1
|
Springer SD, Schantell M, Okelberry HJ, Willett MP, Johnson HJ, Wilson TW. Healthy aging is associated with altered visual gamma band onset and offset responses. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:1-14. [PMID: 40041299 PMCID: PMC11873763 DOI: 10.1162/imag_a_00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 03/06/2025]
Abstract
Gamma oscillations have been shown to be critical for basic sensory processing, as well as visual attention and several other higher-order cognitive functions. Aberrant gamma oscillations have also been shown in neuropsychiatric and neurodegenerative diseases. Despite the possible clinical implications of altered gamma activity and emerging stimulation-based interventions targeting gamma, research into age-related changes in gamma oscillatory activity in healthy adults remains sparse. In the current study, we examined the neural oscillations underlying basic visual processing in 87 healthy aging adults using magnetoencephalography (MEG) and a visual grating stimulus. Neural activity elicited by the visual stimulus was imaged using a time-frequency resolved beamformer, and peak voxel time series were computed to characterize the visual oscillatory dynamics underlying these responses. We found significant age-related changes in visual gamma oscillations, but not in visual theta, alpha, or beta oscillations. Specifically, we found age-related increases in gamma band amplitude and inter-trial phase-locking (ITPL) immediately following stimulus presentation (i.e., gamma onset response). Conversely, gamma band amplitude and ITPL following stimulus removal (i.e., gamma offset response) were found to be decreased as a function of healthy aging. Critically, we demonstrated that the decreases in the gamma offset response predicted slower overall processing speed across all participants. Taken together, these findings indicate that healthy aging is uniquely associated with alterations in visual gamma oscillations and that these changes predict participant processing speed.
Collapse
Affiliation(s)
- Seth D. Springer
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Hannah J. Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States
| | - Madelyn P. Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States
| | - Hallie J. Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, United States
| |
Collapse
|
2
|
Kanth ST, Ray S. Gamma Responses to Colored Natural Stimuli Can Be Predicted from Local Low-Level Stimulus Features. eNeuro 2024; 11:ENEURO.0417-23.2024. [PMID: 39054054 PMCID: PMC11277289 DOI: 10.1523/eneuro.0417-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/17/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
The role of gamma rhythm (30-80 Hz) in visual processing is debated; stimuli like gratings and hue patches generate strong gamma, but many natural images do not. Could image gamma responses be predicted by approximating images as gratings or hue patches? Surprisingly, this question remains unanswered, since the joint dependence of gamma on multiple features is poorly understood. We recorded local field potentials and electrocorticogram from two female monkeys while presenting natural images and parametric stimuli varying along several feature dimensions. Gamma responses to different grating/hue features were separable, allowing for a multiplicative model based on individual features. By fitting a hue patch to the image around the receptive field, this simple model could predict gamma responses to chromatic images across scales with reasonably high accuracy. Our results provide a simple "baseline" model to predict gamma from local image properties, against which more complex models of natural vision can be tested.
Collapse
Affiliation(s)
- Sidrat Tasawoor Kanth
- IISc Mathematics Initiative, Indian Institute of Science, Bangalore 560012, India
- Center for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | - Supratim Ray
- IISc Mathematics Initiative, Indian Institute of Science, Bangalore 560012, India
- Center for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
3
|
Tosta S, Ferreira M, Lewine J, Anderson A. Individualized spectral filters alleviate persistent photophobia, headaches and migraines in active duty military and Veterans following brain trauma. Brain Inj 2024; 38:177-185. [PMID: 38334039 DOI: 10.1080/02699052.2024.2309253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/19/2024] [Indexed: 02/10/2024]
Abstract
PURPOSE Consistent with association between photophobia and headache, growing evidence suggests an underlying causal relationship between light sensitivity and central pain. We investigated whether an intervention to regulate light sensitivity by filtering only wavelengths causing difficulties for the specific individual could alleviate headaches/migraines resulting from traumatic brain injury (TBI). METHODS Secondary data analysis of a clinical database including N = 392 military personnel (97% men, 3% women), ranging in age from 20 to 51 years, diagnosed with TBI, persistent headaches/migraines, and light sensitivity. The average elapsed time from TBI diagnosis to intervention was 3 years. Headache/migraine severity, frequency, medication use, and difficulties related to daily functioning were assessed pre and 4-12 weeks post-intervention with individualized spectral filters. RESULTS Monthly migraine frequency decreased significantly from an average of 14.8 to 1.9, with 74% reporting no migraines post-intervention. Prescription and over-the-counter medication use decreased by more than 70%. Individuals also reported significant improvement in light sensitivity, headaches/migraine severity, and physical and perceptual symptoms. CONCLUSIONS Wearing individualized spectral filters was associated with symptom relief, increased subjective quality of reported health and well-being, and decreased objective medication use for TBI-related persistent headaches/migraines. These results support a suggested relationship between dysregulated light sensitivity and central regulation of pain.
Collapse
Affiliation(s)
- Sandra Tosta
- The Irlen Institute, Long Beach, California, USA
| | | | - Jeffrey Lewine
- Department of Psychology, The University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Adam Anderson
- Human Neuroscience Institute and Department of Psychology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
Wu Y, Zhao M, Deng H, Wang T, Xin Y, Dai W, Huang J, Zhou T, Sun X, Liu N, Xing D. The neural origin for asymmetric coding of surface color in the primate visual cortex. Nat Commun 2024; 15:516. [PMID: 38225259 PMCID: PMC10789876 DOI: 10.1038/s41467-024-44809-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 01/03/2024] [Indexed: 01/17/2024] Open
Abstract
The coding privilege of end-spectral hues (red and blue) in the early visual cortex has been reported in primates. However, the origin of such bias remains unclear. Here, we provide a complete picture of the end-spectral bias in visual system by measuring fMRI signals and spiking activities in macaques. The correlated end-spectral biases between the LGN and V1 suggest a subcortical source for asymmetric coding. Along the ventral pathway from V1 to V4, red bias against green peaked in V1 and then declined, whereas blue bias against yellow showed an increasing trend. The feedforward and recurrent modifications of end-spectral bias were further revealed by dynamic causal modeling analysis. Moreover, we found that the strongest end-spectral bias in V1 was in layer 4C[Formula: see text]. Our results suggest that end-spectral bias already exists in the LGN and is transmitted to V1 mainly through the parvocellular pathway, then embellished by cortical processing.
Collapse
Affiliation(s)
- Yujie Wu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Minghui Zhao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haoyun Deng
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tian Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yumeng Xin
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weifeng Dai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Jiancao Huang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Tingting Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Xiaowen Sun
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Ning Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dajun Xing
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
5
|
Khadir A, Maghareh M, Sasani Ghamsari S, Beigzadeh B. Brain activity characteristics of RGB stimulus: an EEG study. Sci Rep 2023; 13:18988. [PMID: 37923926 PMCID: PMC10624840 DOI: 10.1038/s41598-023-46450-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023] Open
Abstract
The perception of color is a fundamental cognitive feature of our psychological experience, with an essential role in many aspects of human behavior. Several studies used magnetoencephalography, functional magnetic resonance imaging, and electroencephalography (EEG) approaches to investigate color perception. Their methods includes the event-related potential and spectral power activity of different color spaces, such as Derrington-Krauskopf-Lennie and red-green-blue (RGB), in addition to exploring the psychological and emotional effects of colors. However, we found insufficient studies in RGB space that considered combining all aspects of EEG signals. Thus, in the present study, focusing on RGB stimuli and using a data-driven approach, we investigated significant differences in the perception of colors. Our findings show that beta oscillation of green compared to red and blue colors occurs in early sensory periods with a latency shifting in the occipital region. Furthermore, in the occipital region, the theta power of the blue color decreases noticeably compared to the other colors. Concurrently, in the prefrontal area, we observed an increase in phase consistency in response to the green color, while the blue color showed a decrease. Therefore, our results can be used to interpret the brain activity mechanism of color perception in RGB color space and to choose suitable colors for more efficient performance in cognitive activities.
Collapse
Affiliation(s)
- Alireza Khadir
- Biomechatronics and Cognitive Engineering Research Lab, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Mohammad Maghareh
- Biomechatronics and Cognitive Engineering Research Lab, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Shamim Sasani Ghamsari
- Biomechatronics and Cognitive Engineering Research Lab, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Borhan Beigzadeh
- Biomechatronics and Cognitive Engineering Research Lab, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran.
| |
Collapse
|
6
|
Schneider M, Tzanou A, Uran C, Vinck M. Cell-type-specific propagation of visual flicker. Cell Rep 2023; 42:112492. [PMID: 37195864 PMCID: PMC7617239 DOI: 10.1016/j.celrep.2023.112492] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/10/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
Rhythmic flicker stimulation has gained interest as a treatment for neurodegenerative diseases and as a method for frequency tagging neural activity. Yet, little is known about the way in which flicker-induced synchronization propagates across cortical levels and impacts different cell types. Here, we use Neuropixels to record from the lateral geniculate nucleus (LGN), the primary visual cortex (V1), and CA1 in mice while presenting visual flicker stimuli. LGN neurons show strong phase locking up to 40 Hz, whereas phase locking is substantially weaker in V1 and is absent in CA1. Laminar analyses reveal an attenuation of phase locking at 40 Hz for each processing stage. Gamma-rhythmic flicker predominantly entrains fast-spiking interneurons. Optotagging experiments show that these neurons correspond to either parvalbumin (PV+) or narrow-waveform somatostatin (Sst+) neurons. A computational model can explain the observed differences based on the neurons' capacitative low-pass filtering properties. In summary, the propagation of synchronized activity and its effect on distinct cell types strongly depend on its frequency.
Collapse
Affiliation(s)
- Marius Schneider
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany; Donders Centre for Neuroscience, Department of Neuroinformatics, Radboud University Nijmegen, 6525 Nijmegen, the Netherlands.
| | - Athanasia Tzanou
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany
| | - Cem Uran
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany; Donders Centre for Neuroscience, Department of Neuroinformatics, Radboud University Nijmegen, 6525 Nijmegen, the Netherlands
| | - Martin Vinck
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany; Donders Centre for Neuroscience, Department of Neuroinformatics, Radboud University Nijmegen, 6525 Nijmegen, the Netherlands.
| |
Collapse
|
7
|
Park Y, Lee K, Park J, Bae JB, Kim SS, Kim DW, Woo SJ, Yoo S, Kim KW. Optimal flickering light stimulation for entraining gamma rhythms in older adults. Sci Rep 2022; 12:15550. [PMID: 36114215 PMCID: PMC9481621 DOI: 10.1038/s41598-022-19464-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 08/30/2022] [Indexed: 11/09/2022] Open
Abstract
With aging, optimal parameters of flickering light stimulation (FLS) for gamma entrainment may change in the eyes and brain. We investigated the optimal FLS parameters for gamma entrainment in 35 cognitively normal old adults by comparing event-related synchronization (ERS) and spectral Granger causality (sGC) of entrained gamma rhythms between different luminance intensities, colors, and flickering frequencies of FLSs. ERS entrained by 700 cd/m2 FLS and 32 Hz or 34 Hz FLSs was stronger than that entrained by 400 cd/m2 at Pz (p < 0.01) and 38 Hz or 40 Hz FLSs, respectively, at both Pz (p < 0.05) and Fz (p < 0.01). Parieto-occipital-to-frontotemporal connectivities of gamma rhythm entrained by 700 cd/m2 FLS and 32 Hz or 34 Hz FLSs were also stronger than those entrained by 400 cd/m2 at Pz (p < 0.01) and 38 Hz or 40 Hz FLSs, respectively (p < 0.001). ERS and parieto-occipital-to-frontotemporal connectivities of entrained gamma rhythms did not show significant difference between white and red lights. Adverse effects were comparable between different parameters. In older adults, 700 cd/m2 FLS at 32 Hz or 34 Hz can entrain a strong gamma rhythm in the whole brain with tolerable adverse effects.
Collapse
Affiliation(s)
- Yeseung Park
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Kanghee Lee
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jaehyeok Park
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jong Bin Bae
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang-Su Kim
- Department of Biomedical Engineering, Chonnam National University, Yeosu, Republic of Korea
| | - Do-Won Kim
- Department of Biomedical Engineering, Chonnam National University, Yeosu, Republic of Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Ophthalmology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Seunghyup Yoo
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ki Woong Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea. .,Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, Republic of Korea. .,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Li Y, Bosking W, Beauchamp MS, Sheth SA, Yoshor D, Bartoli E, Foster BL. Biased Orientation and Color Tuning of the Human Visual Gamma Rhythm. J Neurosci 2022; 42:1054-1067. [PMID: 34965979 PMCID: PMC8824502 DOI: 10.1523/jneurosci.1085-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/19/2021] [Accepted: 12/15/2021] [Indexed: 11/21/2022] Open
Abstract
Narrowband γ oscillations (NBG: ∼20-60 Hz) in visual cortex reflect rhythmic fluctuations in population activity generated by underlying circuits tuned for stimulus location, orientation, and color. A variety of theories posit a specific role for NBG in encoding and communicating this information within visual cortex. However, recent findings suggest a more nuanced role for NBG, given its dependence on certain stimulus feature configurations, such as coherent-oriented edges and specific hues. Motivated by these factors, we sought to quantify the independent and joint tuning properties of NBG to oriented and color stimuli using intracranial recordings from the human visual cortex (male and female). NBG was shown to display a cardinal orientation bias (horizontal) and also an end- and mid-spectral color bias (red/blue and green). When jointly probed, the cardinal bias for orientation was attenuated and an end-spectral preference for red and blue predominated. This loss of mid-spectral tuning occurred even for recording sites showing large responses to uniform green stimuli. Our results demonstrate the close, yet complex, link between the population dynamics driving NBG oscillations and known feature selectivity biases for orientation and color within visual cortex. Such a bias in stimulus tuning imposes new constraints on the functional significance of the visual γ rhythm. More generally, these biases in population electrophysiology will need to be considered in experiments using orientation or color features to examine the role of visual cortex in other domains, such as working memory and decision-making.SIGNIFICANCE STATEMENT Oscillations in electrophysiological activity occur in visual cortex in response to stimuli that strongly drive the orientation or color selectivity of visual neurons. The significance of this induced "γ rhythm" to brain function remains unclear. Answering this question requires understanding how and why some stimuli can reliably generate oscillatory γ activity while others do not. We examined how different orientations and colors independently and jointly modulate γ oscillations in the human brain. Our data show that γ oscillations are greatest for certain orientations and colors that reflect known response biases in visual cortex. Such findings complicate the functional significance of γ oscillations but open new avenues for linking circuits to population dynamics in visual cortex.
Collapse
Affiliation(s)
- Ye Li
- Department of Neurosurgery
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - William Bosking
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Michael S Beauchamp
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Sameer A Sheth
- Department of Neurosurgery
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Daniel Yoshor
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | | - Brett L Foster
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|