1
|
Harper JA, Brown GGB, Neale MJ. Spo11: from topoisomerase VI to meiotic recombination initiator. Biochem Soc Trans 2025; 53:BST20253019. [PMID: 40181639 DOI: 10.1042/bst20253019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/12/2025] [Indexed: 04/05/2025]
Abstract
Meiotic recombination is required to break up gene linkage and facilitate faithful chromosome segregation during gamete formation. By inducing DNA double-strand breaks, Spo11, a protein that is conserved in all meiotic organisms, initiates the process of recombination. Here, we chart the evolutionary history of Spo11 and compare the protein to its ancestors. Evolving from the A subunit of archaeal topoisomerase VI (Topo VI), a heterotetrameric type II topoisomerase, Spo11 appears to have evolved alongside meiosis and been present in the last eukaryotic common ancestor. There are many differences between Spo11 and TopVIA, particularly in regulation, despite similarities in structure and mechanism of action. Critical to its function as an inducer of recombination, Spo11 has an apparently amputated activity that, unlike topoisomerases, does not re-seal the DNA breaks it creates. We discuss how and why Spo11 has taken its path down the tree of life, considering its regulation and its roles compared with those of its progenitor Topo VI, in both meiotic and non-meiotic species. We find some commonality between different forms and orthologs of Spo11 in different species and touch upon how recent biochemical advances are beginning to finally unlock the molecular secrets hidden within this fundamental yet enigmatic protein.
Collapse
Affiliation(s)
- Jon A Harper
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, U.K
| | - George G B Brown
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, U.K
| | - Matthew J Neale
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, U.K
| |
Collapse
|
2
|
Raghavan AR, Hochwagen A. Keeping it safe: control of meiotic chromosome breakage. Trends Genet 2025; 41:315-329. [PMID: 39672680 PMCID: PMC11981862 DOI: 10.1016/j.tig.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 12/15/2024]
Abstract
Meiotic cells introduce numerous programmed DNA double-strand breaks (DSBs) into their genome to stimulate crossover recombination. DSB numbers must be high enough to ensure each homologous chromosome pair receives the obligate crossover required for accurate meiotic chromosome segregation. However, every DSB also increases the risk of aberrant or incomplete DNA repair, and thus genome instability. To mitigate these risks, meiotic cells have evolved an intricate network of controls that modulates the timing, levels, and genomic location of meiotic DSBs. This Review summarizes our current understanding of these controls with a particular focus on the mechanisms that prevent meiotic DSB formation at the wrong time or place, thereby guarding the genome from potentially catastrophic meiotic errors.
Collapse
Affiliation(s)
| | - Andreas Hochwagen
- Department of Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|
3
|
Patel B, Grobler M, Herrera A, Logari E, Ortiz V, Bhalla N. The conserved ATPase PCH-2 controls the number and distribution of crossovers by antagonizing their formation in Caenorhabditis elegans. eLife 2025; 13:RP102409. [PMID: 39964851 PMCID: PMC11835387 DOI: 10.7554/elife.102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Meiotic crossover recombination is essential for both accurate chromosome segregation and the generation of new haplotypes for natural selection to act upon. This requirement is known as crossover assurance and is one example of crossover control. While the conserved role of the ATPase, PCH-2, during meiotic prophase has been enigmatic, a universal phenotype when pch-2 or its orthologs are mutated is a change in the number and distribution of meiotic crossovers. Here, we show that PCH-2 controls the number and distribution of crossovers by antagonizing their formation. This antagonism produces different effects at different stages of meiotic prophase: early in meiotic prophase, PCH-2 prevents double-strand breaks from becoming crossover-eligible intermediates, limiting crossover formation at sites of initial double-strand break formation and homolog interactions. Later in meiotic prophase, PCH-2 winnows the number of crossover-eligible intermediates, contributing to the designation of crossovers and ultimately, crossover assurance. We also demonstrate that PCH-2 accomplishes this regulation through the meiotic HORMAD, HIM-3. Our data strongly support a model in which PCH-2's conserved role is to remodel meiotic HORMADs throughout meiotic prophase to destabilize crossover-eligible precursors and coordinate meiotic recombination with synapsis, ensuring the progressive implementation of meiotic recombination and explaining its function in the pachytene checkpoint and crossover control.
Collapse
Affiliation(s)
- Bhumil Patel
- Department of Molecular, Cell and Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| | - Maryke Grobler
- Department of Molecular, Cell and Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| | - Alberto Herrera
- Department of Molecular, Cell and Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| | - Elias Logari
- Department of Molecular, Cell and Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| | - Valery Ortiz
- Department of Molecular, Cell and Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| | - Needhi Bhalla
- Department of Molecular, Cell and Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| |
Collapse
|
4
|
Hamrick A, Cope HD, Forbis D, Rog O. Kinetic analysis of strand invasion during C. elegans meiosis reveals similar rates of sister- and homolog-directed repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632442. [PMID: 39829846 PMCID: PMC11741252 DOI: 10.1101/2025.01.10.632442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Meiotic chromosome segregation requires reciprocal exchanges between the parental chromosomes (homologs). Exchanges are formed via tightly-regulated repair of double-strand DNA breaks (DSBs). However, since repair intermediates are mostly quantified in fixed images, our understanding of the mechanisms that control the progression of repair remains limited. Here, we study meiotic repair kinetics in Caenorhabditis elegans by extinguishing new DSBs and following the disappearance of a crucial intermediate - strand invasion mediated by the conserved RecA-family recombinase RAD-51. We find that RAD-51 foci have a half-life of 42-132 minutes for both endogenous and exogenous DSBs. Surprisingly, we find that repair templated by the sister chromatid is not slower than repair templated by the homolog. This suggests that differential kinetics are unlikely to underlie 'homolog bias': the preferential use of the homolog as a repair template. We also use our kinetic information to revisit the total number of DSBs per nucleus - the 'substrate' for the formation of exchanges - and find an average of 40 DSBs in wild-type meiosis and >50 DSBs when homolog pairing is perturbed. Our work opens the door for analysis of the interplay between meiotic repair kinetics and the fidelity of genome inheritance.
Collapse
Affiliation(s)
| | | | - Divya Forbis
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84112
| | - Ofer Rog
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
5
|
Patel B, Grobler M, Herrera A, Logari E, Ortiz V, Bhalla N. The conserved ATPase PCH-2 controls the number and distribution of crossovers by antagonizing their formation in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607819. [PMID: 39185160 PMCID: PMC11343117 DOI: 10.1101/2024.08.13.607819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Meiotic crossover recombination is essential for both accurate chromosome segregation and the generation of new haplotypes for natural selection to act upon. This requirement is known as crossover assurance and is one example of crossover control. While the conserved role of the ATPase, PCH-2, during meiotic prophase has been enigmatic, a universal phenotype when pch-2 or its orthologs are mutated is a change in the number and distribution of meiotic crossovers. Here, we show that PCH-2 controls the number and distribution of crossovers by antagonizing their formation. This antagonism produces different effects at different stages of meiotic prophase: early in meiotic prophase, PCH-2 prevents double strand breaks from becoming crossover-eligible intermediates, limiting crossover formation at sites of initial double strand break formation and homolog interactions. Later in meiotic prophase, PCH-2 winnows the number of crossover-eligible intermediates, contributing to the designation of crossovers and ultimately, crossover assurance. We also demonstrate that PCH-2 accomplishes this regulation through the meiotic HORMAD, HIM-3. Our data strongly support a model in which PCH-2's conserved role is to remodel meiotic HORMADs throughout meiotic prophase to destabilize crossover-eligible precursors, coordinate meiotic recombination with synapsis, and contribute to the progressive implementation of meiotic recombination, guaranteeing crossover control.
Collapse
Affiliation(s)
- Bhumil Patel
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Maryke Grobler
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Alberto Herrera
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Elias Logari
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Valery Ortiz
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Needhi Bhalla
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| |
Collapse
|
6
|
Rafiei N, Ronceret A. The plant early recombinosome: a high security complex to break DNA during meiosis. PLANT REPRODUCTION 2024; 37:421-440. [PMID: 39331138 PMCID: PMC11511760 DOI: 10.1007/s00497-024-00509-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024]
Abstract
KEY MESSAGE The formacion of numerous unpredictable DNA Double Strand Breaks (DSBs) on chromosomes iniciates meiotic recombination. In this perspective, we propose a 'multi-key lock' model to secure the risky but necesary breaks as well as a 'one per pair of cromatids' model for the topoisomerase-like early recombinosome. During meiosis, homologous chromosomes recombine at few sites of crossing-overs (COs) to ensure correct segregation. The initiation of meiotic recombination involves the formation of DNA double strand breaks (DSBs) during prophase I. Too many DSBs are dangerous for genome integrity: if these DSBs are not properly repaired, it could potentially lead to chromosomal fragmentation. Too few DSBs are also problematic: if the obligate CO cannot form between bivalents, catastrophic unequal segregation of univalents lead to the formation of sterile aneuploid spores. Research on the regulation of the formation of these necessary but risky DSBs has recently advanced in yeast, mammals and plants. DNA DSBs are created by the enzymatic activity of the early recombinosome, a topoisomerase-like complex containing SPO11. This opinion paper reviews recent insights on the regulation of the SPO11 cofactors necessary for the introduction of temporally and spatially controlled DSBs. We propose that a 'multi-key-lock' model for each subunit of the early recombinosome complex is required to secure the formation of DSBs. We also discuss the hypothetical implications that the established topoisomerase-like nature of the SPO11 core-complex can have in creating DSB in only one of the two replicated chromatids of early prophase I meiotic chromosomes. This hypothetical 'one per pair of chromatids' DSB formation model could optimize the faithful repair of the self-inflicted DSBs. Each DSB could use three potential intact homologous DNA sequences as repair template: one from the sister chromatid and the two others from the homologous chromosomes.
Collapse
Affiliation(s)
- Nahid Rafiei
- Department of Plant Molecular Biology, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Arnaud Ronceret
- Department of Plant Molecular Biology, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México.
| |
Collapse
|
7
|
Chen HW, Yeh HY, Chang CC, Kuo WC, Lin SW, Vrielynck N, Grelon M, Chan NL, Chi P. Biochemical characterization of the meiosis-essential yet evolutionarily divergent topoisomerase VIB-like protein MTOPVIB from Arabidopsis thaliana. Nucleic Acids Res 2024; 52:4541-4555. [PMID: 38499490 PMCID: PMC11077084 DOI: 10.1093/nar/gkae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024] Open
Abstract
Formation of programmed DNA double-strand breaks is essential for initiating meiotic recombination. Genetic studies on Arabidopsis thaliana and Mus musculus have revealed that assembly of a type IIB topoisomerase VI (Topo VI)-like complex, composed of SPO11 and MTOPVIB, is a prerequisite for generating DNA breaks. However, it remains enigmatic if MTOPVIB resembles its Topo VI subunit B (VIB) ortholog in possessing robust ATPase activity, ability to undergo ATP-dependent dimerization, and activation of SPO11-mediated DNA cleavage. Here, we successfully prepared highly pure A. thaliana MTOPVIB and MTOPVIB-SPO11 complex. Contrary to expectations, our findings highlight that MTOPVIB differs from orthologous Topo VIB by lacking ATP-binding activity and independently forming dimers without ATP. Most significantly, our study reveals that while MTOPVIB lacks the capability to stimulate SPO11-mediated DNA cleavage, it functions as a bona fide DNA-binding protein and plays a substantial role in facilitating the dsDNA binding capacity of the MOTOVIB-SPO11 complex. Thus, we illustrate mechanistic divergence between the MTOPVIB-SPO11 complex and classical type IIB topoisomerases.
Collapse
Affiliation(s)
- Hsin-Wen Chen
- Institute of Biochemical Sciences, National Taiwan University, 10617 Taipei, Taiwan
| | - Hsin-Yi Yeh
- Institute of Biochemical Sciences, National Taiwan University, 10617 Taipei, Taiwan
| | - Chih-Chiang Chang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, 100233 Taipei, Taiwan
| | - Wei-Chen Kuo
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, 100233 Taipei, Taiwan
| | - Sheng-Wei Lin
- Institute of Biological Chemistry, Academia Sinica, 11529 Taipei, Taiwan
| | - Nathalie Vrielynck
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000,Versailles, France
| | - Mathilde Grelon
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000,Versailles, France
| | - Nei-Li Chan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, 100233 Taipei, Taiwan
| | - Peter Chi
- Institute of Biochemical Sciences, National Taiwan University, 10617 Taipei, Taiwan
- Institute of Biological Chemistry, Academia Sinica, 11529 Taipei, Taiwan
| |
Collapse
|
8
|
Abstract
The raison d'être of meiosis is shuffling of genetic information via Mendelian segregation and, within individual chromosomes, by DNA crossing-over. These outcomes are enabled by a complex cellular program in which interactions between homologous chromosomes play a central role. We first provide a background regarding the basic principles of this program. We then summarize the current understanding of the DNA events of recombination and of three processes that involve whole chromosomes: homolog pairing, crossover interference, and chiasma maturation. All of these processes are implemented by direct physical interaction of recombination complexes with underlying chromosome structures. Finally, we present convergent lines of evidence that the meiotic program may have evolved by coupling of this interaction to late-stage mitotic chromosome morphogenesis.
Collapse
Affiliation(s)
- Denise Zickler
- Institute for Integrative Biology of the Cell (I2BC), Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA;
| |
Collapse
|
9
|
Réthi-Nagy Z, Ábrahám E, Sinka R, Juhász S, Lipinszki Z. Protein Phosphatase 4 Is Required for Centrobin Function in DNA Damage Repair. Cells 2023; 12:2219. [PMID: 37759442 PMCID: PMC10526779 DOI: 10.3390/cells12182219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Genome stability in human cells relies on the efficient repair of double-stranded DNA breaks, which is mainly achieved by homologous recombination (HR). Among the regulators of various cellular functions, Protein phosphatase 4 (PP4) plays a pivotal role in coordinating cellular response to DNA damage. Meanwhile, Centrobin (CNTRB), initially recognized for its association with centrosomal function and microtubule dynamics, has sparked interest due to its potential contribution to DNA repair processes. In this study, we investigate the involvement of PP4 and its interaction with CNTRB in HR-mediated DNA repair in human cells. Employing a range of experimental strategies, we investigate the physical interaction between PP4 and CNTRB and shed light on the importance of two specific motifs in CNTRB, the PP4-binding FRVP and the ATR kinase recognition SQ sequences, in the DNA repair process. Moreover, we examine cells depleted of PP4 or CNTRB and cells harboring FRVP and SQ mutations in CNTRB, which result in similar abnormal chromosome morphologies. This phenomenon likely results from the impaired resolution of Holliday junctions, which serve as crucial intermediates in HR. Taken together, our results provide new insights into the intricate mechanisms of PP4 and CNTRB-regulated HR repair and their interrelation.
Collapse
Affiliation(s)
- Zsuzsánna Réthi-Nagy
- MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Institute of Biochemistry, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (Z.R.-N.); (E.Á.)
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Edit Ábrahám
- MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Institute of Biochemistry, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (Z.R.-N.); (E.Á.)
- National Laboratory for Biotechnology, Institute of Genetics, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary
| | - Rita Sinka
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary;
| | - Szilvia Juhász
- Institute of Biochemistry, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary
| | - Zoltán Lipinszki
- MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Institute of Biochemistry, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (Z.R.-N.); (E.Á.)
- National Laboratory for Biotechnology, Institute of Genetics, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary
| |
Collapse
|
10
|
Liu K, Grasso EM, Pu S, Zou M, Liu S, Eliezer D, Keeney S. Structure and DNA-bridging activity of the essential Rec114-Mei4 trimer interface. Genes Dev 2023; 37:518-534. [PMID: 37442580 PMCID: PMC10393192 DOI: 10.1101/gad.350461.123] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023]
Abstract
The DNA double-strand breaks (DSBs) that initiate meiotic recombination are formed by an evolutionarily conserved suite of factors that includes Rec114 and Mei4 (RM), which regulate DSB formation both spatially and temporally. In vivo, these proteins form large immunostaining foci that are integrated with higher-order chromosome structures. In vitro, they form a 2:1 heterotrimeric complex that binds cooperatively to DNA to form large, dynamic condensates. However, understanding of the atomic structures and dynamic DNA binding properties of RM complexes is lacking. Here, we report a structural model of a heterotrimeric complex of the C terminus of Rec114 with the N terminus of Mei4, supported by nuclear magnetic resonance experiments. This minimal complex, which lacks the predicted intrinsically disordered region of Rec114, is sufficient to bind DNA and form condensates. Single-molecule experiments reveal that the minimal complex can bridge two or more DNA duplexes and can generate force to condense DNA through long-range interactions. AlphaFold2 predicts similar structural models for RM orthologs across diverse taxa despite their low degree of sequence similarity. These findings provide insight into the conserved networks of protein-protein and protein-DNA interactions that enable condensate formation and promote formation of meiotic DSBs.
Collapse
Affiliation(s)
- Kaixian Liu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Emily M Grasso
- Department of Biochemistry, Weill Cornell Medicine, New York, New York 10065, USA
| | - Stephen Pu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Mengyang Zou
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York 10065, USA
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, New York 10065, USA
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New York, New York 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York 10065, USA
- Program in Structural Biology, Weill Cornell Medicine, New York, New York 10065, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA;
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York 10065, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
11
|
Daccache D, De Jonge E, Liloku P, Mechleb K, Haddad M, Corthaut S, Sterckx YGJ, Volkov AN, Claeys Bouuaert C. Evolutionary conservation of the structure and function of meiotic Rec114-Mei4 and Mer2 complexes. Genes Dev 2023; 37:535-553. [PMID: 37442581 PMCID: PMC10393190 DOI: 10.1101/gad.350462.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023]
Abstract
Meiosis-specific Rec114-Mei4 and Mer2 complexes are thought to enable Spo11-mediated DNA double-strand break (DSB) formation through a mechanism that involves DNA-dependent condensation. However, the structure, molecular properties, and evolutionary conservation of Rec114-Mei4 and Mer2 are unclear. Here, we present AlphaFold models of Rec114-Mei4 and Mer2 complexes supported by nuclear magnetic resonance (NMR) spectroscopy, small-angle X-ray scattering (SAXS), and mutagenesis. We show that dimers composed of the Rec114 C terminus form α-helical chains that cup an N-terminal Mei4 α helix, and that Mer2 forms a parallel homotetrameric coiled coil. Both Rec114-Mei4 and Mer2 bind preferentially to branched DNA substrates, indicative of multivalent protein-DNA interactions. Indeed, the Rec114-Mei4 interaction domain contains two DNA-binding sites that point in opposite directions and drive condensation. The Mer2 coiled-coil domain bridges coaligned DNA duplexes, likely through extensive electrostatic interactions along the length of the coiled coil. Finally, we show that the structures of Rec114-Mei4 and Mer2 are conserved across eukaryotes, while DNA-binding properties vary significantly. This work provides insights into the mechanism whereby Rec114-Mei4 and Mer2 complexes promote the assembly of the meiotic DSB machinery and suggests a model in which Mer2 condensation is the essential driver of assembly, with the DNA-binding activity of Rec114-Mei4 playing a supportive role.
Collapse
Affiliation(s)
- Dima Daccache
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-La-Neuve, Belgium
| | - Emma De Jonge
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-La-Neuve, Belgium
| | - Pascaline Liloku
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-La-Neuve, Belgium
| | - Karen Mechleb
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-La-Neuve, Belgium
| | - Marita Haddad
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-La-Neuve, Belgium
| | - Sam Corthaut
- Laboratory of Medical Biochemistry (LMB), the Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Yann G-J Sterckx
- Laboratory of Medical Biochemistry (LMB), the Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Alexander N Volkov
- Vlaams Instituut voor Biotechnologie (VIB)-Vrije Universiteit Brussel (VUB) Center for Structural Biology, VIB, 1050 Brussels, Belgium;
- Jean Jeener NMR Centre, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Corentin Claeys Bouuaert
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-La-Neuve, Belgium;
| |
Collapse
|
12
|
Rocha H, Simões PA, Budrewicz J, Lara-Gonzalez P, Carvalho AX, Dumont J, Desai A, Gassmann R. Nuclear-enriched protein phosphatase 4 ensures outer kinetochore assembly prior to nuclear dissolution. J Cell Biol 2023; 222:213846. [PMID: 36719399 PMCID: PMC9930252 DOI: 10.1083/jcb.202208154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/15/2022] [Accepted: 01/05/2023] [Indexed: 02/01/2023] Open
Abstract
A landmark event in the transition from interphase to mitosis in metazoans is nuclear envelope breakdown (NEBD). Important mitotic events occur prior to NEBD, including condensation of replicated chromosomes and assembly of kinetochores to rapidly engage spindle microtubules. Here, we show that nuclear-enriched protein phosphatase 4 (PP4) ensures robust assembly of the microtubule-coupling outer kinetochore prior to NEBD. In the absence of PP4, chromosomes exhibit extended monopolar orientation after NEBD and subsequently mis-segregate. A secondary consequence of diminished outer kinetochore assembly is defective sister chromatid resolution. After NEBD, a cytoplasmic activity compensates for PP4 loss, leading to outer kinetochore assembly and recovery of chromosomes from monopolar orientation to significant bi-orientation. The Ndc80-Ska microtubule-binding module of the outer kinetochore is required for this recovery. PP4 associates with the inner kinetochore protein CENP-C; however, disrupting the PP4-CENP-C interaction does not perturb chromosome segregation. These results establish that PP4-dependent outer kinetochore assembly prior to NEBD is critical for timely and proper engagement of chromosomes with spindle microtubules.
Collapse
Affiliation(s)
- Helder Rocha
- https://ror.org/05qpmg879Instituto de Investigação e Inovação em Saúde – i3S, Universidade do Porto, Porto, Portugal,Instituto de Biologia Molecular e Celular – IBMC, Universidade do Porto, Porto, Portugal
| | - Patrícia A. Simões
- https://ror.org/05qpmg879Instituto de Investigação e Inovação em Saúde – i3S, Universidade do Porto, Porto, Portugal,Instituto de Biologia Molecular e Celular – IBMC, Universidade do Porto, Porto, Portugal
| | - Jacqueline Budrewicz
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, USA,Division of Biological Sciences, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Pablo Lara-Gonzalez
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, USA,Division of Biological Sciences, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ana Xavier Carvalho
- https://ror.org/05qpmg879Instituto de Investigação e Inovação em Saúde – i3S, Universidade do Porto, Porto, Portugal,Instituto de Biologia Molecular e Celular – IBMC, Universidade do Porto, Porto, Portugal
| | - Julien Dumont
- https://ror.org/02c5gc203Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Arshad Desai
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, USA,Division of Biological Sciences, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Reto Gassmann
- https://ror.org/05qpmg879Instituto de Investigação e Inovação em Saúde – i3S, Universidade do Porto, Porto, Portugal,Instituto de Biologia Molecular e Celular – IBMC, Universidade do Porto, Porto, Portugal
| |
Collapse
|
13
|
Zhang L, Stauffer WT, Wang JS, Wu F, Yu Z, Liu C, Kim HJ, Dernburg AF. Recruitment of Polo-like kinase couples synapsis to meiotic progression via inactivation of CHK-2. eLife 2023; 12:e84492. [PMID: 36700544 PMCID: PMC9998088 DOI: 10.7554/elife.84492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/25/2023] [Indexed: 01/27/2023] Open
Abstract
Meiotic chromosome segregation relies on synapsis and crossover (CO) recombination between homologous chromosomes. These processes require multiple steps that are coordinated by the meiotic cell cycle and monitored by surveillance mechanisms. In diverse species, failures in chromosome synapsis can trigger a cell cycle delay and/or lead to apoptosis. How this key step in 'homolog engagement' is sensed and transduced by meiotic cells is unknown. Here we report that in C. elegans, recruitment of the Polo-like kinase PLK-2 to the synaptonemal complex triggers phosphorylation and inactivation of CHK-2, an early meiotic kinase required for pairing, synapsis, and double-strand break (DSB) induction. Inactivation of CHK-2 terminates DSB formation and enables CO designation and cell cycle progression. These findings illuminate how meiotic cells ensure CO formation and accurate chromosome segregation.
Collapse
Affiliation(s)
- Liangyu Zhang
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative BiosciencesBerkeleyUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Biological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Weston T Stauffer
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
| | - John S Wang
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Fan Wu
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Zhouliang Yu
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative BiosciencesBerkeleyUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Biological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Chenshu Liu
- California Institute for Quantitative BiosciencesBerkeleyUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Hyung Jun Kim
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Abby F Dernburg
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative BiosciencesBerkeleyUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Biological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| |
Collapse
|
14
|
Liu K, Grasso EM, Pu S, Liu S, Eliezer D, Keeney S. Structure and DNA bridging activity of the essential Rec114â€"Mei4 trimer interface. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524603. [PMID: 36711595 PMCID: PMC9882322 DOI: 10.1101/2023.01.18.524603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The DNA double-strand breaks (DSBs) that initiate meiotic recombination are formed by an evolutionarily conserved suite of factors that includes Rec114 and Mei4 (RM), which regulate DSB formation both spatially and temporally. In vivo , these proteins form large immunostaining foci that are integrated with higher order chromosome structures. In vitro , they form a 2:1 heterotrimeric complex that binds cooperatively to DNA to form large, dynamic condensates. However, understanding of the atomic structures and dynamic DNA binding properties of RM complexes is lacking. Here, we report a structural model of a heterotrimeric complex of the C-terminus of Rec114 with the N-terminus of Mei4, supported by nuclear magnetic resonance experiments. This minimal complex, which lacks the predicted intrinsically disordered region of Rec114, is sufficient to bind DNA and form condensates. Single-molecule experiments reveal that the minimal complex can bridge two or more DNA duplexes and can generate force to condense DNA through long-range interactions. AlphaFold2 predicts similar structural models for RM orthologs across diverse taxa despite their low degree of sequence similarity. These findings provide insight into the conserved networks of protein-protein and protein-DNA interactions that enable condensate formation and promote formation of meiotic DSBs.
Collapse
|
15
|
Nore A, Juarez-Martinez AB, Clément J, Brun C, Diagouraga B, Laroussi H, Grey C, Bourbon HM, Kadlec J, Robert T, de Massy B. TOPOVIBL-REC114 interaction regulates meiotic DNA double-strand breaks. Nat Commun 2022; 13:7048. [PMID: 36396648 PMCID: PMC9671922 DOI: 10.1038/s41467-022-34799-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
Meiosis requires the formation of programmed DNA double strand breaks (DSBs), essential for fertility and for generating genetic diversity. DSBs are induced by the catalytic activity of the TOPOVIL complex formed by SPO11 and TOPOVIBL. To ensure genomic integrity, DNA cleavage activity is tightly regulated, and several accessory factors (REC114, MEI4, IHO1, and MEI1) are needed for DSB formation in mice. How and when these proteins act is not understood. Here, we show that REC114 is a direct partner of TOPOVIBL, and identify their conserved interacting domains by structural analysis. We then analyse the role of this interaction by monitoring meiotic DSBs in female and male mice carrying point mutations in TOPOVIBL that decrease or disrupt its binding to REC114. In these mutants, DSB activity is strongly reduced genome-wide in oocytes, and only in sub-telomeric regions in spermatocytes. In addition, in mutant spermatocytes, DSB activity is delayed in autosomes. These results suggest that REC114 is a key member of the TOPOVIL catalytic complex, and that the REC114/TOPOVIBL interaction ensures the efficiency and timing of DSB activity.
Collapse
Affiliation(s)
- Alexandre Nore
- grid.121334.60000 0001 2097 0141Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier, France
| | | | - Julie Clément
- grid.121334.60000 0001 2097 0141Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier, France
| | - Christine Brun
- grid.121334.60000 0001 2097 0141Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier, France
| | - Boubou Diagouraga
- grid.462825.f0000 0004 0639 1954CBS, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Hamida Laroussi
- grid.4444.00000 0001 2112 9282Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Corinne Grey
- grid.121334.60000 0001 2097 0141Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier, France
| | - Henri Marc Bourbon
- grid.508721.9Centre de Biologie Intégrative, CNRS, Université de Toulouse, Toulouse, France
| | - Jan Kadlec
- grid.4444.00000 0001 2112 9282Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Thomas Robert
- grid.462825.f0000 0004 0639 1954CBS, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Bernard de Massy
- grid.121334.60000 0001 2097 0141Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier, France
| |
Collapse
|
16
|
Toraason E, Adler VL, Libuda DE. Aging and sperm signals alter DNA break formation and repair in the C. elegans germline. PLoS Genet 2022; 18:e1010282. [PMID: 36342909 PMCID: PMC9671421 DOI: 10.1371/journal.pgen.1010282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/17/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
Female reproductive aging is associated with decreased oocyte quality and fertility. The nematode Caenorhabditis elegans is a powerful system for understanding the biology of aging and exhibits age-related reproductive defects that are analogous to those observed in many mammals, including dysregulation of DNA repair. C. elegans germline function is influenced simultaneously by both reproductive aging and signals triggered by limited supplies of sperm, which are depleted over chronological time. To delineate the causes of DNA repair defects in aged C. elegans germlines, we assessed both DNA double strand break (DSB) induction and repair during meiotic prophase I progression in aged germlines which were depleted of self-sperm, mated, or never exposed to sperm. We find that germline DSB induction is dramatically reduced only in hermaphrodites which have exhausted their endogenous sperm, suggesting that a signal due specifically to sperm depletion downregulates DSB formation. We also find that DSB repair is delayed in aged germlines regardless of whether hermaphrodites had either a reduction in sperm supply or an inability to endogenously produce sperm. These results demonstrate that in contrast to DSB induction, DSB repair defects are a feature of C. elegans reproductive aging independent of sperm presence. Finally, we demonstrate that the E2 ubiquitin-conjugating enzyme variant UEV-2 is required for efficient DSB repair specifically in young germlines, implicating UEV-2 in the regulation of DNA repair during reproductive aging. In summary, our study demonstrates that DNA repair defects are a feature of C. elegans reproductive aging and uncovers parallel mechanisms regulating efficient DSB formation in the germline.
Collapse
Affiliation(s)
- Erik Toraason
- University of Oregon, Department of Biology, Institute of Molecular Biology, Eugene, Oregon, United States of America
| | - Victoria L. Adler
- University of Oregon, Department of Biology, Institute of Molecular Biology, Eugene, Oregon, United States of America
| | - Diana E. Libuda
- University of Oregon, Department of Biology, Institute of Molecular Biology, Eugene, Oregon, United States of America
| |
Collapse
|
17
|
Generation of human myogenic progenitors from pluripotent stem cells for in vivo regeneration. Cell Mol Life Sci 2022; 79:406. [PMID: 35802202 PMCID: PMC9270264 DOI: 10.1007/s00018-022-04434-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
Abstract
Muscular dystrophy encompasses a large number of heterogeneous genetic disorders characterized by progressive and devastating muscle wasting. Cell-based replacement strategies aimed at promoting skeletal muscle regeneration represent a candidate therapeutic approach to treat muscular dystrophies. Due to the difficulties of obtaining large numbers of stem cells from a muscle biopsy as well as expanding these in vitro, pluripotent stem cells (PSCs) represent an attractive cell source for the generation of myogenic progenitors, given that PSCs can repeatedly produce large amounts of lineage-specific tissue, representing an unlimited source of cells for therapy. In this review, we focus on the progress to date on different methods for the generation of human PSC-derived myogenic progenitor cells, their regenerative capabilities upon transplantation, their potential for allogeneic and autologous transplantation, as well as the specific challenges to be considered for future therapeutic applications.
Collapse
|