1
|
Spangler RK, Jonnalagadda K, Ward JD, Partch CL. A wrinkle in timers: evolutionary rewiring of conserved biological timekeepers. Trends Biochem Sci 2025; 50:344-355. [PMID: 39952882 DOI: 10.1016/j.tibs.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 02/17/2025]
Abstract
Biological timing mechanisms are intrinsic to all organisms, orchestrating the temporal coordination of biological events through complex genetic networks. Circadian rhythms and developmental timers utilize distinct timekeeping mechanisms. This review summarizes the molecular basis for circadian rhythms in mammals and Drosophila, and recent work leveraging these clocks to understand temporal regulation in Caenorhabditis elegans development. We describe the evolutionary connections between distinct timing mechanisms and discuss recent insights into the rewiring of core clock components in development. By integrating findings from circadian and developmental studies with biochemical and structural analyses of conserved components, we aim to illuminate the molecular basis of nematode timing mechanisms and highlight broader insights into biological timing across species.
Collapse
Affiliation(s)
- Rebecca K Spangler
- Department of Chemistry and Biochemistry, University of California - Santa Cruz, Santa Cruz, CA 95064, USA
| | - Keya Jonnalagadda
- Department of Molecular, Cell, and Developmental Biology, University of California - Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jordan D Ward
- Department of Molecular, Cell, and Developmental Biology, University of California - Santa Cruz, Santa Cruz, CA 95064, USA
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California - Santa Cruz, Santa Cruz, CA 95064, USA; Center for Circadian Biology, University of California - Santa Diego, La Jolla, CA 92093, USA; Howard Hughes Medical Institute, University of California - Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
2
|
Binti S, Edeen PT, Fay DS. Loss of the Na+/K+ cation pump CATP-1 suppresses nekl-associated molting defects. G3 (BETHESDA, MD.) 2024; 14:jkae244. [PMID: 39428996 PMCID: PMC11631496 DOI: 10.1093/g3journal/jkae244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/24/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
The conserved Caenorhabditis elegans protein kinases NEKL-2 and NEKL-3 regulate membrane trafficking and are required for larval molting. Through a forward genetic screen we identified a mutation in catp-1 as a suppressor of molting defects in synthetically lethal nekl-2; nekl-3 double mutants. catp-1 encodes a membrane-associated P4-type ATPase involved in Na+-K+ exchange. A previous study found that wild-type worms exposed to the nicotinic agonist dimethylphenylpiperazinium (DMPP) exhibited larval arrest and molting-associated defects, which were suppressed by inhibition of catp-1. By testing a spectrum catp-1 alleles, we found that resistance to DMPP toxicity and the suppression of nekl defects did not strongly correlate, suggesting key differences in the mechanism of catp-1-mediated suppression. Through whole genome sequencing of additional nekl-2; nekl-3 suppressor strains, we identified two additional coding-altering mutations in catp-1. However, neither mutation, when introduced into nekl-2; nekl-3 mutants using CRISPR, was sufficient to elicit robust suppression of molting defects, suggesting the involvement of other loci. Endogenously tagged CATP-1 was primarily expressed in epidermal cells within punctate structures located near the apical plasma membrane, consistent with a role in regulating cellular processes within the epidermis. Based on previous studies, we tested the hypothesis that catp-1 inhibition induces entry into the pre-dauer L2d stage, potentially accounting for the ability of catp-1 mutants to suppress nekl molting defects. However, we found no evidence that loss of catp-1 leads to entry into L2d. As such, loss of catp-1 may suppress nekl-associated and DMPP-induced defects by altering electrochemical gradients within membrane-bound compartments.
Collapse
Affiliation(s)
- Shaonil Binti
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY 82071, USA
| | - Philip T Edeen
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY 82071, USA
| | - David S Fay
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
3
|
Ragle JM, Turzo A, Jackson A, Vo AA, Pham VT, Ward JD. The NHR-23-regulated putative protease inhibitor mlt-11 gene is necessary for C. elegans cuticle structure and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.12.593762. [PMID: 38766248 PMCID: PMC11100798 DOI: 10.1101/2024.05.12.593762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
C. elegans molting offers a powerful entry point to understanding developmentally programmed apical extracellular matrix remodeling. However, the gene regulatory network controlling this process remains poorly understood. Focusing on targets of NHR-23, a key transcription factor that drives molting, we confirmed the Kunitz family protease inhibitor gene mlt-11 as an NHR-23 target. Through reporter assays, we identified NHR-23-binding sites that are necessary and sufficient for epithelial expression. We generated a translational fusion and demonstrated that MLT-11 is localized to the cuticle and lined openings to the exterior (vulva, rectum, mouth). We created a set of strains expressing varied levels of MLT-11 by deleting endogenous cis-regulatory element sequences. Combined deletion of two cis-regulatory elements caused developmental delay, motility defects, and failure of the cuticle barrier. Inactivation of mlt-11 by RNAi produced even more pronounced defects. mlt-11 is necessary to pattern every layer of the adult cuticle, suggesting a broad patterning role prior to the formation of the mature cuticle. Together these studies provide an entry point into understanding how individual cis-regulatory elements function to coordinate expression of oscillating genes involved in molting and how MLT-11 ensures proper cuticle assembly.
Collapse
Affiliation(s)
- James Matthew Ragle
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Ariela Turzo
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Anton Jackson
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - An A. Vo
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Vivian T. Pham
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jordan D. Ward
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
4
|
Sundaram MV, Pujol N. The Caenorhabditis elegans cuticle and precuticle: a model for studying dynamic apical extracellular matrices in vivo. Genetics 2024; 227:iyae072. [PMID: 38995735 PMCID: PMC11304992 DOI: 10.1093/genetics/iyae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/25/2024] [Indexed: 07/14/2024] Open
Abstract
Apical extracellular matrices (aECMs) coat the exposed surfaces of animal bodies to shape tissues, influence social interactions, and protect against pathogens and other environmental challenges. In the nematode Caenorhabditis elegans, collagenous cuticle and zona pellucida protein-rich precuticle aECMs alternately coat external epithelia across the molt cycle and play many important roles in the worm's development, behavior, and physiology. Both these types of aECMs contain many matrix proteins related to those in vertebrates, as well as some that are nematode-specific. Extensive differences observed among tissues and life stages demonstrate that aECMs are a major feature of epithelial cell identity. In addition to forming discrete layers, some cuticle components assemble into complex substructures such as ridges, furrows, and nanoscale pillars. The epidermis and cuticle are mechanically linked, allowing the epidermis to sense cuticle damage and induce protective innate immune and stress responses. The C. elegans model, with its optical transparency, facilitates the study of aECM cell biology and structure/function relationships and all the myriad ways by which aECM can influence an organism.
Collapse
Affiliation(s)
- Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nathalie Pujol
- Aix Marseille University, INSERM, CNRS, CIML, Turing Centre for Living Systems, 13009 Marseille, France
| |
Collapse
|
5
|
Rodrigues DT, Padilha HA, Soares ATG, de Souza MEO, Guerra MT, Ávila DS. The Caenorhabditis elegans neuroendocrine system and their modulators: An overview. Mol Cell Endocrinol 2024; 586:112191. [PMID: 38382589 DOI: 10.1016/j.mce.2024.112191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/23/2024]
Abstract
In this review we seek to systematically bring what has been published in the literature about the nervous system, endocrine system, neuroendocrine relationships, neuroendocrine modulations and endocrine disruptors in the alternative model Caenorhabditis elegans. The serotonergic, dopaminergic, GABAergic and glutamatergic neurotransmitters are related to the modulation of the neuroendocrine axis, leading to the activation or inhibition of several processes that occur in the worm through distinct and interconnected pathways. Furthermore, this review addresses the gut-neuronal axis as it has been revealed in recent years that gut microbiota impacts on neuronal functions. This review also approaches xenobiotics that can positively or negatively impact the neuroendocrine system in C. elegans as in mammals, which allows the application of this nematode to screen new drugs and to identify toxicants that are endocrine disruptors.
Collapse
Affiliation(s)
- Daniela Teixeira Rodrigues
- Graduation Program in Biological Sciences- Toxicological Biochemistry, Federal University of Santa Maria, RS, Brazil
| | | | | | | | | | - Daiana Silva Ávila
- Graduation Program in Biological Sciences- Toxicological Biochemistry, Federal University of Santa Maria, RS, Brazil; Graduation Program in Biochemistry, Federal University of Pampa, Uruguaiana, RS, Brazil.
| |
Collapse
|
6
|
Patil G, van Zon JS. Timers, variability, and body-wide coordination: C. elegans as a model system for whole-animal developmental timing. Curr Opin Genet Dev 2024; 85:102172. [PMID: 38432125 DOI: 10.1016/j.gde.2024.102172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
Successful development requires both precise timing of cellular processes, such as division and differentiation, and tight coordination of timing between tissues and organs. Yet, how time information is encoded with high precision and synchronized between tissues, despite inherent molecular noise, is unsolved. Here, we propose the nematode C. elegans as a unique model system for studying body-wide control of developmental timing. Recent studies combining genetics, quantitative analysis, and simulations have 1) mapped core timers controlling larval development, indicating temporal gradients as an underlying mechanism, and 2) elucidated general principles that make timing insensitive to inherent fluctuations and variation in environmental conditions. As the molecular regulators of C. elegans developmental timing are broadly conserved, these mechanisms likely apply also to higher organisms.
Collapse
|
7
|
Hiroki S, Yoshitane H. Ror homolog nhr-23 is essential for both developmental clock and circadian clock in C. elegans. Commun Biol 2024; 7:243. [PMID: 38418700 PMCID: PMC10902330 DOI: 10.1038/s42003-024-05894-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
Animals have internal clocks that generate biological rhythms. In mammals, clock genes such as Period form the circadian clock to generate approximately 24-h biological rhythms. In C. elegans, the clock gene homologs constitute the "developmental clock", which has an 8-h period during larval development to determine the timing of molting. Thus, the ancestral circadian clock has been believed to evolve into the oscillator with a shorter period in C. elegans. However, circadian rhythms have also been observed in adult C. elegans, albeit relatively weak. This prompts the question: if the clock gene homologs drive the developmental rhythm with 8-h period, which genes generate the circadian rhythms in C. elegans? In this study, we discovered that nhr-23, a homolog of the mammalian circadian clock gene Ror, is essential for circadian transcriptional rhythms in adult C. elegans. Interestingly, nhr-23 was also known to be essential for the molting clock. The bilaterian ancestral circadian clock genes might have evolved to function over multiple periods depending on developmental contexts rather than a single 8-h period in C. elegans.
Collapse
Affiliation(s)
- Shingo Hiroki
- Tokyo Metropolitan Institute of Medical Sciences, Tokyo, Japan.
| | - Hikari Yoshitane
- Tokyo Metropolitan Institute of Medical Sciences, Tokyo, Japan.
- Department of Biological Sciences, School of Science, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
8
|
Kinney B, Sahu S, Stec N, Hills-Muckey K, Adams DW, Wang J, Jaremko M, Joshua-Tor L, Keil W, Hammell CM. A circadian-like gene network programs the timing and dosage of heterochronic miRNA transcription during C. elegans development. Dev Cell 2023; 58:2563-2579.e8. [PMID: 37643611 PMCID: PMC10840721 DOI: 10.1016/j.devcel.2023.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/10/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
Development relies on the exquisite control of both the timing and the levels of gene expression to achieve robust developmental transitions. How cis- and trans-acting factors control both aspects simultaneously is unclear. We show that transcriptional pulses of the temporal patterning microRNA (miRNA) lin-4 are generated by two nuclear hormone receptors (NHRs) in C. elegans, NHR-85 and NHR-23, whose mammalian orthologs, Rev-Erb and ROR, function in the circadian clock. Although Rev-Erb and ROR antagonize each other to control once-daily transcription in mammals, NHR-85/NHR-23 heterodimers bind cooperatively to lin-4 regulatory elements to induce a single pulse of expression during each larval stage. Each pulse's timing, amplitude, and duration are dictated by the phased expression of these NHRs and the C. elegans Period ortholog, LIN-42, that binds to and represses NHR-85. Therefore, during nematode temporal patterning, an evolutionary rewiring of circadian clock components couples the timing of gene expression to the control of transcriptional dosage.
Collapse
Affiliation(s)
- Brian Kinney
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Shubham Sahu
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168 Laboratoire Physico Chimie Curie, Paris 75005, France
| | - Natalia Stec
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Dexter W Adams
- Howard Hughes Medical Institute, W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jing Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Matt Jaremko
- Howard Hughes Medical Institute, W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Leemor Joshua-Tor
- Howard Hughes Medical Institute, W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Wolfgang Keil
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168 Laboratoire Physico Chimie Curie, Paris 75005, France.
| | | |
Collapse
|
9
|
Myles KM, Ragle JM, Ward JD. An nhr-23::mScarlet::3xMyc knock-in allele for studying spermatogenesis and molting. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000996. [PMID: 37854098 PMCID: PMC10580079 DOI: 10.17912/micropub.biology.000996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023]
Abstract
C. elegans NHR-23 is a nuclear hormone receptor transcription factor involved in molting, apical extracellular matrix structure, and spermatogenesis. To determine NHR-23 expression dynamics, we previously tagged the endogenous nhr-23 locus with a GFP::AID*::3xFLAG tag. To allow co-localization of NHR-23 with green fluorescent protein-tagged factors of interest, we generated an equivalent strain carrying an mScarlet::3xMyc tag to produce a C-terminal fusion. Similar to the GFP::AID*::3xFLAG knock-in, NHR-23 ::mScarlet::3xMyc was expressed in seam and hypodermal cells, vulval precursor cells, and the spermatogenic germline. We also observed a diffuse NHR-23::mScarlet expression pattern in spermatids and residual bodies after NHR-23 ceased to localize on chromatin. Further examination of this novel localization may provide insight into NHR-23 regulation of spermatogenesis.
Collapse
Affiliation(s)
- Krista M. Myles
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - James Matthew Ragle
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Jordan D. Ward
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| |
Collapse
|
10
|
Johnson LC, Vo AA, Clancy JC, Myles KM, Pooranachithra M, Aguilera J, Levenson MT, Wohlenberg C, Rechtsteiner A, Ragle JM, Chisholm AD, Ward JD. NHR-23 activity is necessary for C. elegans developmental progression and apical extracellular matrix structure and function. Development 2023; 150:dev201085. [PMID: 37129010 PMCID: PMC10233720 DOI: 10.1242/dev.201085] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Nematode molting is a remarkable process where animals must repeatedly build a new apical extracellular matrix (aECM) beneath a previously built aECM that is subsequently shed. The nuclear hormone receptor NHR-23 (also known as NR1F1) is an important regulator of C. elegans molting. NHR-23 expression oscillates in the epidermal epithelium, and soma-specific NHR-23 depletion causes severe developmental delay and death. Tissue-specific RNAi suggests that nhr-23 acts primarily in seam and hypodermal cells. NHR-23 coordinates the expression of factors involved in molting, lipid transport/metabolism and remodeling of the aECM. NHR-23 depletion causes dampened expression of a nas-37 promoter reporter and a loss of reporter oscillation. The cuticle collagen ROL-6 and zona pellucida protein NOAH-1 display aberrant annular localization and severe disorganization over the seam cells after NHR-23 depletion, while the expression of the adult-specific cuticle collagen BLI-1 is diminished and frequently found in patches. Consistent with these localization defects, the cuticle barrier is severely compromised when NHR-23 is depleted. Together, this work provides insight into how NHR-23 acts in the seam and hypodermal cells to coordinate aECM regeneration during development.
Collapse
Affiliation(s)
- Londen C. Johnson
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - An A. Vo
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - John C. Clancy
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Krista M. Myles
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Murugesan Pooranachithra
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Joseph Aguilera
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Max T. Levenson
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Chloe Wohlenberg
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Andreas Rechtsteiner
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - James Matthew Ragle
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Andrew D. Chisholm
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jordan D. Ward
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
11
|
Meeuse MWM, Hauser YP, Nahar S, Smith AAT, Braun K, Azzi C, Rempfler M, Großhans H. C. elegans molting requires rhythmic accumulation of the Grainyhead/LSF transcription factor GRH-1. EMBO J 2023; 42:e111895. [PMID: 36688410 PMCID: PMC9929640 DOI: 10.15252/embj.2022111895] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 01/24/2023] Open
Abstract
C. elegans develops through four larval stages that are rhythmically terminated by molts, that is, the synthesis and shedding of a cuticular exoskeleton. Each larval cycle involves rhythmic accumulation of thousands of transcripts, which we show here relies on rhythmic transcription. To uncover the responsible gene regulatory networks (GRNs), we screened for transcription factors that promote progression through the larval stages and identified GRH-1, BLMP-1, NHR-23, NHR-25, MYRF-1, and BED-3. We further characterize GRH-1, a Grainyhead/LSF transcription factor, whose orthologues in other animals are key epithelial cell-fate regulators. We find that GRH-1 depletion extends molt durations, impairs cuticle integrity and shedding, and causes larval death. GRH-1 is required for, and accumulates prior to, each molt, and preferentially binds to the promoters of genes expressed during this time window. Binding to the promoters of additional genes identified in our screen furthermore suggests that we have identified components of a core molting-clock GRN. Since the mammalian orthologues of GRH-1, BLMP-1 and NHR-23, have been implicated in rhythmic homeostatic skin regeneration in mouse, the mechanisms underlying rhythmic C. elegans molting may apply beyond nematodes.
Collapse
Affiliation(s)
- Milou W M Meeuse
- Friedrich Miescher Institute for Biomedical Research (FMI)BaselSwitzerland
- University of BaselBaselSwitzerland
| | - Yannick P Hauser
- Friedrich Miescher Institute for Biomedical Research (FMI)BaselSwitzerland
- University of BaselBaselSwitzerland
| | - Smita Nahar
- Friedrich Miescher Institute for Biomedical Research (FMI)BaselSwitzerland
| | | | - Kathrin Braun
- Friedrich Miescher Institute for Biomedical Research (FMI)BaselSwitzerland
| | - Chiara Azzi
- Friedrich Miescher Institute for Biomedical Research (FMI)BaselSwitzerland
- University of BaselBaselSwitzerland
| | - Markus Rempfler
- Friedrich Miescher Institute for Biomedical Research (FMI)BaselSwitzerland
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research (FMI)BaselSwitzerland
- University of BaselBaselSwitzerland
| |
Collapse
|