shock-inducing stimuli involve amplification of robust HSF1 binding. Nat Commun 2023; 14:7420. [PMID: 37973875 PMCID: PMC10654513 DOI: 10.1038/s41467-023-43157-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Responses of cells to stimuli are increasingly discovered to involve the binding of sequence-specific transcription factors outside of known target genes. We wanted to determine to what extent the genome-wide binding and function of a transcription factor are shaped by the cell type versus the stimulus. To do so, we induced the Heat Shock Response pathway in two different cancer cell lines with two different stimuli and related the binding of its master regulator HSF1 to nascent RNA and chromatin accessibility. Here, we show that HSF1 binding patterns retain their identity between basal conditions and under different magnitudes of activation, so that common HSF1 binding is globally associated with distinct transcription outcomes. HSF1-induced increase in DNA accessibility was modest in scale, but occurred predominantly at remote genomic sites. Apart from regulating transcription at existing elements including promoters and enhancers, HSF1 binding amplified during responses to stimuli may engage inactive chromatin.
Collapse
Affiliation(s)
- Sayantani Ghosh Dastidar
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, 58202, USA
- Illumina, Inc., San Diego, CA, 92122, USA
| | - Bony De Kumar
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, 58202, USA
- Yale Center for Genome Analysis, Department of Genetics, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Bo Lauckner
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, 58202, USA
| | - Damien Parrello
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, 58202, USA
| | - Danielle Perley
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, 58202, USA
- Canadian Centre for Computational Genomics, McGill Genome Centre, Montreal, QC, H3A0G1, Canada
| | - Maria Vlasenok
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, 58202, USA
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Antariksh Tyagi
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, 58202, USA
- Yale Center for Genome Analysis, Department of Genetics, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Nii Koney-Kwaku Koney
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, 58202, USA
- University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Ata Abbas
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, 58202, USA
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Sergei Nechaev
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, 58202, USA.
| |
Collapse
|
9
|
Gumilar KE, Chin Y, Ibrahim IH, Tjokroprawiro BA, Yang JY, Zhou M, Gassman NR, Tan M. Heat Shock Factor 1 Inhibition: A Novel Anti-Cancer Strategy with Promise for Precision Oncology. Cancers (Basel) 2023; 15:5167. [PMID: 37958341 PMCID: PMC10649344 DOI: 10.3390/cancers15215167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Heat shock factor 1 (HSF1) is a transcription factor crucial for regulating heat shock response (HSR), one of the significant cellular protective mechanisms. When cells are exposed to proteotoxic stress, HSF1 induces the expression of heat shock proteins (HSPs) to act as chaperones, correcting the protein-folding process and maintaining proteostasis. In addition to its role in HSR, HSF1 is overexpressed in multiple cancer cells, where its activation promotes malignancy and leads to poor prognosis. The mechanisms of HSF1-induced tumorigenesis are complex and involve diverse signaling pathways, dependent on cancer type. With its important roles in tumorigenesis and tumor progression, targeting HSF1 offers a novel cancer treatment strategy. In this article, we examine the basic function of HSF1 and its regulatory mechanisms, focus on the mechanisms involved in HSF1's roles in different cancer types, and examine current HSF1 inhibitors as novel therapeutics to treat cancers.
Collapse
Affiliation(s)
- Khanisyah Erza Gumilar
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan (Y.C.); (I.H.I.); (J.-Y.Y.)
- Department of Obstetrics and Gynecology, Faculty of Medicine, Airlangga University, Surabaya 60286, Indonesia;
| | - Yeh Chin
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan (Y.C.); (I.H.I.); (J.-Y.Y.)
| | - Ibrahim Haruna Ibrahim
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan (Y.C.); (I.H.I.); (J.-Y.Y.)
| | - Brahmana A. Tjokroprawiro
- Department of Obstetrics and Gynecology, Faculty of Medicine, Airlangga University, Surabaya 60286, Indonesia;
| | - Jer-Yen Yang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan (Y.C.); (I.H.I.); (J.-Y.Y.)
| | - Ming Zhou
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 410013, China;
| | - Natalie R. Gassman
- Department of Pharmacology and Toxicology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Ming Tan
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan (Y.C.); (I.H.I.); (J.-Y.Y.)
- Institute of Biochemistry and Molecular Biology, Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
| |
Collapse
|
10
|
Vydra N, Toma-Jonik A, Janus P, Mrowiec K, Stokowy T, Głowala-Kosińska M, Sojka DR, Olbryt M, Widłak W. An Increase in HSF1 Expression Directs Human Mammary Epithelial Cells toward a Mesenchymal Phenotype. Cancers (Basel) 2023; 15:4965. [PMID: 37894333 PMCID: PMC10605143 DOI: 10.3390/cancers15204965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
HSF1 is a well-known heat shock protein expression regulator in response to stress. It also regulates processes important for growth, development or tumorigenesis. We studied the HSF1 influence on the phenotype of non-tumorigenic human mammary epithelial (MCF10A and MCF12A) and several triple-negative breast cancer cell lines. MCF10A and MCF12A differ in terms of HSF1 levels, morphology, growth in Matrigel, expression of epithelial (CDH1) and mesenchymal (VIM) markers (MCF10A are epithelial cells; MCF12A resemble mesenchymal cells). HSF1 down-regulation led to a reduced proliferation rate and spheroid formation in Matrigel by MCF10A cells. However, it did not affect MCF12A proliferation but led to CDH1 up-regulation and the formation of better organized spheroids. HSF1 overexpression in MCF10A resulted in reduced CDH1 and increased VIM expression and the acquisition of elongated fibroblast-like morphology. The above-mentioned results suggest that elevated levels of HSF1 may direct mammary epithelial cells toward a mesenchymal phenotype, while a lowering of HSF1 could reverse the mesenchymal phenotype to an epithelial one. Therefore, HSF1 may be involved in the remodeling of mammary gland architecture over the female lifetime. Moreover, HSF1 levels positively correlated with the invasive phenotype of triple-negative breast cancer cells, and their growth was inhibited by the HSF1 inhibitor DTHIB.
Collapse
Affiliation(s)
- Natalia Vydra
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102 Gliwice, Poland; (A.T.-J.); (P.J.); (K.M.); (M.G.-K.); (D.R.S.); (M.O.)
| | - Agnieszka Toma-Jonik
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102 Gliwice, Poland; (A.T.-J.); (P.J.); (K.M.); (M.G.-K.); (D.R.S.); (M.O.)
| | - Patryk Janus
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102 Gliwice, Poland; (A.T.-J.); (P.J.); (K.M.); (M.G.-K.); (D.R.S.); (M.O.)
| | - Katarzyna Mrowiec
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102 Gliwice, Poland; (A.T.-J.); (P.J.); (K.M.); (M.G.-K.); (D.R.S.); (M.O.)
| | - Tomasz Stokowy
- Scientific Computing Group, IT Division, University of Bergen, N-5008 Bergen, Norway;
| | - Magdalena Głowala-Kosińska
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102 Gliwice, Poland; (A.T.-J.); (P.J.); (K.M.); (M.G.-K.); (D.R.S.); (M.O.)
| | - Damian Robert Sojka
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102 Gliwice, Poland; (A.T.-J.); (P.J.); (K.M.); (M.G.-K.); (D.R.S.); (M.O.)
| | - Magdalena Olbryt
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102 Gliwice, Poland; (A.T.-J.); (P.J.); (K.M.); (M.G.-K.); (D.R.S.); (M.O.)
| | - Wiesława Widłak
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102 Gliwice, Poland; (A.T.-J.); (P.J.); (K.M.); (M.G.-K.); (D.R.S.); (M.O.)
| |
Collapse
|
11
|
Chin Y, Gumilar KE, Li XG, Tjokroprawiro BA, Lu CH, Lu J, Zhou M, Sobol RW, Tan M. Targeting HSF1 for cancer treatment: mechanisms and inhibitor development. Theranostics 2023; 13:2281-2300. [PMID: 37153737 PMCID: PMC10157728 DOI: 10.7150/thno.82431] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/06/2023] [Indexed: 05/10/2023] Open
Abstract
Heat Shock Factor 1 (HSF1) is a master regulator of heat shock responsive signaling. In addition to playing critical roles in cellular heat shock response, emerging evidence suggests that HSF1 also regulates a non-heat shock responsive transcriptional network to handle metabolic, chemical, and genetic stress. The function of HSF1 in cellular transformation and cancer development has been extensively studied in recent years. Due to important roles for HSF1 for coping with various stressful cellular states, research on HSF1 has been very active. New functions and molecular mechanisms underlying these functions have been continuously discovered, providing new targets for novel cancer treatment strategies. In this article, we review the essential roles and mechanisms of HSF1 action in cancer cells, focusing more on recently discovered functions and their underlying mechanisms to reflect the new advances in cancer biology. In addition, we emphasize new advances with regard to HSF1 inhibitors for cancer drug development.
Collapse
Affiliation(s)
- Yeh Chin
- Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan, R.O.C
| | - Khanisyah E Gumilar
- Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan, R.O.C
- The Department of Obstetrics and Gynecology, Medical Faculty, Universitas Airlangga, Surabaya, Indonesia
| | - Xing-Guo Li
- Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan, R.O.C
- Institute of Biochemistry & Molecular Biology, China Medical University, Taichung, Taiwan, R.O.C
| | - Brahmana A. Tjokroprawiro
- The Department of Obstetrics and Gynecology, Medical Faculty, Universitas Airlangga, Surabaya, Indonesia
| | - Chien-Hsing Lu
- Department of Gynecology and Obstetrics, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Jianrong Lu
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, USA
| | - Ming Zhou
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Robert W. Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, USA
| | - Ming Tan
- Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan, R.O.C
- Institute of Biochemistry & Molecular Biology, China Medical University, Taichung, Taiwan, R.O.C
| |
Collapse
|
12
|
HSF1 Can Prevent Inflammation following Heat Shock by Inhibiting the Excessive Activation of the ATF3 and JUN& FOS Genes. Cells 2022; 11:cells11162510. [PMID: 36010586 PMCID: PMC9406379 DOI: 10.3390/cells11162510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Heat Shock Factor 1 (HSF1), a transcription factor frequently overexpressed in cancer, is activated by proteotoxic agents and participates in the regulation of cellular stress response. To investigate how HSF1 level affects the response to proteotoxic stress, we integrated data from functional genomics analyses performed in MCF7 breast adenocarcinoma cells. Although the general transcriptional response to heat shock was impaired due to HSF1 deficiency (mainly chaperone expression was inhibited), a set of genes was identified, including ATF3 and certain FOS and JUN family members, whose stress-induced activation was stronger and persisted longer than in cells with normal HSF1 levels. These genes were direct HSF1 targets, suggesting a dual (activatory/suppressory) role for HSF1. Moreover, we found that heat shock-induced inflammatory response could be stronger in HSF1-deficient cells. Analyses of The Cancer Genome Atlas data indicated that higher ATF3, FOS, and FOSB expression levels correlated with low HSF1 levels in estrogen receptor-positive breast cancer, reflecting higher heat shock-induced expression of these genes in HSF1-deficient MCF7 cells observed in vitro. However, differences between the analyzed cancer types were noted in the regulation of HSF1-dependent genes, indicating the presence of cell-type-specific mechanisms. Nevertheless, our data indicate the existence of the heat shock-induced network of transcription factors (associated with the activation of TNFα signaling) which includes HSF1. Independent of its chaperone-mediated cytoprotective function, HSF1 may be involved in the regulation of this network but prevents its overactivation in some cells during stress.
Collapse
|