1
|
Martinez-Sanchez A. Template matching and machine learning for cryo-electron tomography. Curr Opin Struct Biol 2025; 93:103058. [PMID: 40373677 DOI: 10.1016/j.sbi.2025.103058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/07/2025] [Accepted: 04/15/2025] [Indexed: 05/17/2025]
Abstract
Cryo-electron tomography is the best-suited imaging technique for visual proteomics. Recent advances have increased the number, quality, and resolution of tomograms. However, object detection is the bottleneck task of the analysis workflow because, so far, only a few molecules can be detected by computer methods for pattern recognition. This article introduces the major challenges in detecting molecular complexes for cryo-electron tomography. This paper also identifies the limitations of the current methods. Finally, it describes the approaches proposed to overcome these limitations.
Collapse
Affiliation(s)
- Antonio Martinez-Sanchez
- Department of Information and Communications Engineering, Universidad de Murcia, Campus de Espinardo, Faculty of Computer Sciences, Murcia, 30100, Spain.
| |
Collapse
|
2
|
Glaeser RM. Commonsense and common nonsense opinions: PROSPECTS for further reducing beam damage in electron microscopy of radiation-sensitive specimens. Ultramicroscopy 2025; 271:114118. [PMID: 40023013 DOI: 10.1016/j.ultramic.2025.114118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/15/2025] [Indexed: 03/04/2025]
Abstract
Biological molecules are easily damaged by high-energy electrons, thus limiting the exposures that can be used to image such specimens by electron microscopy. It is argued here that many-electron, volume-plasmon excitations, which promptly transition into multiple types of single-electron ionization and excitation events, seem to be the predominant cause of damage in such materials. Although reducing the rate at which primary radiolysis occurs would allow one to record images that were much less noisy, many novel proposals for achieving this are unlikely to be realized in the near future, while others are manifestly ill-founded. As a result, the most realistic option currently is to more effectively use the available "budget" of electron exposure, i.e. to further improve the "dose efficiency" by which images are recorded. While progress in that direction is currently under way for both "conventional" (i.e. fixed-beam) and scanning EM, the former is expected to set a high standard for the latter to surpass.
Collapse
Affiliation(s)
- Robert M Glaeser
- Department of Molecular and Cell Biology, University of California, Berkeley CA 94720, USA.
| |
Collapse
|
3
|
Schönnenbeck P, Junglas B, Sachse C. CryoVIA: An image analysis toolkit for the quantification of membrane structures from cryo-EM micrographs. Structure 2025; 33:808-819.e4. [PMID: 39919734 DOI: 10.1016/j.str.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/26/2024] [Accepted: 01/13/2025] [Indexed: 02/09/2025]
Abstract
Imaging of lipid structures and associated protein complexes using cryoelectron microscopy (cryo-EM) is a common visualization and structure determination technique. The quantitative analysis of the membrane structures, however, is not routine and time consuming in particular when large amounts of data are involved. Here, we introduce the automated image-processing software cryo-vesicle image analyzer (CryoVIA) that parametrizes lipid structures of large datasets from cryo-EM images. This toolkit combines segmentation, structure identification with methods to automatically perform a large-scale data analysis of local and global membrane properties such as bilayer thickness, size, and curvature including membrane shape classifications. We included analyses of exemplary datasets of different lipid compositions and protein-induced lipid changes through an endosomal sorting complexes required for transport III (ESCRT-III) membrane remodeling protein. The toolkit opens new possibilities to systematically study structural properties of membrane structures and their modifications from cryo-EM images.
Collapse
Affiliation(s)
- Philipp Schönnenbeck
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; Department of Biology, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Benedikt Junglas
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Carsten Sachse
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; Department of Biology, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
4
|
Zhang K, Cossio P, Rangan AV, Lucas BA, Grigorieff N. A new statistical metric for robust target detection in cryo-EM using 2D template matching. IUCRJ 2025; 12:155-176. [PMID: 39819740 PMCID: PMC11878444 DOI: 10.1107/s2052252524011771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/03/2024] [Indexed: 01/19/2025]
Abstract
2D template matching (2DTM) can be used to detect molecules and their assemblies in cellular cryo-EM images with high positional and orientational accuracy. While 2DTM successfully detects spherical targets such as large ribosomal subunits, challenges remain in detecting smaller and more aspherical targets in various environments. In this work, a novel 2DTM metric, referred to as the 2DTM p-value, is developed to extend the 2DTM framework to more complex applications. The 2DTM p-value combines information from two previously used 2DTM metrics, namely the 2DTM signal-to-noise ratio (SNR) and z-score, which are derived from the cross-correlation coefficient between the target and the template. The 2DTM p-value demonstrates robust detection accuracies under various imaging and sample conditions and outperforms the 2DTM SNR and z-score alone. Specifically, the 2DTM p-value improves the detection of aspherical targets such as a modified artificial tubulin patch particle (500 kDa) and a much smaller clathrin monomer (193 kDa) in simulated data. It also accurately recovers mature 60S ribosomes in yeast lamellae samples, even under conditions of increased Gaussian noise. The new metric will enable the detection of a wider variety of targets in both purified and cellular samples through 2DTM.
Collapse
Affiliation(s)
- Kexin Zhang
- RNA Therapeutics InstituteUniversity of Massachusetts Chan Medical SchoolWorcesterUSA
- Howard Hughes Medical InstituteUniversity of Massachusetts Chan Medical SchoolWorcesterUSA
| | - Pilar Cossio
- Center for Computational Mathematics, Flatiron Institute, New York, USA
- Center for Computational Biology, Flatiron Institute, New York, USA
| | - Aaditya V. Rangan
- Center for Computational Mathematics, Flatiron Institute, New York, USA
- Courant Institute of Mathematical Sciences, New York UniversityNew YorkUSA
| | - Bronwyn A. Lucas
- RNA Therapeutics InstituteUniversity of Massachusetts Chan Medical SchoolWorcesterUSA
| | - Nikolaus Grigorieff
- RNA Therapeutics InstituteUniversity of Massachusetts Chan Medical SchoolWorcesterUSA
- Howard Hughes Medical InstituteUniversity of Massachusetts Chan Medical SchoolWorcesterUSA
| |
Collapse
|
5
|
Rickgauer JP, Choi H, Moore AS, Denk W, Lippincott-Schwartz J. Structural dynamics of human ribosomes in situ reconstructed by exhaustive high-resolution template matching. Mol Cell 2024; 84:4912-4928.e7. [PMID: 39626661 DOI: 10.1016/j.molcel.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/29/2024] [Accepted: 11/06/2024] [Indexed: 12/13/2024]
Abstract
Protein synthesis is central to life and requires the ribosome, which catalyzes the stepwise addition of amino acids to a polypeptide chain by undergoing a sequence of structural transformations. Here, we employed high-resolution template matching (HRTM) on cryoelectron microscopy (cryo-EM) images of directly cryofixed living cells to obtain a set of ribosomal configurations covering the entire elongation cycle, with each configuration occurring at its native abundance. HRTM's position and orientation precision and ability to detect small targets (∼300 kDa) made it possible to order these configurations along the reaction coordinate and to reconstruct molecular features of any configuration along the elongation cycle. Visualizing the cycle's structural dynamics by combining a sequence of >40 reconstructions into a 3D movie readily revealed component and ligand movements, some of them surprising, such as spring-like intramolecular motion, providing clues about the molecular mechanisms involved in some still mysterious steps during chain elongation.
Collapse
Affiliation(s)
- J Peter Rickgauer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Heejun Choi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Andrew S Moore
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Winfried Denk
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | | |
Collapse
|
6
|
Abstract
In higher eukaryotes, the nucleolus harbors at least three sub-phases that facilitate multiple functionalities including ribosome biogenesis. The three prominent coexisting sub-phases are the fibrillar center (FC), the dense fibrillar component (DFC), and the granular component (GC). Here, we review recent efforts in profiling sub-phase compositions that shed light on the types of physicochemical properties that emerge from compositional biases and territorial organization of specific types of macromolecules. We highlight roles played by molecular grammars which refers to protein sequence features including the substrate binding domains, the sequence features of intrinsically disordered regions, and the multivalence of these distinct types of domains / regions. We introduce the concept of a barcode of emergent physicochemical properties of nucleoli. Although our knowledge of the full barcode remains incomplete, we hope that the concept prompts investigations into undiscovered emergent properties and engenders an appreciation for how and why unique microenvironments control biochemical reactions.
Collapse
Affiliation(s)
- Matthew R. King
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Campus, MO, USA
| | - Kiersten M. Ruff
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Campus, MO, USA
| | - Rohit V. Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Campus, MO, USA
| |
Collapse
|
7
|
Young LN, Sherrard A, Zhou H, Shaikh F, Hutchings J, Riggi M, Rosen MK, Giraldez AJ, Villa E. ExoSloNano: Multi-Modal Nanogold Tags for identification of Macromolecules in Live Cells & Cryo-Electron Tomograms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.12.617288. [PMID: 39416124 PMCID: PMC11482945 DOI: 10.1101/2024.10.12.617288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In situ cryo-Electron Microscopy (cryo-EM) enables the direct interrogation of structure-function relationships by resolving macromolecular structures in their native cellular environment. Tremendous progress in sample preparation, imaging and data processing over the past decade has contributed to the identification and determination of large biomolecular complexes. However, the majority of proteins are of a size that still eludes identification in cellular cryo-EM data, and most proteins exist in low copy numbers. Therefore, novel tools are needed for cryo-EM to identify the vast majority of macromolecules across multiple size scales (from microns to nanometers). Here, we introduce and validate novel nanogold probes that enable the detection of specific proteins using cryo-ET (cryo-Electron Tomography) and resin-embedded correlated light and electron microscopy (CLEM). We demonstrate that these nanogold probes can be introduced into live cells, in a manner that preserves intact molecular networks and cell viability. We use this system to identify both cytoplasmic and nuclear proteins by room temperature EM, and resolve associated structures by cryo-ET. We further employ gold particles of different sizes to enable future multiplexed labeling and structural analysis. By providing high efficiency protein labeling in live cells and molecular specificity within cryo-ET tomograms, we establish a broadly enabling tool that significantly expands the proteome available to electron microscopy.
Collapse
Affiliation(s)
- Lindsey N Young
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - Huabin Zhou
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Farhaz Shaikh
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Joshua Hutchings
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Margot Riggi
- Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Michael K Rosen
- University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, Dallas, TX, USA
| | | | - Elizabeth Villa
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, La Jolla, CA, USA
| |
Collapse
|
8
|
Hutchings J, Villa E. Expanding insights from in situ cryo-EM. Curr Opin Struct Biol 2024; 88:102885. [PMID: 38996624 DOI: 10.1016/j.sbi.2024.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/28/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
The combination of cryo-electron tomography and subtomogram analysis affords 3D high-resolution views of biological macromolecules in their native cellular environment, or in situ. Streamlined methods for acquiring and processing these data are advancing attainable resolutions into the realm of drug discovery. Yet regardless of resolution, structure prediction driven by artificial intelligence (AI) combined with subtomogram analysis is becoming powerful in understanding macromolecular assemblies. Automated and AI-assisted data mining is increasingly necessary to cope with the growing wealth of tomography data and to maximize the information obtained from them. Leveraging developments from AI and single-particle analysis could be essential in fulfilling the potential of in situ cryo-EM. Here, we highlight new developments for in situ cryo-EM and the emerging potential for AI in this process.
Collapse
Affiliation(s)
- Joshua Hutchings
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Elizabeth Villa
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
9
|
Zhang X, Xiao Y, You X, Sun S, Sui SF. In situ structural determination of cyanobacterial phycobilisome-PSII supercomplex by STAgSPA strategy. Nat Commun 2024; 15:7201. [PMID: 39169020 PMCID: PMC11339077 DOI: 10.1038/s41467-024-51460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
Photosynthesis converting solar energy to chemical energy is one of the most important chemical reactions on earth. In cyanobacteria, light energy is captured by antenna system phycobilisomes (PBSs) and transferred to photosynthetic reaction centers of photosystem II (PSII) and photosystem I (PSI). While most of the protein complexes involved in photosynthesis have been characterized by in vitro structural analyses, how these protein complexes function together in vivo is not well understood. Here we implemented STAgSPA, an in situ structural analysis strategy, to solve the native structure of PBS-PSII supercomplex from the cyanobacteria Arthrospira sp. FACHB439 at resolution of ~3.5 Å. The structure reveals coupling details among adjacent PBSs and PSII dimers, and the collaborative energy transfer mechanism mediated by multiple super-PBS in cyanobacteria. Our results provide insights into the diversity of photosynthesis-related systems between prokaryotic cyanobacteria and eukaryotic red algae but are also a methodological demonstration for high-resolution structural analysis in cellular or tissue samples.
Collapse
Affiliation(s)
- Xing Zhang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Yanan Xiao
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xin You
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Sen-Fang Sui
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
10
|
Watson AJI, Bartesaghi A. Advances in cryo-ET data processing: meeting the demands of visual proteomics. Curr Opin Struct Biol 2024; 87:102861. [PMID: 38889501 PMCID: PMC11283971 DOI: 10.1016/j.sbi.2024.102861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024]
Abstract
Cryogenic electron tomography (cryo-ET), a method that enables the viewing of biomolecules in near-native environments at high resolution, is rising in accessibility and applicability. Over the past several years, once slow sample preparation and data collection procedures have seen innovations which enable rapid collection of the large datasets required for attaining high resolution structures. Increased data availability has provided a driving force for exciting improvements in cryo-ET data processing methodologies throughout the entire processing pipeline and the development of accessible graphical user interfaces (GUIs) that enable individuals inexperienced in computational fields to convert raw tilt series into 3D structures. These advances in data processing are enabling cryo-ET to attain higher resolution and extending its applicability to more complex samples.
Collapse
Affiliation(s)
- Abigail J I Watson
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Alberto Bartesaghi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Computer Science, Duke University, Durham, NC, 27708, USA; Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
11
|
Noble AJ, de Marco A. Cryo-focused ion beam for in situ structural biology: State of the art, challenges, and perspectives. Curr Opin Struct Biol 2024; 87:102864. [PMID: 38901373 DOI: 10.1016/j.sbi.2024.102864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/22/2024]
Abstract
Cryogenic-focused ion beam (cryo-FIB) instruments became essential for high-resolution imaging in cryo-preserved cells and tissues. Cryo-FIBs use accelerated ions to thin samples that would otherwise be too thick for cryo-electron microscopy (cryo-EM). This allows visualizing cellular ultrastructures in near-native frozen hydrated states. This review describes the current state-of-the-art capabilities of cryo-FIB technology and its applications in structural cell and tissue biology. We discuss recent advances in instrumentation, imaging modalities, automation, sample preparation protocols, and targeting techniques. We outline remaining challenges and future directions to make cryo-FIB more precise, enable higher throughput, and be widely accessible. Further improvements in targeting, efficiency, robust sample preparation, emerging ion sources, automation, and downstream electron tomography have the potential to reveal intricate molecular architectures across length scales inside cells and tissues. Cryo-FIB is poised to become an indispensable tool for preparing native biological systems in situ for high-resolution 3D structural analysis.
Collapse
Affiliation(s)
- Alex J Noble
- Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Avenue New York, NY, 10027, USA. https://twitter.com/alexjamesnoble
| | - Alex de Marco
- Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Avenue New York, NY, 10027, USA.
| |
Collapse
|
12
|
Cruz-León S, Majtner T, Hoffmann PC, Kreysing JP, Kehl S, Tuijtel MW, Schaefer SL, Geißler K, Beck M, Turoňová B, Hummer G. High-confidence 3D template matching for cryo-electron tomography. Nat Commun 2024; 15:3992. [PMID: 38734767 PMCID: PMC11088655 DOI: 10.1038/s41467-024-47839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/12/2024] [Indexed: 05/13/2024] Open
Abstract
Visual proteomics attempts to build atlases of the molecular content of cells but the automated annotation of cryo electron tomograms remains challenging. Template matching (TM) and methods based on machine learning detect structural signatures of macromolecules. However, their applicability remains limited in terms of both the abundance and size of the molecular targets. Here we show that the performance of TM is greatly improved by using template-specific search parameter optimization and by including higher-resolution information. We establish a TM pipeline with systematically tuned parameters for the automated, objective and comprehensive identification of structures with confidence 10 to 100-fold above the noise level. We demonstrate high-fidelity and high-confidence localizations of nuclear pore complexes, vaults, ribosomes, proteasomes, fatty acid synthases, lipid membranes and microtubules, and individual subunits inside crowded eukaryotic cells. We provide software tools for the generic implementation of our method that is broadly applicable towards realizing visual proteomics.
Collapse
Affiliation(s)
- Sergio Cruz-León
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Tomáš Majtner
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Patrick C Hoffmann
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Jan Philipp Kreysing
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
- IMPRS on Cellular Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Sebastian Kehl
- Max Planck Computing and Data Facility, Gießenbachstraße 2, 85748, Garching, Germany
| | - Maarten W Tuijtel
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Stefan L Schaefer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Katharina Geißler
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
- IMPRS on Cellular Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Martin Beck
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany.
- Institute of Biochemistry, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| | - Beata Turoňová
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany.
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany.
- Institute of Biophysics, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
13
|
Nogales E, Mahamid J. Bridging structural and cell biology with cryo-electron microscopy. Nature 2024; 628:47-56. [PMID: 38570716 PMCID: PMC11211576 DOI: 10.1038/s41586-024-07198-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/13/2024] [Indexed: 04/05/2024]
Abstract
Most life scientists would agree that understanding how cellular processes work requires structural knowledge about the macromolecules involved. For example, deciphering the double-helical nature of DNA revealed essential aspects of how genetic information is stored, copied and repaired. Yet, being reductionist in nature, structural biology requires the purification of large amounts of macromolecules, often trimmed off larger functional units. The advent of cryogenic electron microscopy (cryo-EM) greatly facilitated the study of large, functional complexes and generally of samples that are hard to express, purify and/or crystallize. Nevertheless, cryo-EM still requires purification and thus visualization outside of the natural context in which macromolecules operate and coexist. Conversely, cell biologists have been imaging cells using a number of fast-evolving techniques that keep expanding their spatial and temporal reach, but always far from the resolution at which chemistry can be understood. Thus, structural and cell biology provide complementary, yet unconnected visions of the inner workings of cells. Here we discuss how the interplay between cryo-EM and cryo-electron tomography, as a connecting bridge to visualize macromolecules in situ, holds great promise to create comprehensive structural depictions of macromolecules as they interact in complex mixtures or, ultimately, inside the cell itself.
Collapse
Affiliation(s)
- Eva Nogales
- Molecular and Cell Biology Department, Institute for Quantitative Biomedicine, University of California, Berkeley, CA, USA.
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Howard Hughes Medical Institute, Berkeley, CA, USA.
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
14
|
McCafferty CL, Klumpe S, Amaro RE, Kukulski W, Collinson L, Engel BD. Integrating cellular electron microscopy with multimodal data to explore biology across space and time. Cell 2024; 187:563-584. [PMID: 38306982 DOI: 10.1016/j.cell.2024.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Biology spans a continuum of length and time scales. Individual experimental methods only glimpse discrete pieces of this spectrum but can be combined to construct a more holistic view. In this Review, we detail the latest advancements in volume electron microscopy (vEM) and cryo-electron tomography (cryo-ET), which together can visualize biological complexity across scales from the organization of cells in large tissues to the molecular details inside native cellular environments. In addition, we discuss emerging methodologies for integrating three-dimensional electron microscopy (3DEM) imaging with multimodal data, including fluorescence microscopy, mass spectrometry, single-particle analysis, and AI-based structure prediction. This multifaceted approach fills gaps in the biological continuum, providing functional context, spatial organization, molecular identity, and native interactions. We conclude with a perspective on incorporating diverse data into computational simulations that further bridge and extend length scales while integrating the dimension of time.
Collapse
Affiliation(s)
| | - Sven Klumpe
- Research Group CryoEM Technology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Rommie E Amaro
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Wanda Kukulski
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| | - Lucy Collinson
- Electron Microscopy Science Technology Platform, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Benjamin D Engel
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.
| |
Collapse
|
15
|
Huang C, Kim JS, Kirkland AI. Cryo-electron ptychography: Applications and potential in biological characterisation. Curr Opin Struct Biol 2023; 83:102730. [PMID: 37992450 DOI: 10.1016/j.sbi.2023.102730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/06/2023] [Accepted: 10/16/2023] [Indexed: 11/24/2023]
Abstract
There is a clear need for developments in characterisation techniques that provide detailed information about structure-function relationships in biology. Using electron microscopy to achieve high resolution while maintaining a broad field of view remains a challenge, particularly for radiation-sensitive specimens where the signal-to-noise ratio required to maintain structural integrity is limited by low electron fluence. In this review, we explore the potential of cryogenic electron ptychography as an alternative method for characterising biological systems under low-fluence conditions. Using this method with increased information content from multiple sampled regions of interest potentially allows 3D reconstruction with far fewer particles than required in conventional cryo-electron microscopy. This is important for achieving higher resolution in systems where distributions of homogeneous single particles are difficult to obtain. We discuss the progress, limitations, and potential areas for future development of this approach for both single particle analysis and applications to heterogeneous large objects.
Collapse
Affiliation(s)
- Chen Huang
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, OX11 0QX, United Kingdom.
| | - Judy S Kim
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, OX11 0QX, United Kingdom; Department of Materials, University of Oxford, Oxford, OX1 3PH, United Kingdom
| | - Angus I Kirkland
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, OX11 0QX, United Kingdom; Department of Materials, University of Oxford, Oxford, OX1 3PH, United Kingdom
| |
Collapse
|
16
|
Lucas BA, Himes BA, Grigorieff N. Baited reconstruction with 2D template matching for high-resolution structure determination in vitro and in vivo without template bias. eLife 2023; 12:RP90486. [PMID: 38010355 PMCID: PMC10681363 DOI: 10.7554/elife.90486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Previously we showed that 2D template matching (2DTM) can be used to localize macromolecular complexes in images recorded by cryogenic electron microscopy (cryo-EM) with high precision, even in the presence of noise and cellular background (Lucas et al., 2021; Lucas et al., 2022). Here, we show that once localized, these particles may be averaged together to generate high-resolution 3D reconstructions. However, regions included in the template may suffer from template bias, leading to inflated resolution estimates and making the interpretation of high-resolution features unreliable. We evaluate conditions that minimize template bias while retaining the benefits of high-precision localization, and we show that molecular features not present in the template can be reconstructed at high resolution from targets found by 2DTM, extending prior work at low-resolution. Moreover, we present a quantitative metric for template bias to aid the interpretation of 3D reconstructions calculated with particles localized using high-resolution templates and fine angular sampling.
Collapse
Affiliation(s)
- Bronwyn A Lucas
- RNA Therapeutics Institute, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Department of Molecular and Cell Biology, University of California BerkeleyBerkeleyUnited States
- Center for Computational Biology, University of California BerkeleyBerkeleyUnited States
| | - Benjamin A Himes
- RNA Therapeutics Institute, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Nikolaus Grigorieff
- RNA Therapeutics Institute, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
17
|
Sanchez Carrillo IB, Hoffmann PC, Barff T, Beck M, Germain H. Preparing Arabidopsis thaliana root protoplasts for cryo electron tomography. FRONTIERS IN PLANT SCIENCE 2023; 14:1261180. [PMID: 37810374 PMCID: PMC10556516 DOI: 10.3389/fpls.2023.1261180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
The use of protoplasts in plant biology has become a convenient tool for the application of transient gene expression. This model system has allowed the study of plant responses to biotic and abiotic stresses, protein location and trafficking, cell wall dynamics, and single-cell transcriptomics, among others. Although well-established protocols for isolating protoplasts from different plant tissues are available, they have never been used for studying plant cells using cryo electron microscopy (cryo-EM) and cryo electron tomography (cryo-ET). Here we describe a workflow to prepare root protoplasts from Arabidopsis thaliana plants for cryo-ET. The process includes protoplast isolation and vitrification on EM grids, and cryo-focused ion beam milling (cryo-FIB), with the aim of tilt series acquisition. The whole workflow, from growing the plants to the acquisition of the tilt series, may take a few months. Our protocol provides a novel application to use plant protoplasts as a tool for cryo-ET.
Collapse
Affiliation(s)
| | - Patrick C. Hoffmann
- Department of Molecular Sociology, Max-Planck-Institute for Biophysics, Frankfurt, Germany
| | - Teura Barff
- Department of Chemistry, Biochemistry, and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Martin Beck
- Department of Molecular Sociology, Max-Planck-Institute for Biophysics, Frankfurt, Germany
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Hugo Germain
- Department of Chemistry, Biochemistry, and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| |
Collapse
|
18
|
Chaillet ML, van der Schot G, Gubins I, Roet S, Veltkamp RC, Förster F. Extensive Angular Sampling Enables the Sensitive Localization of Macromolecules in Electron Tomograms. Int J Mol Sci 2023; 24:13375. [PMID: 37686180 PMCID: PMC10487639 DOI: 10.3390/ijms241713375] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Cryo-electron tomography provides 3D images of macromolecules in their cellular context. To detect macromolecules in tomograms, template matching (TM) is often used, which uses 3D models that are often reliable for substantial parts of the macromolecules. However, the extent of rotational searches in particle detection has not been investigated due to computational limitations. Here, we provide a GPU implementation of TM as part of the PyTOM software package, which drastically speeds up the orientational search and allows for sampling beyond the Crowther criterion within a feasible timeframe. We quantify the improvements in sensitivity and false-discovery rate for the examples of ribosome identification and detection. Sampling at the Crowther criterion, which was effectively impossible with CPU implementations due to the extensive computation times, allows for automated extraction with high sensitivity. Consequently, we also show that an extensive angular sample renders 3D TM sensitive to the local alignment of tilt series and damage induced by focused ion beam milling. With this new release of PyTOM, we focused on integration with other software packages that support more refined subtomogram-averaging workflows. The automated classification of ribosomes by TM with appropriate angular sampling on locally corrected tomograms has a sufficiently low false-discovery rate, allowing for it to be directly used for high-resolution averaging and adequate sensitivity to reveal polysome organization.
Collapse
Affiliation(s)
- Marten L. Chaillet
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.L.C.); (G.v.d.S.); (S.R.)
| | - Gijs van der Schot
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.L.C.); (G.v.d.S.); (S.R.)
| | - Ilja Gubins
- Department of Information and Computing Sciences, Utrecht University, 3584 CC Utrecht, The Netherlands; (I.G.); (R.C.V.)
| | - Sander Roet
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.L.C.); (G.v.d.S.); (S.R.)
| | - Remco C. Veltkamp
- Department of Information and Computing Sciences, Utrecht University, 3584 CC Utrecht, The Netherlands; (I.G.); (R.C.V.)
| | - Friedrich Förster
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.L.C.); (G.v.d.S.); (S.R.)
| |
Collapse
|
19
|
Zhang K, Lucas B, Grigorieff N. Exploring the Limits of 2D Template Matching for Detecting Targets in Cellular Cryo-EM Images. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:931. [PMID: 37613706 DOI: 10.1093/micmic/ozad067.462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Kexin Zhang
- The University of Massachusetts Chan Medical School, RNA Therapeutics Institute, Worcester, MA, USA
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| | - Bronwyn Lucas
- Department of Molecular & Cell Biology, The University of California, Berkeley, Berkeley, CA, USA
| | - Nikolaus Grigorieff
- The University of Massachusetts Chan Medical School, RNA Therapeutics Institute, Worcester, MA, USA
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| |
Collapse
|
20
|
Abstract
Recent advances in cryo-electron microscopy have marked only the beginning of the potential of this technique. To bring structure into cell biology, the modality of cryo-electron tomography has fast developed into a bona fide in situ structural biology technique where structures are determined in their native environment, the cell. Nearly every step of the cryo-focused ion beam-assisted electron tomography (cryo-FIB-ET) workflow has been improved upon in the past decade, since the first windows were carved into cells, unveiling macromolecular networks in near-native conditions. By bridging structural and cell biology, cryo-FIB-ET is advancing our understanding of structure-function relationships in their native environment and becoming a tool for discovering new biology.
Collapse
Affiliation(s)
- Lindsey N Young
- Department of Molecular Biology, University of California, San Diego, La Jolla, California, USA;
| | - Elizabeth Villa
- Department of Molecular Biology, University of California, San Diego, La Jolla, California, USA;
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
21
|
Guaita M, Watters SC, Loerch S. Recent advances and current trends in cryo-electron microscopy. Curr Opin Struct Biol 2022; 77:102484. [PMID: 36323134 DOI: 10.1016/j.sbi.2022.102484] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/13/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022]
Abstract
All steps of cryogenic electron-microscopy (cryo-EM) workflows have rapidly evolved over the last decade. Advances in both single-particle analysis (SPA) cryo-EM and cryo-electron tomography (cryo-ET) have facilitated the determination of high-resolution biomolecular structures that are not tractable with other methods. However, challenges remain. For SPA, these include improved resolution in an additional dimension: time. For cryo-ET, these include accessing difficult-to-image areas of a cell and finding rare molecules. Finally, there is a need for automated and faster workflows, as many projects are limited by throughput. Here, we review current developments in SPA cryo-EM and cryo-ET that push these boundaries. Collectively, these advances are poised to propel our spatial and temporal understanding of macromolecular processes.
Collapse
Affiliation(s)
- Margherita Guaita
- University of California, Santa Cruz, Department of Chemistry and Biochemistry, Santa Cruz, CA, USA
| | - Scott C Watters
- University of California, Santa Cruz, Department of Chemistry and Biochemistry, Santa Cruz, CA, USA
| | - Sarah Loerch
- University of California, Santa Cruz, Department of Chemistry and Biochemistry, Santa Cruz, CA, USA.
| |
Collapse
|
22
|
Elferich J, Schiroli G, Scadden DT, Grigorieff N. Defocus Corrected Large Area Cryo-EM (DeCo-LACE) for label-free detection of molecules across entire cell sections. eLife 2022; 11:e80980. [PMID: 36382886 PMCID: PMC9711527 DOI: 10.7554/elife.80980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/15/2022] [Indexed: 11/17/2022] Open
Abstract
A major goal of biological imaging is localization of biomolecules inside a cell. Fluorescence microscopy can localize biomolecules inside whole cells and tissues, but its ability to count biomolecules and accuracy of the spatial coordinates is limited by the wavelength of visible light. Cryo-electron microscopy (cryo-EM) provides highly accurate position and orientation information of biomolecules but is often confined to small fields of view inside a cell, limiting biological context. In this study, we use a new data-acquisition scheme called Defocus-Corrected Large-Area cryo-EM (DeCo-LACE) to collect high-resolution images of entire sections (100- to 250-nm-thick lamellae) of neutrophil-like mouse cells, representing 1-2% of the total cellular volume. We use 2D template matching (2DTM) to determine localization and orientation of the large ribosomal subunit in these sections. These data provide maps of ribosomes across entire sections of mammalian cells. This high-throughput cryo-EM data collection approach together with 2DTM will advance visual proteomics and provide biological insight that cannot be obtained by other methods.
Collapse
Affiliation(s)
- Johannes Elferich
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Howard Hughes Medical InstituteWorcesterUnited States
| | - Giulia Schiroli
- Department of Stem Cell and Regenerative Biology, Harvard UniversityCambridgeUnited States
- Harvard Stem Cell InstituteCambridgeUnited States
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
| | - David T Scadden
- Department of Stem Cell and Regenerative Biology, Harvard UniversityCambridgeUnited States
- Harvard Stem Cell InstituteCambridgeUnited States
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
| | - Nikolaus Grigorieff
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Howard Hughes Medical InstituteWorcesterUnited States
| |
Collapse
|