1
|
Chan AN, Handlin LJ, Lessie EN, Tajkhorshid E, Dai G. Voltage Sensor Conformations Induced by LQTS-associated Mutations in hERG Potassium Channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.17.594747. [PMID: 39975008 PMCID: PMC11838196 DOI: 10.1101/2024.05.17.594747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Voltage sensors are essential for electromechanical coupling in hERG K + channels, critical to cardiac rhythm. These sensors detect changes in membrane voltage and move in response to the transmembrane electric field. Mutations in voltage-sensing arginines of hERG, associated with Long QT syndrome, alter channel gating, though mechanisms in these mutants remain unclear. Using fluorescence lifetime imaging microscopy (FLIM), transition metal FRET (tmFRET), dual stop-codon mediated noncanonical amino acid incorporation, and molecular dynamics (MD) simulations, we identified distinct intermediate voltage-sensor conformations caused by these mutations. Phasor plot analysis of the FLIM-tmFRET donor revealed multiple FRET states in mutant hERG channels, in contrast to the single high-FRET state observed in unmutated controls. These intermediate FRET states correspond to specific mutation sites and align with distinct intermediate voltage-sensor conformations identified in MD simulations. This study provides novel insights into cardiac channelopathies, highlighting structural underpinnings underlying voltage sensing in cardiac arrhythmias.
Collapse
|
2
|
Chávez JC, Carrasquel-Martínez G, Hernández-Garduño S, Matamoros Volante A, Treviño CL, Nishigaki T, Darszon A. Cytosolic and Acrosomal pH Regulation in Mammalian Sperm. Cells 2024; 13:865. [PMID: 38786087 PMCID: PMC11120249 DOI: 10.3390/cells13100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
As in most cells, intracellular pH regulation is fundamental for sperm physiology. Key sperm functions like swimming, maturation, and a unique exocytotic process, the acrosome reaction, necessary for gamete fusion, are deeply influenced by pH. Sperm pH regulation, both intracellularly and within organelles such as the acrosome, requires a coordinated interplay of various transporters and channels, ensuring that this cell is primed for fertilization. Consistent with the pivotal importance of pH regulation in mammalian sperm physiology, several of its unique transporters are dependent on cytosolic pH. Examples include the Ca2+ channel CatSper and the K+ channel Slo3. The absence of these channels leads to male infertility. This review outlines the main transport elements involved in pH regulation, including cytosolic and acrosomal pH, that participate in these complex functions. We present a glimpse of how these transporters are regulated and how distinct sets of them are orchestrated to allow sperm to fertilize the egg. Much research is needed to begin to envision the complete set of players and the choreography of how cytosolic and organellar pH are regulated in each sperm function.
Collapse
Affiliation(s)
- Julio C. Chávez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico; (J.C.C.); (G.C.-M.)
| | - Gabriela Carrasquel-Martínez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico; (J.C.C.); (G.C.-M.)
- CITMER, Medicina Reproductiva, México City 11520, Mexico
| | - Sandra Hernández-Garduño
- Departamento de Morfología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), México City 04510, Mexico;
| | - Arturo Matamoros Volante
- Department of Electrical and Computer Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA;
| | - Claudia L. Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico; (J.C.C.); (G.C.-M.)
| | - Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico; (J.C.C.); (G.C.-M.)
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico; (J.C.C.); (G.C.-M.)
| |
Collapse
|
3
|
DeCoursey TE. Transcendent Aspects of Proton Channels. Annu Rev Physiol 2024; 86:357-377. [PMID: 37931166 PMCID: PMC10938948 DOI: 10.1146/annurev-physiol-042222-023242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
A handful of biological proton-selective ion channels exist. Some open at positive or negative membrane potentials, others open at low or high pH, and some are light activated. This review focuses on common features that result from the unique properties of protons. Proton conduction through water or proteins differs qualitatively from that of all other ions. Extraordinary proton selectivity is needed to ensure that protons permeate and other ions do not. Proton selectivity arises from a proton pathway comprising a hydrogen-bonded chain that typically includes at least one titratable amino acid side chain. The enormously diverse functions of proton channels in disparate regions of the phylogenetic tree can be summarized by considering the chemical and electrical consequences of proton flux across membranes. This review discusses examples of cells in which proton efflux serves to increase pHi, decrease pHo, control the membrane potential, generate action potentials, or compensate transmembrane movement of electrical charge.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Physiology & Biophysics, Rush University, Chicago, Illinois, USA;
| |
Collapse
|
4
|
Zhao C, Webster PD, De Angeli A, Tombola F. Mechanically-primed voltage-gated proton channels from angiosperm plants. Nat Commun 2023; 14:7515. [PMID: 37980353 PMCID: PMC10657467 DOI: 10.1038/s41467-023-43280-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023] Open
Abstract
Voltage-gated and mechanically-gated ion channels are distinct classes of membrane proteins that conduct ions across gated pores and are turned on by electrical or mechanical stimuli, respectively. Here, we describe an Hv channel (a.k.a voltage-dependent H+ channel) from the angiosperm plant A. thaliana that gates with a unique modality as it is turned on by an electrical stimulus only after exposure to a mechanical stimulus, a process that we call priming. The channel localizes in the vascular tissue and has homologs in vascular plants. We find that mechanical priming is not required for activation of non-angiosperm Hvs. Guided by AI-generated structural models of plant Hv homologs, we identify a set of residues playing a crucial role in mechanical priming. We propose that Hvs from angiosperm plants require priming because of a network of hydrophilic/charged residues that locks the channels in a silent resting conformation. Mechanical stimuli destabilize the network allowing the conduction pathway to turn on. In contrast to many other channels and receptors, Hv proteins are not thought to possess mechanisms such as inactivation or desensitization. Our findings demonstrate that angiosperm Hv channels are electrically silent until a mechanical stimulation turns on their voltage-dependent activity.
Collapse
Affiliation(s)
- Chang Zhao
- Department of Physiology and Biophysics, University of California, Irvine, CA, 92697, USA
| | - Parker D Webster
- Department of Physiology and Biophysics, University of California, Irvine, CA, 92697, USA
| | - Alexis De Angeli
- IPSiM, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France.
| | - Francesco Tombola
- Department of Physiology and Biophysics, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
5
|
Leuchtag HR. On molecular steps that activate a voltage sensitive ion channel at critical depolarization. Biophys Chem 2023; 301:107078. [PMID: 37544083 DOI: 10.1016/j.bpc.2023.107078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/16/2023] [Accepted: 07/23/2023] [Indexed: 08/08/2023]
Abstract
At high transmembrane electric field, a voltage sensitive ion channel is an insulator; when the field is critically reduced, it becomes a conductor of selected ions. The Channel Activation by Electrostatic Repulsion (CAbER) hypothesis proposes that an ordered polarization field of induced dipoles at the high electric field magnitude of the excitable state is overcome by thermal disorder at a critical depolarization. Increased repulsions between positive charges in the S4 segments cause an allosteric transition in which these segments expand and separate in a chiral proteinquake. The increased space allows the P segments to refold and the ion-semiconducting S5 and S6 segments to relax and expand outward in a breathing mode. Stripped permeant ions enter widened hydrogen bonds in the core helices of these segments. Driven by concentration differences and the electric field, the ions hop along transient pathways across the channel, appearing as fractal, stochastic bursts of single-channel currents. To support order amid thermal fluctuations, an object must be of a minimum size. The critical role of an ion channel's size suggests that the evolution of Metazoa became possible only after its DNA had grown enough to code for proteins larger than the correlation length.
Collapse
|
6
|
Liu B, Carlson RJ, Pires IS, Gentili M, Feng E, Hellier Q, Schwartz MA, Blainey PC, Irvine DJ, Hacohen N. Human STING is a proton channel. Science 2023; 381:508-514. [PMID: 37535724 PMCID: PMC11260435 DOI: 10.1126/science.adf8974] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 06/30/2023] [Indexed: 08/05/2023]
Abstract
Proton leakage from organelles is a common signal for noncanonical light chain 3B (LC3B) lipidation and inflammasome activation, processes induced upon stimulator of interferon genes (STING) activation. On the basis of structural analysis, we hypothesized that human STING is a proton channel. Indeed, we found that STING activation induced a pH increase in the Golgi and that STING reconstituted in liposomes enabled transmembrane proton transport. Compound 53 (C53), a STING agonist that binds the putative channel interface, blocked STING-induced proton flux in the Golgi and in liposomes. STING-induced LC3B lipidation and inflammasome activation were also inhibited by C53, suggesting that STING's channel activity is critical for these two processes. Thus, STING's interferon-induction function can be decoupled from its roles in LC3B lipidation and inflammasome activation.
Collapse
Affiliation(s)
- Bingxu Liu
- Broad Institute, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
| | - Rebecca J. Carlson
- Broad Institute, Cambridge, MA, USA
- Massachusetts Institute of Technology, Department of Health Sciences and Technology, Cambridge, MA, USA
| | - Ivan S. Pires
- The Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
| | | | - Ellie Feng
- Broad Institute, Cambridge, MA, USA
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, MA, USA
| | | | - Marc A. Schwartz
- Broad Institute, Cambridge, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Hematology and Oncology, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Paul C. Blainey
- Broad Institute, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, MA, USA
| | - Darrell J. Irvine
- The Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
| | - Nir Hacohen
- Broad Institute, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| |
Collapse
|
7
|
Chaves G, Jardin C, Derst C, Musset B. Voltage-Gated Proton Channels in the Tree of Life. Biomolecules 2023; 13:1035. [PMID: 37509071 PMCID: PMC10377628 DOI: 10.3390/biom13071035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
With a single gene encoding HV1 channel, proton channel diversity is particularly low in mammals compared to other members of the superfamily of voltage-gated ion channels. Nonetheless, mammalian HV1 channels are expressed in many different tissues and cell types where they exert various functions. In the first part of this review, we regard novel aspects of the functional expression of HV1 channels in mammals by differentially comparing their involvement in (1) close conjunction with the NADPH oxidase complex responsible for the respiratory burst of phagocytes, and (2) in respiratory burst independent functions such as pH homeostasis or acid extrusion. In the second part, we dissect expression of HV channels within the eukaryotic tree of life, revealing the immense diversity of the channel in other phylae, such as mollusks or dinoflagellates, where several genes encoding HV channels can be found within a single species. In the last part, a comprehensive overview of the biophysical properties of a set of twenty different HV channels characterized electrophysiologically, from Mammalia to unicellular protists, is given.
Collapse
Affiliation(s)
- Gustavo Chaves
- Center of Physiology, Pathophysiology and Biophysics, The Nuremberg Location, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Christophe Jardin
- Center of Physiology, Pathophysiology and Biophysics, The Nuremberg Location, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Christian Derst
- Center of Physiology, Pathophysiology and Biophysics, The Nuremberg Location, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Boris Musset
- Center of Physiology, Pathophysiology and Biophysics, The Nuremberg Location, Paracelsus Medical University, 90419 Nuremberg, Germany
- Center of Physiology, Pathophysiology and Biophysics, The Salzburg Location, Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
8
|
Han S, Applewhite S, DeCata J, Jones S, Cummings J, Wang S. Arachidonic acid reverses cholesterol and zinc inhibition of human voltage-gated proton channels. J Biol Chem 2023:104918. [PMID: 37315791 PMCID: PMC10344949 DOI: 10.1016/j.jbc.2023.104918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/08/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023] Open
Abstract
Unlike other members of the voltage-gated ion channel superfamily, voltage-gated proton (Hv) channels are solely composed of voltage sensor domains without separate ion-conducting pores. Due to their unique dependence on both voltage and transmembrane pH gradients, Hv channels normally open to mediate proton efflux. Multiple cellular ligands were also found to regulate the function of Hv channels, including Zn2+, cholesterol, polyunsaturated arachidonic acid, and albumin. Our previous work showed that Zn2+ and cholesterol inhibit the human voltage-gated proton channel hHv1 by stabilizing its S4 segment at resting state conformations. Released from phospholipids by phospholipase A2 in cells upon infection or injury, arachidonic acid regulates the function of many ion channels, including hHv1. In the present work, we examined the effects of arachidonic acid on purified hHv1 channels using liposome flux assays and revealed underlying structural mechanisms using single-molecule Fluorescence Resonance Energy Transfer (smFRET). Our data indicated that arachidonic acid strongly activates hHv1 channels by promoting transitions of the S4 segment towards opening or 'pre-opening' conformations. Moreover, we found that arachidonic acid even activates hHv1 channels inhibited by Zn2+ and cholesterol, providing a biophysical mechanism to activate hHv1 channels in non-excitable cells upon infection or injury.
Collapse
Affiliation(s)
- Shuo Han
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO 64110 USA
| | - Sarah Applewhite
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO 64110 USA
| | - Jenna DeCata
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO 64110 USA
| | - Samuel Jones
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO 64110 USA
| | - John Cummings
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO 64110 USA
| | - Shizhen Wang
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO 64110 USA.
| |
Collapse
|
9
|
Han S, Vance J, Jones S, DeCata J, Tran K, Cummings J, Wang S. Voltage sensor dynamics of a bacterial voltage-gated sodium channel NavAb reveal three conformational states. J Biol Chem 2023; 299:102967. [PMID: 36736429 PMCID: PMC9986516 DOI: 10.1016/j.jbc.2023.102967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
High-resolution structures of voltage-gated sodium channels (Nav) were first obtained from a prokaryotic ortholog NavAb, which provided important mechanistic insights into Na+ selectivity and voltage gating. Unlike eukaryotic Navs, the NavAb channel is formed by four identical subunits, but its ion selectivity and pharmacological profiles are very similar to eukaryotic Navs. Recently, the structures of the NavAb voltage sensor at resting and activated states were obtained by cryo-EM, but its intermediate states and transition dynamics remain unclear. In the present work, we used liposome flux assays to show that purified NavAb proteins were functional to conduct both H+ and Na+ and were blocked by the local anesthetic lidocaine. Additionally, we examined the real-time conformational dynamics of the NavAb voltage sensor using single-molecule FRET. Our single-molecule FRET measurements on the tandem NavAb channel labeled with Cy3/5 FRET fluorophore pair revealed spontaneous transitions of the NavAb S4 segment among three conformational states, which fitted well with the kinetic model developed for the S4 segment of the human voltage-gated proton channel hHv1. Interestingly, even under strong activating voltage, the NavAb S4 segment seems to adopt a conformational distribution similar to that of the hHv1 S4 segment at a deep resting state. The conformational behaviors of the NavAb voltage sensor under different voltages need to be further examined to understand the mechanisms of voltage sensing and gating in the canonical voltage-gated ion channel superfamily.
Collapse
Affiliation(s)
- Shuo Han
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Joshua Vance
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Samuel Jones
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Jenna DeCata
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Kimberly Tran
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - John Cummings
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Shizhen Wang
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA.
| |
Collapse
|
10
|
Abstract
Although human sperm is morphologically mature in the epididymis, it cannot fertilize eggs before capacitation. Cholesterol efflux from the sperm plasma membrane is a key molecular event essential for cytoplasmic alkalinization and hyperactivation, but the underlying mechanism remains unclear. The human voltage-gated proton (hHv1) channel functions as an acid extruder to regulate intracellular pHs of many cell types, including sperm. Aside from voltage and pH, Hv channels are also regulated by distinct ligands, such as Zn2+ and albumin. In the present work, we identified cholesterol as an inhibitory ligand of the hHv1 channel and further investigated the underlying mechanism using the single-molecule fluorescence resonance energy transfer (smFRET) approach. Our results indicated that cholesterol inhibits the hHv1 channel by stabilizing the voltage-sensing S4 segment at resting conformations, a similar mechanism also utilized by Zn2+. Our results suggested that the S4 segment is the central gating machinery in the hHv1 channel, on which voltage and distinct ligands are converged to regulate channel function. Identification of membrane cholesterol as an inhibitory ligand provides a mechanism by which the hHv1 channel regulates fertilization by linking the cholesterol efflux with cytoplasmic alkalinization, a change that triggers calcium influx through the CatSper channel. These events finally lead to hyperactivation, a remarkable change in the mobility pattern indicating fertilization competence of human sperm.
Collapse
|