1
|
Mao B, Wang YY, Li SY, Fu Y, Xiao YL, Wang YF. A potential role for the interaction of Wolbachia surface proteins with the Drosophila microtubulin in maintenance of endosymbiosis and affecting spermiogenesis. JOURNAL OF INSECT PHYSIOLOGY 2025; 160:104743. [PMID: 39709001 DOI: 10.1016/j.jinsphys.2024.104743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Wolbachia, as a widely infected intracellular symbiotic bacterium in Arthropoda, is able to manipulate the reproduction of insect hosts for facilitating their own transmission. Cytoplasmic incompatibility (CI) is the most common phenotype that Wolbachia induced in insect hosts where they resulted in the failure of uninfected egg hatch when fertilized with the sperm derived from Wolbachia-infected males, suggesting that the sperm are modified by Wolbachia during spermatogenesis. Although the molecular mechanisms of CI are beginning to be understood, the effects of Wolbachia on the symbiotic relationship and the proper dynamics of spermatogenesis have not yet been fully investigated. We report here that Wolbachia infection induced a significant upregulation of betaTub85D in the testis of Drosophila melanogaster. Knockdown of betaTub85D in fly testes resulted in significant decrease in the copy number of Wolbachia surface protein gene (wsp), indicating a notable reduction of Wolbachia density. Pull-down analyses revealed that WSP interacted with the betaTub85D of D. melanogaster. Wolbachia infection altered the interactome between betaTub85D and other proteins in the testes, and may thus change the protein synthesis and metabolic pathways. Wolbachia infection induced not only an interaction of betaTub85D with Mst77F but also increase in phosphorylated Mst77F. These results suggest that Wolbachia WSP protein might play important roles in anchoring the endosymbiont to the host's cytoskeleton and consequently interfere the interactions among key proteins involved in spermatogenesis in the insect host testes, resulting in modified sperm.
Collapse
Affiliation(s)
- Bin Mao
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China; College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China
| | - Ying-Ying Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China
| | - Si-Ying Li
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China
| | - Yue Fu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China
| | - Yun-Li Xiao
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
2
|
Kaur R, McGarry A, Shropshire JD, Leigh BA, Bordenstein SR. Prophage proteins alter long noncoding RNA and DNA of developing sperm to induce a paternal-effect lethality. Science 2024; 383:1111-1117. [PMID: 38452081 PMCID: PMC11187695 DOI: 10.1126/science.adk9469] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/30/2024] [Indexed: 03/09/2024]
Abstract
The extent to which prophage proteins interact with eukaryotic macromolecules is largely unknown. In this work, we show that cytoplasmic incompatibility factor A (CifA) and B (CifB) proteins, encoded by prophage WO of the endosymbiont Wolbachia, alter long noncoding RNA (lncRNA) and DNA during Drosophila sperm development to establish a paternal-effect embryonic lethality known as cytoplasmic incompatibility (CI). CifA is a ribonuclease (RNase) that depletes a spermatocyte lncRNA important for the histone-to-protamine transition of spermiogenesis. Both CifA and CifB are deoxyribonucleases (DNases) that elevate DNA damage in late spermiogenesis. lncRNA knockdown enhances CI, and mutagenesis links lncRNA depletion and subsequent sperm chromatin integrity changes to embryonic DNA damage and CI. Hence, prophage proteins interact with eukaryotic macromolecules during gametogenesis to create a symbiosis that is fundamental to insect evolution and vector control.
Collapse
Affiliation(s)
- Rupinder Kaur
- Pennsylvania State University, Departments of Biology and Entomology, University Park, PA 16802, USA
- One Health Microbiome Center, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, USA
| | - Angelina McGarry
- Pennsylvania State University, Departments of Biology and Entomology, University Park, PA 16802, USA
- One Health Microbiome Center, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - J. Dylan Shropshire
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, USA
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Brittany A. Leigh
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, USA
| | - Seth R. Bordenstein
- Pennsylvania State University, Departments of Biology and Entomology, University Park, PA 16802, USA
- One Health Microbiome Center, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, USA
| |
Collapse
|
3
|
Kaur R, Meier CJ, McGraw EA, Hillyer JF, Bordenstein SR. The mechanism of cytoplasmic incompatibility is conserved in Wolbachia-infected Aedes aegypti mosquitoes deployed for arbovirus control. PLoS Biol 2024; 22:e3002573. [PMID: 38547237 PMCID: PMC11014437 DOI: 10.1371/journal.pbio.3002573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/12/2024] [Accepted: 03/01/2024] [Indexed: 04/13/2024] Open
Abstract
The rising interest and success in deploying inherited microorganisms and cytoplasmic incompatibility (CI) for vector control strategies necessitate an explanation of the CI mechanism. Wolbachia-induced CI manifests in the form of embryonic lethality when sperm from Wolbachia-bearing testes fertilize eggs from uninfected females. Embryos from infected females however survive to sustain the maternally inherited symbiont. Previously in Drosophila melanogaster flies, we demonstrated that CI modifies chromatin integrity in developing sperm to bestow the embryonic lethality. Here, we validate these findings using wMel-transinfected Aedes aegypti mosquitoes released to control vector-borne diseases. Once again, the prophage WO CI proteins, CifA and CifB, target male gametic nuclei to modify chromatin integrity via an aberrant histone-to-protamine transition. Cifs are not detected in the embryo, and thus elicit CI via the nucleoprotein modifications established pre-fertilization. The rescue protein CifA in oogenesis localizes to stem cell, nurse cell, and oocyte nuclei, as well as embryonic DNA during embryogenesis. Discovery of the nuclear targeting Cifs and altered histone-to-protamine transition in both Aedes aegypti mosquitoes and D. melanogaster flies affirm the Host Modification Model of CI is conserved across these host species. The study also newly uncovers the cell biology of Cif proteins in the ovaries, CifA localization in the embryos, and an impaired histone-to-protamine transition during spermiogenesis of any mosquito species. Overall, these sperm modification findings may enable future optimization of CI efficacy in vectors or pests that are refractory to Wolbachia transinfections.
Collapse
Affiliation(s)
- Rupinder Kaur
- Pennsylvania State University, Departments of Biology and Entomology, University Park, Pennsylvania, United States of America
- Pennsylvania State University, One Health Microbiome Center, Huck Institutes of the Life Sciences, University Park, Pennsylvania, United States of America
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
| | - Cole J. Meier
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
| | - Elizabeth A. McGraw
- Pennsylvania State University, Departments of Biology and Entomology, University Park, Pennsylvania, United States of America
- Pennsylvania State University, One Health Microbiome Center, Huck Institutes of the Life Sciences, University Park, Pennsylvania, United States of America
- Pennsylvania State University, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, University Park, Pennsylvania, United States of America
| | - Julian F. Hillyer
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
| | - Seth R. Bordenstein
- Pennsylvania State University, Departments of Biology and Entomology, University Park, Pennsylvania, United States of America
- Pennsylvania State University, One Health Microbiome Center, Huck Institutes of the Life Sciences, University Park, Pennsylvania, United States of America
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
| |
Collapse
|
4
|
Serbus LR. A Light in the Dark: Uncovering Wolbachia-Host Interactions Using Fluorescence Imaging. Methods Mol Biol 2024; 2739:349-373. [PMID: 38006562 DOI: 10.1007/978-1-0716-3553-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
The success of microbial endosymbionts, which reside naturally within a eukaryotic "host" organism, requires effective microbial interaction with, and manipulation of, the host cells. Fluorescence microscopy has played a key role in elucidating the molecular mechanisms of endosymbiosis. For 30 years, fluorescence analyses have been a cornerstone in studies of endosymbiotic Wolbachia bacteria, focused on host colonization, maternal transmission, reproductive parasitism, horizontal gene transfer, viral suppression, and metabolic interactions in arthropods and nematodes. Fluorescence-based studies stand to continue informing Wolbachia-host interactions in increasingly detailed and innovative ways.
Collapse
Affiliation(s)
- Laura Renee Serbus
- Department of Biological Sciences, Florida International University, Miami, FL, USA.
| |
Collapse
|
5
|
Abstract
Wolbachia are successful Gram-negative bacterial endosymbionts, globally infecting a large fraction of arthropod species and filarial nematodes. Efficient vertical transmission, the capacity for horizontal transmission, manipulation of host reproduction and enhancement of host fitness can promote the spread both within and between species. Wolbachia are abundant and can occupy extraordinary diverse and evolutionary distant host species, suggesting that they have evolved to engage and manipulate highly conserved core cellular processes. Here, we review recent studies identifying Wolbachia-host interactions at the molecular and cellular levels. We explore how Wolbachia interact with a wide array of host cytoplasmic and nuclear components in order to thrive in a diversity of cell types and cellular environments. This endosymbiont has also evolved the ability to precisely target and manipulate specific phases of the host cell cycle. The remarkable diversity of cellular interactions distinguishes Wolbachia from other endosymbionts and is largely responsible for facilitating its global propagation through host populations. Finally, we describe how insights into Wolbachia-host cellular interactions have led to promising applications in controlling insect-borne and filarial nematode-based diseases.
Collapse
Affiliation(s)
- Jillian Porter
- Molecular, Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, CA, USA
| | - William Sullivan
- Molecular, Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
6
|
Hochstrasser M. Molecular Biology of Cytoplasmic Incompatibility Caused by Wolbachia Endosymbionts. Annu Rev Microbiol 2023; 77:299-316. [PMID: 37285552 DOI: 10.1146/annurev-micro-041020-024616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Among endosymbiotic bacteria living within eukaryotic cells, Wolbachia is exceptionally widespread, particularly in arthropods. Inherited through the female germline, it has evolved ways to increase the fraction of bacterially infected offspring by inducing parthenogenesis, feminization, male killing, or, most commonly, cytoplasmic incompatibility (CI). In CI, Wolbachia infection of males causes embryonic lethality unless they mate with similarly infected females, creating a relative reproductive advantage for infected females. A set of related Wolbachia bicistronic operons encodes the CI-inducing factors. The downstream gene encodes a deubiquitylase or nuclease and is responsible for CI induction by males, while the upstream product when expressed in females binds its sperm-introduced cognate partner and rescues viability. Both toxin-antidote and host-modification mechanisms have been proposed to explain CI. Interestingly, male killing by either Spiroplasma or Wolbachia endosymbionts involves deubiquitylases as well. Interference with the host ubiquitin system may therefore be a common theme among endosymbiont-mediated reproductive alterations.
Collapse
Affiliation(s)
- Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry and Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA;
| |
Collapse
|