1
|
Barbier M, Rajamani KT, Netser S, Wagner S, Harony‐Nicolas H. Altered Neural Activity in the Mesoaccumbens Pathway Underlies Impaired Social Reward Processing in Shank3-Deficient Rats. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414813. [PMID: 40085501 PMCID: PMC12061274 DOI: 10.1002/advs.202414813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/23/2024] [Indexed: 03/16/2025]
Abstract
Social behaviors are crucial for human connection and belonging, often impacted by conditions like Autism Spectrum Disorder (ASD). The mesoaccumbens pathway (ventral tegmental area (VTA) to the nucleus accumbense (NAc)) plays a pivotal role in social behavior and is implicated in ASD. However, the impact of ASD-related mutations on social reward processing remains insufficiently explored. This study focuses on the Shank3 mutation, associated with a rare genetic condition and linked to ASD, examining its influence on the mesoaccumbens pathway during behavior, using the Shank3-deficient rat model. Our findings indicate that Shank3-deficient rats exhibit atypical social interactions, associated with altered neuronal activity of VTA dopaminergic and GABAergic neurons and reduced dopamine release in the NAc. Moreover, they demonstrate that manipulating VTA neuronal activity can normalize this behavior, providing insights into the effects of Shank3 mutations on social reward processing and identifying a potential neural pathway for intervention.
Collapse
Affiliation(s)
- Marie Barbier
- Department of PsychiatryNew YorkNYUSA
- Seaver Autism Center for Research and TreatmentNew YorkNY10029USA
- Department of NeuroscienceNew YorkNY10029USA
- Friedman Brain InstituteNew YorkNY10029USA
| | - Keerthi Thirtamara Rajamani
- Department of PsychiatryNew YorkNYUSA
- Seaver Autism Center for Research and TreatmentNew YorkNY10029USA
- Department of NeuroscienceNew YorkNY10029USA
- Friedman Brain InstituteNew YorkNY10029USA
- Present address:
Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research InstituteWeill Cornell MedicineNew YorkNY10021USA
| | - Shai Netser
- Sagol Department of NeurobiologyFaculty of Natural SciencesUniversity of HaifaHaifa31905Israel
| | - Shlomo Wagner
- Sagol Department of NeurobiologyFaculty of Natural SciencesUniversity of HaifaHaifa31905Israel
| | - Hala Harony‐Nicolas
- Department of PsychiatryNew YorkNYUSA
- Seaver Autism Center for Research and TreatmentNew YorkNY10029USA
- Department of NeuroscienceNew YorkNY10029USA
- Friedman Brain InstituteNew YorkNY10029USA
- Mindich Child Health and Development Institute at the Icahn School of Medicine at Mount SinaiNew YorkNY10029USA
| |
Collapse
|
2
|
Oriol L, Chao M, Kollman GJ, Dowlat DS, Singhal SM, Steinkellner T, Hnasko TS. Ventral tegmental area interneurons revisited: GABA and glutamate projection neurons make local synapses. eLife 2025; 13:RP100085. [PMID: 40238649 PMCID: PMC12002793 DOI: 10.7554/elife.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
The ventral tegmental area (VTA) contains projection neurons that release the neurotransmitters dopamine, GABA, and/or glutamate from distal synapses. VTA also contains GABA neurons that synapse locally on to dopamine neurons, synapses widely credited to a population of so-called VTA interneurons. Interneurons in cortex, striatum, and elsewhere have well-defined morphological features, physiological properties, and molecular markers, but such features have not been clearly described in VTA. Indeed, there is scant evidence that local and distal synapses originate from separate populations of VTA GABA neurons. In this study, we tested whether several markers expressed in non-dopamine VTA neurons are selective markers of interneurons, defined as neurons that synapse locally but not distally. Challenging previous assumptions, we found that VTA neurons genetically defined by expression of parvalbumin, somatostatin, neurotensin, or Mu-opioid receptor project to known VTA targets including nucleus accumbens, ventral pallidum, lateral habenula, and prefrontal cortex. Moreover, we provide evidence that VTA GABA and glutamate projection neurons make functional inhibitory or excitatory synapses locally within VTA. These findings suggest that local collaterals of VTA projection neurons could mediate functions prior attributed to VTA interneurons. This study underscores the need for a refined understanding of VTA connectivity to explain how heterogeneous VTA circuits mediate diverse functions related to reward, motivation, or addiction.
Collapse
Affiliation(s)
- Lucie Oriol
- Department of Neurosciences, University of California, San DiegoSan DiegoUnited States
| | - Melody Chao
- Department of Neurosciences, University of California, San DiegoSan DiegoUnited States
| | - Grace J Kollman
- Department of Neurosciences, University of California, San DiegoSan DiegoUnited States
| | - Dina S Dowlat
- Department of Neurosciences, University of California, San DiegoSan DiegoUnited States
| | - Sarthak M Singhal
- Department of Neurosciences, University of California, San DiegoSan DiegoUnited States
| | - Thomas Steinkellner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - Thomas S Hnasko
- Department of Neurosciences, University of California, San DiegoSan DiegoUnited States
- Research Service VA San Diego Healthcare SystemSan DiegoUnited States
| |
Collapse
|
3
|
Jehl J, Ciscato M, Vicq E, Guyon N, Dejean de la Batie G, Mondoloni S, Frangieh J, Mohayyaei M, Nguyen C, Pons S, Maskos U, Hardelin JP, Marti F, Corringer PJ, Faure P, Mourot A. The interpeduncular nucleus blunts the rewarding effect of nicotine. Neuron 2025:S0896-6273(25)00255-7. [PMID: 40262615 DOI: 10.1016/j.neuron.2025.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/22/2025] [Accepted: 03/31/2025] [Indexed: 04/24/2025]
Abstract
Nicotine stimulates ventral tegmental area (VTA) dopaminergic neurons, producing a rewarding effect that drives tobacco consumption. The interpeduncular nucleus (IPN) is thought to become engaged at high nicotine doses to limit drug intake, but its response dynamics are unknown. We developed a chemogenetic approach using a "suicide" antagonist that selectively attaches to designer β4 nicotinic acetylcholine receptors (nAChRs) in genetically modified mice, enabling sustained and pharmacologically specific antagonism. Local infusion in the IPN revealed that nicotine, even at low doses, simultaneously activates and inhibits two distinct populations of IPN neurons, with β4-containing nAChRs mediating only the activation response. Blocking nicotine-induced IPN activation enhanced VTA responses and increased the drug's rewarding effect in a conditioned place preference paradigm. Moreover, optogenetic inhibition of IPN projections to the laterodorsal tegmental nucleus (LDTg) replicated these behavioral effects. Our findings indicate that the IPN acts as a regulatory brake on the nicotine reward circuit via the LDTg.
Collapse
Affiliation(s)
- Joachim Jehl
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France; Sorbonne Université, Inserm, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), 75005 Paris, France
| | - Maria Ciscato
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Eléonore Vicq
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France; Sorbonne Université, Inserm, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), 75005 Paris, France
| | - Nicolas Guyon
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France
| | | | - Sarah Mondoloni
- Sorbonne Université, Inserm, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), 75005 Paris, France
| | - Jacinthe Frangieh
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors Unit, Paris, France
| | - Monir Mohayyaei
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Claire Nguyen
- Sorbonne Université, Inserm, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), 75005 Paris, France
| | - Stéphanie Pons
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Integrative Neurobiology of Cholinergic Systems, Paris, France
| | - Uwe Maskos
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Integrative Neurobiology of Cholinergic Systems, Paris, France
| | - Jean-Pierre Hardelin
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France; Sorbonne Université, Inserm, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), 75005 Paris, France
| | - Fabio Marti
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France; Sorbonne Université, Inserm, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), 75005 Paris, France
| | - Pierre-Jean Corringer
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors Unit, Paris, France
| | - Philippe Faure
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France; Sorbonne Université, Inserm, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), 75005 Paris, France
| | - Alexandre Mourot
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France; Sorbonne Université, Inserm, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), 75005 Paris, France.
| |
Collapse
|
4
|
Ratna DD, Francis TC. Extrinsic and intrinsic control of striatal cholinergic interneuron activity. Front Mol Neurosci 2025; 18:1528419. [PMID: 40018010 PMCID: PMC11865219 DOI: 10.3389/fnmol.2025.1528419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/31/2025] [Indexed: 03/01/2025] Open
Abstract
The striatum is an integrated component of the basal ganglia responsible for associative learning and response. Besides the presence of the most abundant γ-aminobutyric acid (GABA-ergic) medium spiny neurons (MSNs), the striatum also contains distributed populations of cholinergic interneurons (ChIs), which bidirectionally communicate with many of these neuronal subtypes. Despite their sparse distribution, ChIs provide the largest source of acetylcholine (ACh) to striatal cells, have a prominent level of arborization and activity, and are potent modulators of striatal output and play prominent roles in plasticity underlying associative learning and reinforcement. Deviations from this tonic activity, including phasic bursts or pauses caused by region-selective excitatory input, neuromodulator, or neuropeptide release can exert strong influences on intrinsic activity and synaptic plasticity via diverse receptor signaling. Recent studies and new tools have allowed improved identification of factors driving or suppressing cholinergic activity, including peptides. This review aims to outline our current understanding of factors that control tonic and phasic ChI activity, specifically focusing on how neuromodulators and neuropeptides interact to facilitate or suppress phasic ChI responses underlying learning and plasticity.
Collapse
Affiliation(s)
| | - Tanner Chase Francis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
5
|
Oriol L, Chao M, Kollman GJ, Dowlat DS, Singhal SM, Steinkellner T, Hnasko TS. Ventral tegmental area interneurons revisited: GABA and glutamate projection neurons make local synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.07.597996. [PMID: 38895464 PMCID: PMC11185768 DOI: 10.1101/2024.06.07.597996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The ventral tegmental area (VTA) contains projection neurons that release the neurotransmitters dopamine, GABA, and/or glutamate from distal synapses. VTA also contains GABA neurons that synapse locally on to dopamine neurons, synapses widely credited to a population of so-called VTA interneurons. Interneurons in cortex, striatum, and elsewhere have well-defined morphological features, physiological properties, and molecular markers, but such features have not been clearly described in VTA. Indeed, there is scant evidence that local and distal synapses originate from separate populations of VTA GABA neurons. In this study we tested whether several markers expressed in non-dopamine VTA neurons are selective markers of interneurons, defined as neurons that synapse locally but not distally. Challenging previous assumptions, we found that VTA neurons genetically defined by expression of parvalbumin, somatostatin, neurotensin, or mu-opioid receptor project to known VTA targets including nucleus accumbens, ventral pallidum, lateral habenula, and prefrontal cortex. Moreover, we provide evidence that VTA GABA and glutamate projection neurons make functional inhibitory or excitatory synapses locally within VTA. These findings suggest that local collaterals of VTA projection neurons could mediate functions prior attributed to VTA interneurons. This study underscores the need for a refined understanding of VTA connectivity to explain how heterogeneous VTA circuits mediate diverse functions related to reward, motivation, or addiction.
Collapse
Affiliation(s)
- Lucie Oriol
- Department of Neurosciences, University of California, San Diego, La Jolla, United States
| | - Melody Chao
- Department of Neurosciences, University of California, San Diego, La Jolla, United States
| | - Grace J Kollman
- Department of Neurosciences, University of California, San Diego, La Jolla, United States
| | - Dina S Dowlat
- Department of Neurosciences, University of California, San Diego, La Jolla, United States
| | - Sarthak M Singhal
- Department of Neurosciences, University of California, San Diego, La Jolla, United States
| | - Thomas Steinkellner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Thomas S Hnasko
- Department of Neurosciences, University of California, San Diego, La Jolla, United States
- Research Service VA San Diego Healthcare System, San Diego, United States
| |
Collapse
|
6
|
Higgs MH, Beckstead MJ. Impact of Unitary Synaptic Inhibition on Spike Timing in Ventral Tegmental Area Dopamine Neurons. eNeuro 2024; 11:ENEURO.0203-24.2024. [PMID: 38969500 PMCID: PMC11287791 DOI: 10.1523/eneuro.0203-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024] Open
Abstract
Midbrain dopamine neurons receive convergent synaptic input from multiple brain areas, which perturbs rhythmic pacemaking to produce the complex firing patterns observed in vivo. This study investigated the impact of single and multiple inhibitory inputs on ventral tegmental area (VTA) dopamine neuron firing in mice of both sexes using novel experimental measurements and modeling. We first measured unitary inhibitory postsynaptic currents produced by single axons using both minimal electrical stimulation and minimal optical stimulation of rostromedial tegmental nucleus and ventral pallidum afferents. We next determined the phase resetting curve, the reversal potential for GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs), and the average interspike membrane potential trajectory during pacemaking. We combined these data in a phase oscillator model of a VTA dopamine neuron, simulating the effects of unitary inhibitory postsynaptic conductances (uIPSGs) on spike timing and rate. The effect of a uIPSG on spike timing was predicted to vary according to its timing within the interspike interval or phase. Simulations were performed to predict the pause duration resulting from the synchronous arrival of multiple uIPSGs and the changes in firing rate and regularity produced by asynchronous uIPSGs. The model data suggest that asynchronous inhibition is more effective than synchronous inhibition, because it tends to hold the neuron at membrane potentials well positive to the IPSC reversal potential. Our results indicate that small fluctuations in the inhibitory synaptic input arriving from the many afferents to each dopamine neuron are sufficient to produce highly variable firing patterns, including pauses that have been implicated in reinforcement.
Collapse
Affiliation(s)
- Matthew H Higgs
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Michael J Beckstead
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| |
Collapse
|
7
|
Barbier M, Thirtamara Rajamani K, Netser S, Wagner S, Harony-Nicolas H. Altered neural activity in the mesoaccumbens pathway underlies impaired social reward processing in Shank3-deficient rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570134. [PMID: 38106179 PMCID: PMC10723340 DOI: 10.1101/2023.12.05.570134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Social behaviors are crucial for human connection and belonging, often impacted in conditions like Autism Spectrum Disorder (ASD). The mesoaccumbens pathway (VTA and NAc) plays a pivotal role in social behavior and is implicated in ASD. However, the impact of ASD-related mutations on social reward processing remains insufficiently explored. This study focuses on the Shank3 mutation, associated with a rare genetic condition and linked to ASD, examining its influence on the mesoaccumbens pathway during behavior, using the Shank3-deficient rat model. Our findings indicate that Shank3-deficient rats exhibit atypical social interactions and have difficulty adjusting behavior based on reward values, associated with modified neuronal activity of VTA dopaminergic and GABAergic neurons and reduced dopamine release in the NAc. Moreover, we demonstrate that manipulating VTA neuronal activity can normalize this behavior, providing insights into the effects of Shank3 mutations on social reward and behavior, and identify a potential neural pathway for intervention.
Collapse
Affiliation(s)
- Marie Barbier
- Department of Psychiatry, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Seaver Autism Center for Research and Treatment, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Department of Neuroscience, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Friedman Brain Institute, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Keerthi Thirtamara Rajamani
- Department of Psychiatry, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Seaver Autism Center for Research and Treatment, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Department of Neuroscience, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Friedman Brain Institute, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Shai Netser
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Hala Harony-Nicolas
- Department of Psychiatry, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Seaver Autism Center for Research and Treatment, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Department of Neuroscience, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Friedman Brain Institute, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Mindich Child Health and Development Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
8
|
Blaess S, Krabbe S. Cell type specificity for circuit output in the midbrain dopaminergic system. Curr Opin Neurobiol 2023; 83:102811. [PMID: 37972537 DOI: 10.1016/j.conb.2023.102811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/14/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
Midbrain dopaminergic neurons are a relatively small group of neurons in the mammalian brain controlling a wide range of behaviors. In recent years, increasingly sophisticated tracing, imaging, transcriptomic, and machine learning approaches have provided substantial insights into the anatomical, molecular, and functional heterogeneity of dopaminergic neurons. Despite this wealth of new knowledge, it remains unclear whether and how the diverse features defining dopaminergic subclasses converge to delineate functional ensembles within the dopaminergic system. Here, we review recent studies investigating various aspects of dopaminergic heterogeneity and discuss how development, behavior, and disease influence subtype characteristics. We then outline what further approaches could be pursued to gain a more inclusive picture of dopaminergic diversity, which could be crucial to understanding the functional architecture of this system.
Collapse
Affiliation(s)
- Sandra Blaess
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany.
| | - Sabine Krabbe
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany.
| |
Collapse
|
9
|
Lai N, Cheng H, Li Z, Wang X, Ruan Y, Qi Y, Yang L, Fei F, Dai S, Chen L, Zheng Y, Xu C, Fang J, Wang S, Chen Z, Wang Y. Interictal-period-activated neuronal ensemble in piriform cortex retards further seizure development. Cell Rep 2022; 41:111798. [PMID: 36516780 DOI: 10.1016/j.celrep.2022.111798] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/23/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
Epileptic networks are characterized as having two states, seizures or more prolonged interictal periods. However, cellular mechanisms underlying the contribution of interictal periods to ictal events remain unclear. Here, we use an activity-dependent labeling technique combined with genetically encoded effectors to characterize and manipulate neuronal ensembles recruited by focal seizures (FS-Ens) and interictal periods (IP-Ens) in piriform cortex, a region that plays a key role in seizure generation. Ca2+ activities and histological evidence reveal a disjointed correlation between the two ensembles during FS dynamics. Optogenetic activation of FS-Ens promotes further seizure development, while IP-Ens protects against it. Interestingly, both ensembles are functionally involved in generalized seizures (GS) due to circuit rearrangement. IP-Ens bidirectionally modulates FS but not GS by controlling coherence with hippocampus. This study indicates that the interictal state may represent a seizure-preventing environment, and the interictal-activated ensemble may serve as a potential therapeutic target for epilepsy.
Collapse
Affiliation(s)
- Nanxi Lai
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Heming Cheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhisheng Li
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xia Wang
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yeping Ruan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yingbei Qi
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lin Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Fan Fei
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Sijie Dai
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liying Chen
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiajia Fang
- Department of Neurology, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Shuang Wang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.
| | - Yi Wang
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.
| |
Collapse
|