1
|
de Souza ALG, Alves ALR, Martinez CG, de Sousa JC, Kurtenbach E. Biomarkers of Skeletal Muscle Atrophy Based on Atrogenes Evaluation: A Systematic Review and Meta-Analysis Study. Int J Mol Sci 2025; 26:3516. [PMID: 40331994 PMCID: PMC12026492 DOI: 10.3390/ijms26083516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 05/08/2025] Open
Abstract
Muscle atrophy leads to decreased muscle mass, weakness, inactivity, and increased mortality. E3 ubiquitin ligases, key regulators of protein degradation via the ubiquitin-proteasome system, play a critical role in atrophic mechanisms. This meta-analysis followed Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, and its objective was to evaluate the association between E3 ligases Muscle Atrophy F-box (MAFbx)/Atrogin-1 (Fbxo32) and Muscle RING-finger protein 1 (MuRF-1) (TRIM63) E3 ligase mRNA levels, reductions in skeletal muscle CSA measures, and atrophy conditions. We examined papers published on PubMed®, Scopus, and Web of Science that studied E3 ligase gene expression signatures for Fbxo32 (MAFbx/Atrogin-1) and Trim63 (MuRF1) in different types of muscle atrophy and hypertrophy murine models. Twenty-nine studies selected by two independent raters were analyzed. Standardized mean differences (SMDs)/effect sizes (ESs) and 95% confidence intervals (CIs) were calculated for the outcomes using fixed-effects models. We found that 6- and 4.8-fold upregulation, respectively, of Fbxo32 and Trim63 was sufficient to reduce the ES to -3.89 (95% CI: -4.45 to -3.32) for the muscle fiber cross-sectional area and the development of skeletal muscle atrophy. I² and Q test statistics did not indicate heterogeneous data. There was a low probability of bias after both the funnel plot and Egger's test analyses. These results were sustained independently of the atrophic model and muscle type. Therefore, the magnitude of the increase in muscle Fbxo32 and Trim63 mRNA is a feasible, reliable molecular marker for skeletal muscle atrophy in mice. The next step for the Ubiquitin-proteasome system (UPS) field involves elucidating the targets of E3 ligases, paving the way for diagnostic and treatment applications in humans.
Collapse
Affiliation(s)
- André Luiz Gouvêa de Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Anna Luisa Rosa Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Camila Guerra Martinez
- Biosciences Applied to Health, Campus Renascença, Universidade Ceuma, São Luis 65075-120, MA, Brazil
| | - Júlia Costa de Sousa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Eleonora Kurtenbach
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
2
|
Tanzadehpanah H, Nobari S, Hoseini AJ, Ghotbani F, Mehrabzadeh M, Jalili shahri J, Alipour A, Sheykhhasan M, Manoochehri H, Darroudi S, Mahaki H. Effect of platelet-rich plasma on angiogenic and regenerative properties in patients with critical limb ischemia. Regen Ther 2025; 28:517-526. [PMID: 39995496 PMCID: PMC11848493 DOI: 10.1016/j.reth.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/01/2025] [Accepted: 01/10/2025] [Indexed: 02/26/2025] Open
Abstract
Platelet-rich plasma (PRP) is a promising regenerative therapy due to its simplicity, clinical application, safety, and ability to promote angiogenesis. It utilizes various angiogenic growth factors in platelets, including platelet-derived growth factor (PDGF), transforming growth factor-β (TGF-β), insulin-like growth factor-1 (IGF-1), vascular endothelial growth factor (VEGF), and epidermal growth factor (EGF), which are integral to the tissue repair. Critical limb ischemia (CLI) is a major symptom of peripheral arterial disease (PAD), and PRP therapy aims to improve blood circulation to the distal limb through the development of blood vessels. This review focuses on the extensive research on the molecular mechanisms of PRPs in treating CLI. A comprehensive search was conducted on Web of Science, PubMed, Google Scholar, and Scopus to find studies published during PRP therapy in critical limb ischemia up to June 2024. Current studies reveal that PRP composition varies by case, affecting preparation methods, storage duration, storage methods, and interaction with other materials. PRP-derived growth factors have shown promising results in treating CLI, but well-controlled human research is scarce despite positive animal studies.
Collapse
Affiliation(s)
- Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Basic Science Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sima Nobari
- Deputy of Health, Iran University of Medical Science, Tehran, Iran
| | | | - Farzaneh Ghotbani
- Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Mehrabzadeh
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamal Jalili shahri
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirreza Alipour
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Sheykhhasan
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Hamed Manoochehri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Susan Darroudi
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanie Mahaki
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Ren T, Xu M, Lin W, Luo W, Zhang X. Transcriptome sequencing reveals the potential mechanisms of dietary lutein regulation on chicken leg muscle development. Poult Sci 2024; 103:104265. [PMID: 39293263 PMCID: PMC11426042 DOI: 10.1016/j.psj.2024.104265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/03/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024] Open
Abstract
Lutein is an antioxidant that can indicate the oxidative status of organisms through its coloration and may be involved in the development process of chicken skeletal muscle. In this study, after feeding Nanhai Yellow Chickens with lutein-containing feed for 21 d, the lutein group significantly increased the muscle fiber diameter and decreased the fiber density in the chicken's leg muscles compared to the control group. To elucidate the potential regulatory mechanisms by which lutein is involved in muscle development, RNA-seq was used to detect changes in gene expression in chicken leg muscle tissue. After data analysis, a total of 249 significantly differentially expressed genes (DEG) were identified, including TGF-β superfamily (MSTN and TGFB1) and nonreceptor tyrosine kinase c-Src (SRC). Results from GO and KEGG analysis showed that the DEGs were enriched in GO terms such as positive regulation of the ERK1/ERK2 cascade and negative regulation of myoblast differentiation, as well as signaling pathways including the Toll-like receptor signaling pathway and the MAPK signaling pathway. These significantly enriched GO terms and pathways are closely related to muscle development, suggesting that lutein may play an important role in the process of chicken muscle development. This study provides insights into the regulatory mechanisms of dietary lutein on chicken muscle development.
Collapse
Affiliation(s)
- Tuanhui Ren
- Department of Animal Genetics, College of Animal Science, Breeding and Reproduction, South China Agricultural University, Guangzhou, 510642, China; Guangdong Key Laboratory of Genome and Molecular Breeding of Agricultural Animals and Key Laboratory of Chicken Genetic Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Meng Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Wujian Lin
- Department of Animal Genetics, College of Animal Science, Breeding and Reproduction, South China Agricultural University, Guangzhou, 510642, China; Guangdong Key Laboratory of Genome and Molecular Breeding of Agricultural Animals and Key Laboratory of Chicken Genetic Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Wen Luo
- Department of Animal Genetics, College of Animal Science, Breeding and Reproduction, South China Agricultural University, Guangzhou, 510642, China; Guangdong Key Laboratory of Genome and Molecular Breeding of Agricultural Animals and Key Laboratory of Chicken Genetic Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- Department of Animal Genetics, College of Animal Science, Breeding and Reproduction, South China Agricultural University, Guangzhou, 510642, China; Guangdong Key Laboratory of Genome and Molecular Breeding of Agricultural Animals and Key Laboratory of Chicken Genetic Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Shi A, He C, Otten K, Wu G, Forouzanfar T, Wüst RCI, Jaspers RT. Reduced myotube diameter induced by combined inhibition of transforming growth factor-β type I receptors Acvr1b and Tgfbr1 is associated with enhanced β1-syntrophin expression. J Cell Physiol 2024; 239:e31418. [PMID: 39164996 PMCID: PMC11649968 DOI: 10.1002/jcp.31418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
Simultaneous inhibition of transforming growth factor-β (TGF-β) type I receptors Acvr1b and Tgfbr1 signalling has been associated with excessive skeletal muscle hypertrophy in vivo. However, it remains unclear whether the increased muscle mass in vivo is a direct result of inhibition of intracellular TGF-β signalling or whether this is an indirect effect of an altered extracellular anabolic environment. Here, we tested whether individual or simultaneous knockdown of TGF-β type I receptors in C2C12 myotubes was sufficient to induce muscle hypertrophy. The expression levels of TGF-β type I receptors Acvr1b and Tgfbr1 in myotubes were knocked down individually or in combination in the absence or presence of TGF-β1 and myostatin. Knocking down either Acvr1b or Tgfbr1 did not significantly change cell phenotype. Unexpectedly, simultaneous knockdown of both receptors reduced C2C12 myotube diameter, mRNA expression levels of Hgf, Ccn2 and Mymx with or without TGF-β1 and myostatin administration. In spite of decreased phosphorylation of Smad2/3, phosphorylation of P70S6K was reduced. In addition, the gene expression level of β1-syntrophin (Sntb1), which encodes a protein associated with the dystrophin-glycoprotein complex, was increased. Parallel experiments where Sntb1 gene expression was reduced showed an increase in myotube diameter and fusion of C2C12 myoblasts. Together, these results indicate that the knockdown of both TGF-β type I receptors reduced myotube diameter. This atrophic effect was attributed to reduced protein synthesis signalling and an increased expression of β1-syntrophin. These results have implications for our fundamental understanding of how TGF-β signalling regulates skeletal muscle size.
Collapse
Affiliation(s)
- Andi Shi
- Laboratory for Myology, Department of Human Movement SciencesFaculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Department of ProsthodonticsAffiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and ReconstructionGuangzhouChina
| | - Chuqi He
- Laboratory for Myology, Department of Human Movement SciencesFaculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - Kirsten Otten
- Laboratory for Myology, Department of Human Movement SciencesFaculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - Gang Wu
- Department of Oral Cell BiologyAcademic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU)AmsterdamThe Netherlands
| | - Tymour Forouzanfar
- Department of Oral Cell BiologyAcademic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU)AmsterdamThe Netherlands
- Department of Oral and Maxillofacial SurgeryLeiden University Medical CenterLeidenThe Netherlands
| | - Rob C. I. Wüst
- Laboratory for Myology, Department of Human Movement SciencesFaculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - Richard T. Jaspers
- Laboratory for Myology, Department of Human Movement SciencesFaculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Department of ProsthodonticsAffiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and ReconstructionGuangzhouChina
| |
Collapse
|
5
|
Qiao ZZ, Zang MX, Zhang Y, Wang P, Li XY, Song X, Zhang CJ, Klinger FG, Ge W, Shen W, Cheng SF. LH promotes the proliferation of porcine primordial germ cell-like cells (pPGCLCs) by regulating the ceRNA network related to the TGF-β signaling pathway. Int J Biol Macromol 2024; 280:135984. [PMID: 39326611 DOI: 10.1016/j.ijbiomac.2024.135984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/23/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Primordial germ cells (PGCs), as the precursors of gametes found in early embryos, provide a new direction for solving the problem of reproductive disorders. In vitro, conversion of adult stem cells (ASCs) into primordial germ cell-like cells (PGCLCs) is feasible. The means of increasing PGCLCs number in vitro has been a focus of recent stem cell research. In this study, we found that luteinizing hormone (LH) could promote porcine PGCLCs (pPGCLCs) proliferation. To investigate the proliferation regulatory network, whole transcriptome sequencing technology was employed. Results showed that the TGF-β signaling pathway played a key role. In addition, we found that TGFβR1 and SMAD4, TGF-β signaling pathway-related genes, were significantly upregulated after LH treatment. Subsequently, we predicted their target microRNAs (miRNAs) and long non-coding RNAs (lncRNAs): ssc-miR-128, ssc-miR-146b, ssc-miR-361-3p, MSTRG.11473, MSTRG.11475, MSTRG.11553, and MSTRG.11554, and constructed the competitive endogenous RNAs (ceRNA) network. Finally, to further verify the ceRNA network, the miRNA-inhibitors were transfected into cells. RT-qPCR results indicated a significant increase in the expression of MSTRG.11473, MSTRG.11475, MSTRG.11553, MSTRG.11554, TGFβR1, and SMAD4 compared to the negative control (NC) group. In conclusion, these results highlight that LH could regulate the pPGCLCs proliferation by modulating the expression of TGF-β signaling pathway-related ncRNAs.
Collapse
Affiliation(s)
- Zhan-Zhong Qiao
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ming-Xin Zang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ying Zhang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ping Wang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiao-Ya Li
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xin Song
- Jinxiang County Agriculture and Rural Bureau, Jining 272200, China
| | - Chun-Jie Zhang
- Wudi Animal Husbandry and Veterinary Service Management Center of Binzhou City, Binzhou 256600, China
| | | | - Wei Ge
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Shun-Feng Cheng
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
6
|
Granados A, Zamperoni M, Rapone R, Moulin M, Boyarchuk E, Bouyioukos C, Del Maestro L, Joliot V, Negroni E, Mohamed M, Piquet S, Bigot A, Le Grand F, Albini S, Ait-Si-Ali S. SETDB1 modulates the TGFβ response in Duchenne muscular dystrophy myotubes. SCIENCE ADVANCES 2024; 10:eadj8042. [PMID: 38691608 PMCID: PMC11062573 DOI: 10.1126/sciadv.adj8042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/28/2024] [Indexed: 05/03/2024]
Abstract
Overactivation of the transforming growth factor-β (TGFβ) signaling in Duchenne muscular dystrophy (DMD) is a major hallmark of disease progression, leading to fibrosis and muscle dysfunction. Here, we investigated the role of SETDB1 (SET domain, bifurcated 1), a histone lysine methyltransferase involved in muscle differentiation. Our data show that, following TGFβ induction, SETDB1 accumulates in the nuclei of healthy myotubes while being already present in the nuclei of DMD myotubes where TGFβ signaling is constitutively activated. Transcriptomics revealed that depletion of SETDB1 in DMD myotubes leads to down-regulation of TGFβ target genes coding for secreted factors involved in extracellular matrix remodeling and inflammation. Consequently, SETDB1 silencing in DMD myotubes abrogates the deleterious effect of their secretome on myoblast differentiation by impairing myoblast pro-fibrotic response. Our findings indicate that SETDB1 potentiates the TGFβ-driven fibrotic response in DMD muscles, providing an additional axis for therapeutic intervention.
Collapse
Affiliation(s)
- Alice Granados
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Maeva Zamperoni
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Roberta Rapone
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Maryline Moulin
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Ekaterina Boyarchuk
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Costas Bouyioukos
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Laurence Del Maestro
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Véronique Joliot
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Elisa Negroni
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Myriame Mohamed
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Sandra Piquet
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Anne Bigot
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Fabien Le Grand
- Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Institut NeuroMyoGène, Pathophysiology and Genetics of Neuron and Muscle (PGNM) Unit, 69008 Lyon, France
| | - Sonia Albini
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Slimane Ait-Si-Ali
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| |
Collapse
|
7
|
Cao Y, Ai Y, Zhang X, Zhang J, Long X, Zhu Y, Wang L, Gu Q, Han H. Genome-wide epigenetic dynamics during postnatal skeletal muscle growth in Hu sheep. Commun Biol 2023; 6:1077. [PMID: 37872364 PMCID: PMC10593826 DOI: 10.1038/s42003-023-05439-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/10/2023] [Indexed: 10/25/2023] Open
Abstract
Hypertrophy and fiber transformation are two prominent features of postnatal skeletal muscle development. However, the role of epigenetic modifications is less understood. ATAC-seq, whole genome bisulfite sequencing, and RNA-seq were applied to investigate the epigenetic dynamics of muscle in Hu sheep at 3 days, 3 months, 6 months, and 12 months after birth. All 6865 differentially expressed genes were assigned into three distinct tendencies, highlighting the balanced protein synthesis, accumulated immune activities, and restrained cell division in postnatal development. We identified 3742 differentially accessible regions and 11799 differentially methylated regions that were associated with muscle-development-related pathways in certain stages, like D3-M6. Transcription factor network analysis, based on genomic loci with high chromatin accessibility and low methylation, showed that ARID5B, MYOG, and ENO1 were associated with muscle hypertrophy, while NR1D1, FADS1, ZFP36L2, and SLC25A1 were associated with muscle fiber transformation. Taken together, these results suggest that DNA methylation and chromatin accessibility contributed toward regulating the growth and fiber transformation of postnatal skeletal muscle in Hu sheep.
Collapse
Affiliation(s)
- Yutao Cao
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yue Ai
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaosheng Zhang
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin, China
| | - Jinlong Zhang
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin, China
| | - Xianlei Long
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yaning Zhu
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Linli Wang
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qingyi Gu
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Hongbing Han
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China.
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China.
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China.
| |
Collapse
|
8
|
Wang Y, Lu J, Liu Y. Skeletal Muscle Regeneration in Cardiotoxin-Induced Muscle Injury Models. Int J Mol Sci 2022; 23:ijms232113380. [PMID: 36362166 PMCID: PMC9657523 DOI: 10.3390/ijms232113380] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle injuries occur frequently in daily life and exercise. Understanding the mechanisms of regeneration is critical for accelerating the repair and regeneration of muscle. Therefore, this article reviews knowledge on the mechanisms of skeletal muscle regeneration after cardiotoxin-induced injury. The process of regeneration is similar in different mouse strains and is inhibited by aging, obesity, and diabetes. Exercise, microcurrent electrical neuromuscular stimulation, and mechanical loading improve regeneration. The mechanisms of regeneration are complex and strain-dependent, and changes in functional proteins involved in the processes of necrotic fiber debris clearance, M1 to M2 macrophage conversion, SC activation, myoblast proliferation, differentiation and fusion, and fibrosis and calcification influence the final outcome of the regenerative activity.
Collapse
|
9
|
Brightwell CR, Latham CM, Thomas NT, Keeble AR, Murach KA, Fry CS. A glitch in the matrix: the pivotal role for extracellular matrix remodeling during muscle hypertrophy. Am J Physiol Cell Physiol 2022; 323:C763-C771. [PMID: 35876284 PMCID: PMC9448331 DOI: 10.1152/ajpcell.00200.2022] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 01/18/2023]
Abstract
Multinuclear muscle fibers are the most voluminous cells in skeletal muscle and the primary drivers of growth in response to loading. Outside the muscle fiber, however, is a diversity of mononuclear cell types that reside in the extracellular matrix (ECM). These muscle-resident cells are exercise-responsive and produce the scaffolding for successful myofibrillar growth. Without proper remodeling and maintenance of this ECM scaffolding, the ability to mount an appropriate response to resistance training in adult muscles is severely hindered. Complex cellular choreography takes place in muscles following a loading stimulus. These interactions have been recently revealed by single-cell explorations into muscle adaptation with loading. The intricate ballet of ECM remodeling involves collagen production from fibrogenic cells and ECM modifying signals initiated by satellite cells, immune cells, and the muscle fibers themselves. The acellular collagen-rich ECM is also a mechanical signal-transducer and rich repository of growth factors that may directly influence muscle fiber hypertrophy once liberated. Collectively, high levels of collagen expression, deposition, and turnover characterize a well-trained muscle phenotype. The purpose of this review is to highlight the most recent evidence for how the ECM and its cellular components affect loading-induced muscle hypertrophy. We also address how the muscle fiber may directly take part in ECM remodeling, and whether ECM dynamics are rate limiting for muscle fiber growth.
Collapse
Affiliation(s)
- Camille R Brightwell
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Christine M Latham
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Nicholas T Thomas
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Alexander R Keeble
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Kevin A Murach
- Department of Health, Human Performance, and Recreation, Molecular Muscle Mass Regulation Laboratory, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, Arkansas
| | - Christopher S Fry
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
10
|
Mangas A, Pérez-Serra A, Bonet F, Muñiz O, Fuentes F, Gonzalez-Estrada A, Campuzano O, Rodriguez Roca JS, Alonso-Villa E, Toro R. A microRNA Signature for the Diagnosis of Statins Intolerance. Int J Mol Sci 2022; 23:8146. [PMID: 35897722 PMCID: PMC9330734 DOI: 10.3390/ijms23158146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Atherosclerotic cardiovascular diseases (ASCVD) are the leading cause of morbidity and mortality in Western societies. Statins are the first-choice therapy for dislipidemias and are considered the cornerstone of ASCVD. Statin-associated muscle symptoms are the main reason for dropout of this treatment. There is an urgent need to identify new biomarkers with discriminative precision for diagnosing intolerance to statins (SI) in patients. MicroRNAs (miRNAs) have emerged as evolutionarily conserved molecules that serve as reliable biomarkers and regulators of multiple cellular events in cardiovascular diseases. In the current study, we evaluated plasma miRNAs as potential biomarkers to discriminate between the SI vs. non-statin intolerant (NSI) population. It is a multicenter, prospective, case-control study. A total of 179 differentially expressed circulating miRNAs were screened in two cardiovascular risk patient cohorts (high and very high risk): (i) NSI (n = 10); (ii) SI (n = 10). Ten miRNAs were identified as being overexpressed in plasma and validated in the plasma of NSI (n = 45) and SI (n = 39). Let-7c-5p, let-7d-5p, let-7f-5p, miR-376a-3p and miR-376c-3p were overexpressed in the plasma of SI patients. The receiver operating characteristic curve analysis supported the discriminative potential of the diagnosis. We propose a three-miRNA predictive fingerprint (let-7f, miR-376a-3p and miR-376c-3p) and several clinical variables (non-HDLc and years of dyslipidemia) for SI discrimination; this model achieves sensitivity, specificity and area under the receiver operating characteristic curve (AUC) of 83.67%, 88.57 and 89.10, respectively. In clinical practice, this set of miRNAs combined with clinical variables may discriminate between SI vs. NSI subjects. This multiparametric model may arise as a potential diagnostic biomarker with clinical value.
Collapse
Affiliation(s)
- Alipio Mangas
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain; (A.M.); (E.A.-V.)
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
- Lipid and Atherosclerotic Unit, Internal Medicine Department, Puerta del Mar University Hospital, 11009 Cadiz, Spain;
| | - Alexandra Pérez-Serra
- Cardiology Service, Hospital Josep Trueta, University of Girona, 17007 Girona, Spain; (A.P.-S.); (O.C.)
- Cardiovascular Genetics Center, University of Girona-IDIBGI, 17007 Girona, Spain
| | - Fernando Bonet
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain; (A.M.); (E.A.-V.)
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
| | - Ovidio Muñiz
- UCERV, UCAMI, Servicio de Medicina Interna, Hospital Virgen del Rocío, 41013 Seville, Spain; (O.M.); (A.G.-E.)
| | - Francisco Fuentes
- Lipid and Atherosclerosis Unit, IMIBIC/Hospital Universitario Reina Sofía/Universidad de Córdoba, 14004 Córdoba, Spain;
- Centro de Investigación Biomédica en Red, Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Aurora Gonzalez-Estrada
- UCERV, UCAMI, Servicio de Medicina Interna, Hospital Virgen del Rocío, 41013 Seville, Spain; (O.M.); (A.G.-E.)
| | - Oscar Campuzano
- Cardiology Service, Hospital Josep Trueta, University of Girona, 17007 Girona, Spain; (A.P.-S.); (O.C.)
- Cardiovascular Genetics Center, University of Girona-IDIBGI, 17007 Girona, Spain
- Centro de Investigación Biomédica en Red, Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Juan Sebastian Rodriguez Roca
- Lipid and Atherosclerotic Unit, Internal Medicine Department, Puerta del Mar University Hospital, 11009 Cadiz, Spain;
| | - Elena Alonso-Villa
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain; (A.M.); (E.A.-V.)
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
| | - Rocio Toro
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain; (A.M.); (E.A.-V.)
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
| |
Collapse
|